JPH0582934A - Terminal connection structure, terminal connection method, manufacture of conductive particle, and manufacturing board - Google Patents

Terminal connection structure, terminal connection method, manufacture of conductive particle, and manufacturing board

Info

Publication number
JPH0582934A
JPH0582934A JP16725891A JP16725891A JPH0582934A JP H0582934 A JPH0582934 A JP H0582934A JP 16725891 A JP16725891 A JP 16725891A JP 16725891 A JP16725891 A JP 16725891A JP H0582934 A JPH0582934 A JP H0582934A
Authority
JP
Japan
Prior art keywords
conductive particles
substrate
electronic component
conductive
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16725891A
Other languages
Japanese (ja)
Other versions
JP2740699B2 (en
Inventor
Hiroyuki Hebiguchi
広行 蛇口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP3167258A priority Critical patent/JP2740699B2/en
Publication of JPH0582934A publication Critical patent/JPH0582934A/en
Application granted granted Critical
Publication of JP2740699B2 publication Critical patent/JP2740699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/368Assembling printed circuits with other printed circuits parallel to each other

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

PURPOSE:To prevent short circuits from occurring by arranging conductive particles in a state of complete separation from one another. CONSTITUTION:After a particle processing board 20 provided with quadrangular pyramid recesses 10 is prepared, a film (material film) 12 made of a conductive material is deposited over its surface. Upon heat dissolution of this material film 12, the conductive material collects in every recess 10 into spheres and forms conductive particles 11 upon cooling. Next, superposing a first electronic component board 1 on the surface of the particle processing board 20 causes conductive particles 11 to transfer to the first electronic component board 1. Then, positioning and adhering the first electronic component board 1 to the second electronic component board 2 drives terminals 4, 5 of both into an electrical connection via conductive particles 11. A terminal connection structure formed in this way comes into a state that terminal 4 of the first electronic component and terminals 5 of the second electronic component are connected by the conductive particles 11 arranged in a state of separation from one another.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば液晶パネルやサ
ーマルプリンターヘッド等の基板の端子とこれを駆動す
る半導体素子の端子とを電気的に接続する際などに用い
られる端子接続構造および端子接続方法とこれらを実施
する際に使用される導電性粒子の製造方法および導電性
粒子製造用基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a terminal connection structure and terminal connection used for electrically connecting terminals of a substrate such as a liquid crystal panel or a thermal printer head to terminals of a semiconductor element for driving the same. The present invention relates to a method, a method for producing conductive particles used in carrying out these methods, and a substrate for producing conductive particles.

【0002】[0002]

【従来の技術】図15は従来の端子接続構造を示すもの
で、図中符号1は一方の電子部品の基板、符号2は他方
の電子部品の基板である。基板1,2の表面には端子
4,5が設けられている。これらの基板1,2間には、
接着剤に導電性粒子6が分散されてなる接着剤層7が設
けられている。そして前記端子4,5は接着剤層7の導
電性粒子6を介して電気的に接続している。
2. Description of the Related Art FIG. 15 shows a conventional terminal connection structure, in which reference numeral 1 is a substrate of one electronic component, and reference numeral 2 is a substrate of the other electronic component. Terminals 4 and 5 are provided on the surfaces of the substrates 1 and 2. Between these substrates 1 and 2,
An adhesive layer 7 in which conductive particles 6 are dispersed in the adhesive is provided. The terminals 4 and 5 are electrically connected through the conductive particles 6 of the adhesive layer 7.

【0003】この端子接続構造を形成するには、導電性
粒子6を分散させた接着剤を基板1に塗布し、ついで他
方の基板2を押し付けて、両基板1,2の端子4,5が
導電性粒子6に接触するようにしていた。
In order to form this terminal connection structure, an adhesive in which the conductive particles 6 are dispersed is applied to the substrate 1, and then the other substrate 2 is pressed so that the terminals 4 and 5 of both substrates 1 and 2 are connected to each other. The conductive particles 6 were contacted.

【0004】[0004]

【発明が解決しようとする課題】前記のような接続構造
では、図16に示すように、導電性粒子6が凝集してい
る場合があり、この凝集した導電性粒子6を介して隣接
する端子4,4および5,5間でショートが発生するた
め、電極ピッチを狭めることが難しい問題があった。
In the connection structure as described above, the conductive particles 6 may be aggregated as shown in FIG. 16, and the terminals adjacent to each other via the aggregated conductive particles 6 may be present. Since a short circuit occurs between 4, 4 and 5, 5, there is a problem that it is difficult to narrow the electrode pitch.

【0005】本発明は前記事情に鑑みてなされたもの
で、ショートが起こることの無い端子接続構造および端
子接続方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a terminal connection structure and a terminal connection method in which a short circuit does not occur.

【0006】[0006]

【課題を解決するための手段】請求項1の端子接続構造
は、導電性粒子が全て互いに離間した状態で配置されて
いることを特徴とする接続構造である。
A terminal connection structure according to a first aspect of the present invention is a connection structure characterized in that all conductive particles are arranged in a state of being separated from each other.

【0007】請求項2の端子接続方法は、表面に微細な
凹部が形成された導電性粒子製造用基板の表面に導電性
材料の膜を形成し、ついでこの膜を加熱溶融して溶融物
が表面張力により球状化したのち冷却することにより前
記導電性粒子製造用基板の各凹部に導電性粒子を生成せ
しめ、この後導電性粒子製造用基板の表面に第1の電子
部品を重ね合わせることによって導電性粒子を第1の電
子部品の少なくとも端子の設けられた部分に移し、つい
でこの第1の電子部品と第2の電子部品とを重ね合わせ
て互いの端子を電気的に接続することを特徴とする方法
である。
According to a second aspect of the present invention, in the method of connecting terminals, a film of a conductive material is formed on the surface of a substrate for producing conductive particles having fine recesses formed on the surface thereof, and the film is heated and melted to form a melt. By forming spherical particles by surface tension and then cooling to form conductive particles in the respective concave portions of the conductive particle manufacturing substrate, and then superimposing the first electronic component on the surface of the conductive particle manufacturing substrate. Characterized in that the conductive particles are transferred to at least the terminal-provided portion of the first electronic component, and then the first electronic component and the second electronic component are superposed to electrically connect the terminals to each other. And the method.

【0008】請求項3の導電性粒子製造方法は、表面に
微細な凹部が形成された導電性粒子製造用基板の表面に
導電性材料の膜を形成し、ついでこの膜を加熱溶融して
溶融物が表面張力により球状化したのち冷却することに
より前記導電性粒子製造用基板の各凹部に導電性粒子を
生成せしめることを特徴とする方法である。
According to a third aspect of the present invention, there is provided a method for producing conductive particles, wherein a film of a conductive material is formed on the surface of a substrate for producing conductive particles having fine recesses formed on the surface, and then the film is melted by heating. The method is characterized in that after the material is made spherical by surface tension and then cooled, conductive particles are generated in each recess of the substrate for manufacturing conductive particles.

【0009】請求項4の導電性粒子製造用基板は、表面
に微細な凹部が形成されたものである。
A substrate for producing conductive particles according to a fourth aspect of the present invention has fine recesses formed on its surface.

【0010】前記導電性粒子製造用基板(以下、粒子製
造用基板と略称する)は、その表面に成膜された導電性
材料の溶融物と濡れ性が悪いものであることが望まし
い。
It is desirable that the substrate for producing conductive particles (hereinafter abbreviated as a substrate for producing particles) has poor wettability with the melt of the conductive material formed on the surface thereof.

【0011】粒子製造用基板の凹部の形状は限定される
ものではないが、深部に向かって徐々に狭くなっている
ことが望ましい。このような凹部を有する粒子製造用基
板は、例えば、(100)面のシリコン結晶や(11
0)面のシリコン結晶の表面に所定のパターンの開口を
有するマスクを形成した後をKOH水溶液、アンモニア
水溶液、ヒドラジン等を用いて異方性エッチングするこ
とによって製造できる。
The shape of the recess of the substrate for producing particles is not limited, but it is desirable that the recess gradually narrows toward the deep portion. A substrate for producing particles having such a recess is, for example, a silicon crystal of (100) plane or (11) plane.
It can be manufactured by forming a mask having openings of a predetermined pattern on the surface of the (0) plane silicon crystal and then anisotropically etching it using a KOH aqueous solution, an ammonia aqueous solution, hydrazine or the like.

【0012】この粒子製造用基板の凹部は、すべて同一
の形状であっても良いが、必要に応じて開口面積の異な
る凹部、深さの異なる凹部を設けると良い。
The recesses of the particle production substrate may all have the same shape, but it is advisable to provide recesses having different opening areas and recesses having different depths as needed.

【0013】この粒子製造用基板の凹部の開口面積およ
び深さと、この粒子製造用基板の表面に形成する導電性
材料の膜(以下、材料膜と略称する)の厚さは、電子部
品に付着される導電性粒子が粒子製造用基板の凹部から
数μm程度突出するように定める。
The opening area and depth of the concave portion of the particle manufacturing substrate and the thickness of the conductive material film (hereinafter referred to as material film) formed on the surface of the particle manufacturing substrate are attached to electronic parts. The conductive particles are set so as to protrude from the concave portion of the particle manufacturing substrate by about several μm.

【0014】成膜方法としては、蒸着法、スパッタ法、
超微粒子を吹き付けるガスデポジション法、電解めっき
法、無電解めっき法など各種の方法を単独あるいは組み
合わせて利用できる。
As a film forming method, a vapor deposition method, a sputtering method,
Various methods such as a gas deposition method for spraying ultrafine particles, an electrolytic plating method, and an electroless plating method can be used alone or in combination.

【0015】また導電性材料としては、従来より導電性
粒子の素材として用いられていた金、ニッケル、はんだ
合金など、各種のものを利用できる。
As the conductive material, various materials such as gold, nickel and solder alloy which have been conventionally used as a material for conductive particles can be used.

【0016】[0016]

【作用】請求項1の端子接続構造によれば、導電性粒子
が全て互いに離間した状態で配置されているので、導電
性粒子を介して隣接する端子間がショートすることはな
い。
According to the terminal connection structure of the first aspect, since all the conductive particles are arranged in a state of being separated from each other, there is no short circuit between the adjacent terminals via the conductive particles.

【0017】請求項2の端子接続方法では、表面に微細
な凹部が形成された粒子製造用基板の表面に導電性粒子
となる材料によって膜を形成し、ついでこの膜を加熱溶
融して溶融物が表面張力により球状化したのち冷却する
ことにより前記粒子製造用基板の各凹部に導電性粒子を
生成せしめ、この後粒子製造用基板の表面を第1の電子
部品に重ね合わせることによって導電性粒子を第1の電
子部品に移すので、導電性粒子は粒子製造用基板の凹部
間の壁によって離間されている状態を維持したまま第1
の電子部品に転写される。
In the method of connecting terminals according to the second aspect of the invention, a film is formed on the surface of the substrate for producing particles having fine recesses formed on the surface thereof with a material which becomes conductive particles, and then the film is heated and melted to form a melt. Are spheroidized by surface tension and then cooled to generate conductive particles in the recesses of the particle manufacturing substrate, and then the surface of the particle manufacturing substrate is superposed on the first electronic component to form conductive particles. Are transferred to the first electronic component, so that the conductive particles are kept in a state of being separated from each other by the walls between the recesses of the particle manufacturing substrate.
Is transferred to the electronic components of.

【0018】請求項3の導電性粒子の製造方法は、表面
に微細な凹部が形成された導電性粒子製造用基板の表面
に導電性材料の膜を形成し、ついでこの膜を加熱溶融し
て溶融物が表面張力により球状化したのち冷却すること
により前記導電性粒子製造用基板の各凹部に導電性粒子
を生成せしめる方法なので、粒子製造用基板の各凹部に
は凹部の開口面積に応じた量の導電性材料が成膜されて
これが導電性粒子となる。よって、導電性粒子の大きさ
は導電性材料の量で決まる。従ってこの導電性粒子の製
造方法によれば、凹部の開口面積と導電性材料の厚さが
同一で有れば同一径の導電性粒子が製造される。
According to a third aspect of the present invention, there is provided a method for producing conductive particles, wherein a film of a conductive material is formed on the surface of a substrate for producing conductive particles having fine recesses formed on the surface, and then the film is heated and melted. Since the method is to generate conductive particles in each recess of the substrate for producing conductive particles by cooling after the melt is spheroidized by surface tension, each recess of the substrate for producing particles is dependent on the opening area of the recess. A quantity of conductive material is deposited and becomes conductive particles. Therefore, the size of the conductive particles is determined by the amount of the conductive material. Therefore, according to this method for producing conductive particles, conductive particles having the same diameter can be produced if the opening area of the recess and the thickness of the conductive material are the same.

【0019】請求項4の導電性粒子製造用基板は、表面
に微細な凹部が形成されたものなので、この基板を用い
れば前記請求項2,3の方法を実施することができ、請
求項1の端子接続構造を形成することができる。
Since the substrate for producing conductive particles according to claim 4 has fine recesses formed on its surface, the method according to claims 2 and 3 can be carried out by using this substrate. The terminal connection structure can be formed.

【0020】請求項5の導電性粒子製造用基板は、開口
面積の異なる複数種類の凹部を設けたものなので、この
粒子製造用基板に導電性材料を成膜すると各凹部内に積
層される導電性材料の量に差が生じる。この結果各凹部
に作られる導電性粒子の大きさに差が生じ、ひいては粒
子製造用基板の表面から各導電性粒子の頂部までの突出
高さに差が生じる。
The substrate for producing conductive particles according to claim 5 is provided with a plurality of types of recesses having different opening areas. Therefore, when a conductive material is formed on the substrate for producing particles, the conductive material is laminated in each recess. There is a difference in the amount of the conductive material. As a result, there is a difference in the size of the conductive particles formed in the recesses, which in turn causes a difference in the height of protrusion from the surface of the particle manufacturing substrate to the top of the conductive particles.

【0021】請求項6の導電性粒子製造用基板は、深さ
の異なる複数種類の凹部を設けたものなので、この粒子
製造用基板に導電性材料を成膜すると、深い凹部に形成
された導電性粒子はその分奥まって凹部内に位置するこ
ととなる。この結果粒子製造用基板の表面から各凹部に
形成された導電性粒子の頂部までの突出高さに差が生じ
る。
Since the substrate for producing conductive particles according to claim 6 is provided with a plurality of kinds of recesses having different depths, when a conductive material is deposited on the substrate for producing particles, the conductive material formed in the deep recesses is formed. The characteristic particles will be recessed by that amount and will be located in the concave portion. As a result, there is a difference in the protrusion height from the surface of the particle manufacturing substrate to the top of the conductive particles formed in each recess.

【0022】[0022]

【実施例】以下、図面を参照して本発明の端子接続構
造、端子接続方法、導電性粒子製造方法および導電性粒
子製造用基板を説明する。なお前記従来例と同一構成部
分には、同一符号を付して説明を簡略化する。
The terminal connecting structure, the terminal connecting method, the conductive particle manufacturing method and the conductive particle manufacturing substrate of the present invention will be described below with reference to the drawings. The same components as those of the conventional example are designated by the same reference numerals to simplify the description.

【0023】(実施例1)図1は、本発明の端子接続方法
の各工程を示すもので、図中符号20は粒子製造用基板
を示すものである。この粒子製造用基板20の表面に
は、図2に示すような四角錘状の凹部10が、図3に示
すように碁盤目状に設けられている。
(Embodiment 1) FIG. 1 shows each step of the terminal connecting method of the present invention, in which reference numeral 20 shows a particle production substrate. On the surface of the particle production substrate 20, quadrangular pyramidal recesses 10 as shown in FIG. 2 are provided in a grid pattern as shown in FIG.

【0024】このような粒子製造用基板20は、(10
0)面のシリコン結晶の表面を正方形の開口が所定のパ
ターンで設けられたマスクで覆い、KOH水溶液等を用
いて異方性エッチングすることによって作ることができ
る。この粒子製造用基板20の表面は、後に蒸着される
導電性材料の溶融物と濡れ性が悪いように処理されてい
る。
The substrate 20 for producing particles as described above is (10
It can be prepared by covering the surface of the (0) plane silicon crystal with a mask having square openings provided in a predetermined pattern and anisotropically etching it using a KOH aqueous solution or the like. The surface of the particle manufacturing substrate 20 is treated so as to have poor wettability with a melt of a conductive material to be deposited later.

【0025】このように粒子製造用基板20を準備した
後、この端子接続方法では、粒子製造用基板20の表面
に半田合金を蒸着して、図1(a)に示すように、導電
性材料からなる膜(以下材料膜と略称する)12を形成
する。
After the particle production substrate 20 is prepared in this way, in this terminal connection method, a solder alloy is vapor-deposited on the surface of the particle production substrate 20 and, as shown in FIG. A film 12 (hereinafter abbreviated as material film) is formed.

【0026】このように材料膜12を形成した後で材料
膜12を加熱溶融する。すると溶融した導電性材料は、
各凹部10ごとに集まり表面張力により球状化する。こ
れを冷却すると、図1(b)に示すように、各凹部10
ごとに導電性粒子11が作られる。
After forming the material film 12 in this way, the material film 12 is heated and melted. Then the molten conductive material
The concave portions 10 gather together and are made spherical by surface tension. When this is cooled, as shown in FIG.
The conductive particles 11 are produced for each.

【0027】この導電性粒子11の大きさは、材料膜1
2の厚さによって決まるので、後述するように算出され
る適正な厚さに材料膜12を形成して、図1(b)に示
すように導電性粒子11を粒子製造用基板20の表面よ
り数μm突出させる。
The size of the conductive particles 11 is determined by the material film 1
2 is determined by the thickness of the material film 12, the material film 12 is formed to have an appropriate thickness calculated as described below, and the conductive particles 11 are removed from the surface of the particle manufacturing substrate 20 as shown in FIG. It is projected by several μm.

【0028】このように導電性粒子11を各凹部10に
生成せしめた後、この端子接続方法では、図1(c)に
示すように、粒子製造用基板20の表面に第1の電子部
品の基板1を重ね合わせる。この第1の電子部品の基板
1の表面には、予め接着剤23を塗布しておく。このよ
うに粒子製造用基板20に第1の電子部品の基板1を重
ね合わせると、図1(d)に示すように導電性粒子11
が第1の電子部品の基板1に移る。
After the conductive particles 11 are generated in the respective recesses 10 in this manner, in this terminal connection method, as shown in FIG. 1C, the surface of the particle manufacturing substrate 20 is covered with the first electronic component. Substrate 1 is overlaid. The adhesive 23 is applied in advance to the surface of the substrate 1 of the first electronic component. When the substrate 1 of the first electronic component is superposed on the particle production substrate 20 in this manner, the conductive particles 11 are formed as shown in FIG.
Moves to the substrate 1 of the first electronic component.

【0029】この後図1(e)に示すように、前記第1
の電子部品の基板1と第2の電子部品の基板1とを位置
合わせして接着すると、互いの端子4,5が導電性粒子
11を介して電気的に接続された状態となる。
Thereafter, as shown in FIG. 1 (e), the first
When the substrate 1 of the electronic component and the substrate 1 of the second electronic component are aligned and bonded to each other, the terminals 4 and 5 are electrically connected to each other through the conductive particles 11.

【0030】このようにして形成された端子接続構造
は、互いに離間した状態で配置された導電性粒子11に
よって、第1の電子部品の端子4と第2の電子部品の端
子5とが接続された状態となる。
In the terminal connection structure thus formed, the terminals 4 of the first electronic component and the terminals 5 of the second electronic component are connected by the conductive particles 11 arranged in a state of being separated from each other. It will be in a state of being.

【0031】次に、前述のような粒子製造用基板20の
凹部10の大きさと、材料膜の厚さと導電性粒子の突出
寸法の関係に付いて詳細に説明する。
Next, the relationship between the size of the concave portion 10 of the particle manufacturing substrate 20 as described above, the thickness of the material film, and the protruding size of the conductive particles will be described in detail.

【0032】(100)面のウェハに正方形の開口が設
けられたマスクを形成して、異方性エッチングすること
によって製作された粒子製造用基板20の凹部10は、
底面と斜面とがなす角度θが54.7度の四角錘であ
る。この凹部10に半径Rの真球状の導電性粒子11が
形成されると仮定すると、形成される導電性粒子11の
突出高さHは、凹部10の開口部の一辺の長さをLとし
た場合、下記(1)式で与えられる。
The concave portion 10 of the substrate 20 for particle production, which is manufactured by forming a mask having a square opening on a wafer of (100) surface and anisotropically etching it,
It is a quadrangular pyramid whose angle θ formed by the bottom surface and the slope is 54.7 degrees. Assuming that the spherical conductive particles 11 having a radius R are formed in the concave portion 10, the protruding height H of the formed conductive particle 11 is defined by L being the length of one side of the opening of the concave portion 10. In this case, it is given by the following equation (1).

【0033】[0033]

【数1】 [Equation 1]

【0034】他方、図4(a)に示す平坦な基板と図4
(b)に示す凹部10の形成された基板に蒸着法で同一
条件で材料膜12を成膜した場合、凹部10に成膜され
た金属の量(Vm)、即ち開口部がL×Lの正方形の凹
部10に成膜された金属の量(Vm)は、図4(a)に
示す平坦な基板のL×Lの正方形の範囲に成膜された金
属の量(厚さ×面積=tL2)と等しいと考えられる。
これは同一条件ではL×Lの開口部を通過する金属量は
等しいからである。
On the other hand, the flat substrate shown in FIG.
When the material film 12 is formed on the substrate in which the recesses 10 are formed as shown in (b) by the vapor deposition method under the same conditions, the amount of metal (Vm) formed in the recesses 10, that is, the opening is L × L. The amount (Vm) of metal deposited in the square recess 10 is the amount of metal deposited in the L × L square range of the flat substrate shown in FIG. 4A (thickness × area = tL). It is considered to be equal to 2 ).
This is because the amount of metal passing through the L × L opening is equal under the same conditions.

【0035】凹部10の内面に形成された材料膜12が
全て導電性粒子11になったと仮定すると、導電性粒子
11の体積Vb(=4πR3/3)は、凹部10の内面
に成膜された材料膜12の金属量Vm(=tL2)と等
しい。従って、下記(2)式が成立する。
[0035] Assuming that the material film 12 formed on the inner surface of the recess 10 becomes all the conductive particles 11, the volume Vb of the conductive particles 11 (= 4πR 3/3) is formed on the inner surface of the recess 10 It is equal to the metal amount Vm (= tL 2 ) of the material film 12. Therefore, the following expression (2) is established.

【0036】[0036]

【数2】 [Equation 2]

【0037】この(2)式を用いて前記(1)式は下記
(3)式のように書き換えることができる。
Using the equation (2), the equation (1) can be rewritten as the following equation (3).

【0038】[0038]

【数3】 [Equation 3]

【0039】この(3)式から、導電性粒子11の突出
高さHは形成した材料膜12の厚さtと凹部10の開口
部の辺の長さLの大きさとによって定まることが判る。
tとLとを(3)式に代入して計算すると、図5中線
a,b,cで示す結果が得られる。
From this equation (3), it is understood that the protruding height H of the conductive particles 11 is determined by the thickness t of the formed material film 12 and the length L of the side of the opening of the recess 10.
By substituting t and L into the equation (3) for calculation, the results shown by the lines a, b, and c in FIG. 5 are obtained.

【0040】この図を検討すると、例えば粒子製造用基
板20に形成された凹部10の一辺の長さがL=10μ
mである場合は、材料膜12を1.1μmの厚さに形成
することにより、導電性粒子11を粒子製造用基板20
の表面から+1μm突出させることができることが判
る。
Examining this drawing, for example, the length of one side of the recess 10 formed in the particle manufacturing substrate 20 is L = 10 μm.
In the case of m, the material film 12 is formed to have a thickness of 1.1 μm so that the conductive particles 11 are formed on the substrate 20 for particle production.
It can be seen that +1 μm can be projected from the surface of the.

【0041】このことから材料膜12を適正な厚さに形
成すると、導電性粒子11が粒子製造用基板から突出し
た状態となり、この状態で粒子製造用基板20に電子部
品を重ねることにより導電性粒子11を電子部品に転写
できることが判る。
From this fact, when the material film 12 is formed to have an appropriate thickness, the conductive particles 11 are projected from the particle manufacturing substrate, and in this state, the electronic components are stacked on the particle manufacturing substrate 20 to make the conductive particles 11 conductive. It can be seen that the particles 11 can be transferred to electronic components.

【0042】この実施例の端子接続構造によれば、導電
性粒子11が全て互いに離間した状態で配置されている
ので、導電性粒子11を介して隣接する端子4,4およ
び5,5間がショートすることはない。従ってこの端子
接続構造によれば、端子4を狭いピッチで配置すること
が可能となり高密度実装が可能となる。
According to the terminal connection structure of this embodiment, since the conductive particles 11 are all arranged in a state of being separated from each other, the terminals 4, 4, 5 and 5 which are adjacent to each other via the conductive particles 11 are connected. There is no short circuit. Therefore, according to this terminal connection structure, the terminals 4 can be arranged at a narrow pitch and high-density mounting is possible.

【0043】またこの実施例の端子接続方法では、表面
に微細な凹部10が所定の配置で形成された粒子製造用
基板20を準備し、ついでこの粒子製造用基板20の表
面に材料膜12を形成し、ついでこの膜12を加熱溶融
し表面張力により溶融物を球状化したのち冷却すること
により前記粒子製造用基板の各凹部10に導電性粒子1
1を生成せしめ、この後粒子製造用基板20の表面に第
1の電子部品を重ね合わせることによって導電性粒子1
1を第1の電子部品に移すので、この導電性粒子11は
粒子製造用基板20の凹部10間の壁10aによって離
間されている状態を維持したまま第1の電子部品に転写
される。この結果この端子接続方法によれば、導電性粒
子11は凝集せずに所定の配置で第1の電子部品に転写
される。従ってこの端子接続方法によれば、端子4およ
び5を狭いピッチで配置しても導電性粒子11を介して
隣接する端子4,4および5,5間がショートするのを
防止でき高密度実装が可能となる。
Further, in the terminal connecting method of this embodiment, the particle production substrate 20 having the fine recesses 10 formed in a predetermined arrangement on the surface is prepared, and then the material film 12 is formed on the surface of the particle production substrate 20. The conductive particles 1 are formed in each of the recesses 10 of the particle-producing substrate by forming the film 12, heating and melting the film 12 to make the melt spherical by surface tension, and then cooling.
1 is generated, and then the first electronic component is superposed on the surface of the particle production substrate 20 to form the conductive particles 1
Since 1 is transferred to the first electronic component, the conductive particles 11 are transferred to the first electronic component while being kept separated by the walls 10a between the recesses 10 of the particle manufacturing substrate 20. As a result, according to this terminal connection method, the conductive particles 11 are transferred to the first electronic component in a predetermined arrangement without being aggregated. Therefore, according to this terminal connection method, even if the terminals 4 and 5 are arranged at a narrow pitch, it is possible to prevent short-circuiting between the adjacent terminals 4, 4 and 5, 5 through the conductive particles 11 and to realize high-density mounting. It will be possible.

【0044】さらにこの実施例の導電性粒子の製造方法
によれば、表面に微細な凹部10が形成された粒子製造
用基板20の表面に材料膜12を形成し、ついでこの膜
12を加熱溶融し表面張力により溶融物を球状化したの
ち冷却することにより前記粒子製造用基板20の各凹部
10に導電性粒子11を生成せしめる方法なので、成膜
時、各凹部10には凹部10の開口面積に応じた量の導
電性材料が積層され、これが導電性粒子11となる。従
ってこの導電性粒子の製造方法によれば、凹部10の開
口面積が同一で有れば同一径の導電性粒子11が製造さ
れる。従ってこの導電性粒子の製造方法によれば、粒径
のそろった導電性粒子11を製造できる。
Further, according to the method of manufacturing the conductive particles of this embodiment, the material film 12 is formed on the surface of the particle manufacturing substrate 20 having the fine recesses 10 formed on the surface thereof, and the film 12 is heated and melted. Since the conductive material 11 is generated in each recess 10 of the particle production substrate 20 by making the melt spherical by surface tension and then cooling, the opening area of the recess 10 is formed in each recess 10 during film formation. According to the above, the conductive material is laminated in an amount corresponding to, and this becomes the conductive particles 11. Therefore, according to this method for producing conductive particles, if the opening areas of the recesses 10 are the same, the conductive particles 11 having the same diameter are produced. Therefore, according to this method for producing conductive particles, it is possible to produce conductive particles 11 having a uniform particle size.

【0045】またこの実施例の粒子製造用基板20は、
碁盤目状に同一形状の凹部10が設けられたものなの
で、均一な密度で配置された状態で導電性粒子11を製
造できる。
Further, the substrate 20 for particle production of this embodiment is
Since the recesses 10 having the same shape are provided in a grid pattern, the conductive particles 11 can be manufactured in a state where they are arranged at a uniform density.

【0046】(実施例2)図6は、本発明の端子接続方法
の第二実施例の各工程を示すもので、前記実施例と同一
構成部分には、同一符号を付して説明を簡略化する。
(Embodiment 2) FIG. 6 shows the steps of a second embodiment of the terminal connecting method of the present invention. The same components as those in the above embodiment are designated by the same reference numerals and the description thereof is simplified. Turn into.

【0047】この例の端子接続方法では、粒子製造用基
板20として小さな凹部101と大きな凹部102とが
設けられたものを用いる。この粒子製造用基板20は、
実施例1の粒子製造用基板20を製造する際に用いたの
と同じ(100)面のシリコン結晶に小さい正方形の開
口と、この小さい正方形の辺の長さの2倍の長さの辺を
有する正方形の開口とが設けられたマスクを形成したあ
と異方性エッチングすることによって製造できる。この
ようにして形成された大きい凹部102は、その開口部
の一辺の長さおよび深さともそれぞれ小さい凹部101
の一辺の長さ、深さの2倍である。
In the terminal connecting method of this example, a substrate for particle production 20 having a small concave portion 101 and a large concave portion 102 is used. The particle manufacturing substrate 20 is
A small square opening and a side twice as long as the side of the small square are formed in the same (100) plane silicon crystal as that used for manufacturing the particle manufacturing substrate 20 of Example 1. It can be manufactured by anisotropically etching after forming a mask provided with a square opening having. The large recess 102 formed in this manner has a small length and depth on one side of the opening.
The length of one side is twice the depth.

【0048】小さな凹部101と大きな凹部102とは
図7に示すように配置されている。即ち後述する第1の
電子部品の端子4が存在する部分に対応する位置に小さ
な凹部101を配置し、他の部分には大きな凹部102
を配置する。
The small concave portion 101 and the large concave portion 102 are arranged as shown in FIG. That is, a small concave portion 101 is arranged at a position corresponding to a portion where the terminal 4 of the first electronic component described later is present, and a large concave portion 102 is arranged at other portions.
To place.

【0049】この粒子製造用基板20に図6(a)に示
すように導電性材料を蒸着し材料膜12を形成する。す
ると、各凹部101,102にはそれぞれの開口面積に
比例する量の導電性材料が蒸着される。
As shown in FIG. 6A, a conductive material is vapor-deposited on the particle manufacturing substrate 20 to form a material film 12. Then, a conductive material is vapor-deposited on each of the recesses 101 and 102 in an amount proportional to the area of each opening.

【0050】この後、材料膜12を溶融すると溶融した
導電性材料は自らの表面張力によって球状になり、各凹
部101,102には、図6(b)に示すように、導電
性粒子111,112が形成される。これら導電性粒子
111,112のうち大きな凹部101に形成された導
電性粒子112の頂点は、凹部102が深いので、小さ
い凹部102に形成された導電性粒子111のそれより
も低い位置にある。
After that, when the material film 12 is melted, the melted conductive material becomes spherical due to its own surface tension, and the conductive particles 111, 102 are formed in the recesses 101, 102 as shown in FIG. 6B. 112 is formed. Of the conductive particles 111 and 112, the top of the conductive particles 112 formed in the large recess 101 is located at a lower position than that of the conductive particles 111 formed in the small recess 102 because the recess 102 is deep.

【0051】図5に示したように例えば大きな凹部10
2が一辺の長さL=20μm、小さい凹部101がL=
10μmであり、材料膜12が厚さt=1.1μmに形
成された場合は、大きい凹部102では導電性粒子11
2の突出高さがH=−1μmであり、小さな凹部101
では+1μmとなる。
As shown in FIG. 5, for example, a large recess 10
2 is the side length L = 20 μm, and the small concave portion 101 is L =
When the material film 12 is 10 μm thick and the thickness t is 1.1 μm, the conductive particles 11 are formed in the large recesses 102.
2 has a protrusion height H = -1 μm, and has a small concave portion 101.
Then, it becomes +1 μm.

【0052】つぎにこの粒子製造用基板20に、図6
(c)に示すように、第1の電子部品を位置合わせして
重ね合わせると、小さい凹部101に在る導電性粒子1
11が第1の電子部品の基板1に付着する。前述のよう
に小さな凹部101は端子4に対応する位置に配置され
ているので、図6(d)に示すように導電性粒子111
は基板1の端子4の存在する部分にのみ付着する。
Next, as shown in FIG.
As shown in (c), when the first electronic components are aligned and superposed, the conductive particles 1 present in the small concave portion 101
11 adheres to the substrate 1 of the first electronic component. As described above, since the small concave portion 101 is arranged at the position corresponding to the terminal 4, the conductive particles 111 are formed as shown in FIG.
Adheres only to the portion of the substrate 1 where the terminals 4 are present.

【0053】この後、この第1の電子部品に第2の電子
部品を重ね合わせると互いの端子4,5を導電性粒子1
11を介して接続できる。
After that, when the second electronic component is overlaid on the first electronic component, the terminals 4 and 5 are connected to each other by the conductive particles 1.
It can be connected via 11.

【0054】このようにして形成された端子接続構造
は、端子4,5の部分では導電性粒子111が密に配置
され、他の部分では導電性粒子111が存在しない状態
となっている。
In the terminal connection structure thus formed, the conductive particles 111 are densely arranged in the portions of the terminals 4 and 5, and the conductive particles 111 are not present in the other portions.

【0055】この実施例の端子接続構造では、前述のよ
うに端子4,5の部分に導電性粒子111が密に配置さ
れ、他の部分には導電性粒子111が存在しないので、
隣接する端子4,4および5,5間のショートを確実に
防止できる。
In the terminal connection structure of this embodiment, the conductive particles 111 are densely arranged in the portions of the terminals 4 and 5 as described above, and the conductive particles 111 are not present in the other portions.
It is possible to reliably prevent a short circuit between the adjacent terminals 4, 4 and 5, 5.

【0056】またこの実施例では、深さの異なる小さい
凹部101と大きい凹部102とが設けられた粒子製造
用基板20を用いたので、浅い方の小さい凹部101に
形成された導電性粒子111が大きい凹部102に形成
された導電性粒子112よりも突出した状態となる。こ
の状態で粒子製造用基板20に電子部品を重ねることに
より小さい凹部101を設けた箇所の導電性粒子111
だけを転写できる。従って、この実施例では、第1の電
子部品の所望の位置にのみ導電性粒子111を配置する
ことができる。
In this embodiment, since the particle manufacturing substrate 20 provided with the small recesses 101 and the large recesses 102 having different depths is used, the conductive particles 111 formed in the shallower recesses 101 are formed. The conductive particles 112 formed in the large concave portion 102 are projected more than the conductive particles 112. In this state, the conductive particles 111 are provided at the places where the smaller concave portions 101 are provided by stacking electronic components on the particle manufacturing substrate 20.
Only can be transcribed. Therefore, in this embodiment, the conductive particles 111 can be arranged only at a desired position of the first electronic component.

【0057】(実施例3)図8は、本発明の導電性粒子
製造用基板の第3実施例を示すものである。この粒子製
造用基板20では、開口部が正方形の凹部10と長方形
状の凹部103が設けられている。凹部103の全体形
状は、図9に示すように、ほぼ逆寄せ棟屋根型の凹形状
に形成されている。図9(a)は表面に形成された凹部
103の平面図であり、そのA−A断面を図9(a)
に、またB−B断面を図9(c)に示した。この凹部1
03の開口部の短辺は正方形の凹部10の一辺と同じ長
さである。またこの凹部103の長辺は正方形の凹部1
0の一辺の長さ2倍である。これに対し凹部10と凹部
103の深さは同一である。
(Embodiment 3) FIG. 8 shows a third embodiment of the substrate for producing conductive particles of the present invention. This particle manufacturing substrate 20 is provided with a recess 10 having a square opening and a recess 103 having a rectangular opening. As shown in FIG. 9, the overall shape of the recess 103 is substantially inverted roof roof-shaped recessed shape. FIG. 9A is a plan view of the concave portion 103 formed on the surface, and its AA cross section is shown in FIG.
9B and a cross section taken along line BB are shown in FIG. This recess 1
The short side of the opening of 03 is the same length as one side of the square recess 10. The long side of the recess 103 has a square recess 1
The length of one side of 0 is twice. On the other hand, the recesses 10 and 103 have the same depth.

【0058】このような粒子製造用基板20は、(10
0)面のシリコン結晶に長方形の開口と正方形の開口が
所定の配置で設けられたマスクを形成して、異方性エッ
チングすることによって製造できる。
The substrate 20 for producing particles as described above is (10
It can be manufactured by forming a mask in which rectangular openings and square openings are provided in a predetermined arrangement in the silicon crystal of the (0) plane and anisotropically etching.

【0059】このように開口部が長方形の凹部103に
形成される導電性粒子11の突出高さHは、凹部103
の開口部の短辺の長さをlとした場合、下記(4)式で
与えられる。
The protruding height H of the conductive particles 11 thus formed in the recess 103 having the rectangular opening is as follows.
When the length of the short side of the opening is defined as l, it is given by the following equation (4).

【0060】[0060]

【数4】 [Equation 4]

【0061】またこの実施例の粒子製造用基板20の凹
部103は開口部の長辺の長さが2lとなるので、開口
面積はl×2lとなる。従って、凹部103に形成され
る材料膜12の金属量は2tl2となるので、凹部10
に形成される導電性粒子11の体積Vb(=4πr3
3)は、下記(5)式で表せる。
Further, in the concave portion 103 of the substrate 20 for producing particles of this embodiment, since the length of the long side of the opening is 2 l, the opening area is 1 × 2 l. Therefore, the amount of metal of the material film 12 formed in the recess 103 is 2tl 2, and therefore the recess 10
Volume Vb (= 4πr 3 / of the conductive particles 11 formed in the
3) can be expressed by the following equation (5).

【0062】[0062]

【数5】 [Equation 5]

【0063】この(5)式を用いて前記(4)式を書き
換えると下記(6)式になる。
When the above equation (4) is rewritten using this equation (5), the following equation (6) is obtained.

【0064】[0064]

【数6】 [Equation 6]

【0065】この(6)式から、tとlとHの関係を計
算すると、図5中線d,e,fで示す結果が得られる。
When the relation between t, l and H is calculated from the equation (6), the results shown by the lines d, e and f in FIG. 5 are obtained.

【0066】この図5から開口部が長方形状の凹部10
3の場合は正方形状の凹部10の場合に比較して導電性
粒子11の突出高さHが大になることが判る。例えば材
料膜12の厚さ(t)が0.8μmの場合、開口部が1
0×20μmの長方形状の凹部103では導電性粒子1
1の突出高さHが+2μmとなり、開口部が20×20
μmの正方形状の突出高さHは−3μmである。
From FIG. 5, the recess 10 having a rectangular opening is formed.
It can be seen that in the case of 3, the protruding height H of the conductive particles 11 is larger than that in the case of the square recess 10. For example, when the thickness (t) of the material film 12 is 0.8 μm, the opening is 1
In the 0 × 20 μm rectangular recess 103, the conductive particles 1
The protrusion height H of 1 is +2 μm, and the opening is 20 × 20
The protrusion height H of the square shape of μm is −3 μm.

【0067】この実施例の粒子製造用基板20において
も、実施例2の粒子製造用基板20と同様に、電子部品
の所望の位置に導電性粒子11を配置することができる
うえ、この実施例の粒子製造用基板20では、深さが同
一であるが開口面積の異なる2種類の凹部10,103
を設けたので、この粒子製造用基板20に材料膜12を
形成すると開口面積の大きな凹部103に導電性材料が
より多く積層される。この結果材料膜12を溶融して導
電性粒子11とすると、開口面積の大きな凹部103に
作られる導電性粒子11は粒径がかなり大となる。凹部
10,103の深さは同一なので、開口面積の大きな凹
部103に作れられる導電性粒子11と開口面積の小さ
な凹部10に形成される導電性粒子11との高さの差は
実施例2の場合よりも大となる。従って、この粒子製造
用基板20では、予定外の導電性粒子11、すなわち開
口部の小さい凹部10に作られた導電性粒子11が第1
の電子部品に付着するのを確実に避けることができる利
点がある。
Also in the particle manufacturing substrate 20 of this embodiment, the conductive particles 11 can be arranged at a desired position of the electronic component as in the particle manufacturing substrate 20 of the embodiment 2, and in addition to this embodiment. In the particle manufacturing substrate 20, the two types of recesses 10, 103 having the same depth but different opening areas are used.
Therefore, when the material film 12 is formed on the particle manufacturing substrate 20, a larger amount of the conductive material is stacked in the recess 103 having a large opening area. As a result, if the material film 12 is melted to form the conductive particles 11, the conductive particles 11 formed in the recess 103 having a large opening area have a considerably large particle size. Since the depths of the recesses 10 and 103 are the same, the difference in height between the conductive particles 11 formed in the recess 103 having a large opening area and the conductive particles 11 formed in the recess 10 having a small opening area is the same as in Example 2. It will be bigger than the case. Therefore, in the particle manufacturing substrate 20, the unexpected conductive particles 11, that is, the conductive particles 11 formed in the concave portion 10 having a small opening are the first.
There is an advantage that it can be surely prevented from adhering to the electronic components.

【0068】(実施例4)図10は、本発明の導電性粒
子製造用基板の第4実施例の要部を示すものである。図
10(a)は表面に形成された凹部104の平面図であ
り、そのC−C断面を図10(b)に、又D−D断面を
図10(c)に示した。
(Embodiment 4) FIG. 10 shows an essential portion of a fourth embodiment of the substrate for producing conductive particles of the present invention. FIG. 10A is a plan view of the recess 104 formed on the surface, and a CC cross section thereof is shown in FIG. 10B and a DD cross section thereof is shown in FIG. 10C.

【0069】この粒子製造用基板20は、(110)面
のシリコン結晶にひし形の開口が設けられたマスクを形
成して異方性エッチングすることによって製造されたも
のである。
The grain manufacturing substrate 20 is manufactured by forming a mask having a diamond-shaped opening in a (110) plane silicon crystal and performing anisotropic etching.

【0070】この粒子製造用基板20の凹部104は、
図11に示すように、ひし形の対向する1組の角から他
の対向する1組の角を結ぶ対角線に向かって漸次下降す
る底面29を有するものでこの底面29からひし形の開
口部の各辺に延びる側面30は垂直面となっている。
The concave portion 104 of the particle manufacturing substrate 20 is
As shown in FIG. 11, the diamond has a bottom surface 29 that gradually descends from a pair of opposite corners of the rhombus toward a diagonal line connecting the other pair of opposite corners, and each side of the rhombus opening from the bottom surface 29. The side surface 30 extending to is a vertical surface.

【0071】本実施例の粒子製造用基板20を用いて導
電性粒子11を製造する場合、基板20の表面から導電
性粒子11が突出する高さHは以下のように計算でき
る。
When the conductive particles 11 are manufactured using the particle manufacturing substrate 20 of this embodiment, the height H at which the conductive particles 11 project from the surface of the substrate 20 can be calculated as follows.

【0072】この凹部104の開口部の短い対角線の長
さをLとすると長辺は21/2×Lである。従ってこの凹
部104の開口部の面積Aは下記(7)式で与えられ
る。
When the length of the short diagonal line of the opening of the recess 104 is L, the long side is 2 1/2 × L. Therefore, the area A of the opening of the recess 104 is given by the following equation (7).

【0073】[0073]

【数7】 [Equation 7]

【0074】平面に膜厚tだけ成膜される条件で、この
粒子製造用基板20上に成膜すると、平面の面積Aの部
分に成膜された金属の量V0=A×Tと、開口面積Aを
持った凹部104の中に成膜された金属の量V1は等し
い。従って、上記成膜条件下では、導電性粒子11の体
積V2は、V2=V1=V0=A・tとなる。
When the film is formed on the particle manufacturing substrate 20 under the condition that the film thickness t is formed on the plane, the amount of metal film formed on the area A of the plane is V 0 = A × T, The amount V 1 of metal deposited in the recess 104 having the opening area A is equal. Therefore, under the above film forming conditions, the volume V 2 of the conductive particles 11 is V 2 = V 1 = V 0 = A · t.

【0075】導電性粒子11が半径Rの完全な球である
と仮定すると、A・t=V2=4πR3/3であるから、
次の(8)式が成り立つ。
[0075] When the conductive particles 11 is assumed to be perfect sphere of radius R, since it is A · t = V 2 = 4πR 3/3,
The following expression (8) is established.

【0076】[0076]

【数8】 [Equation 8]

【0077】他方、図10(b)から導電性粒子11の
突出高さHは H=R’+R−D
On the other hand, from FIG. 10 (b), the protruding height H of the conductive particles 11 is H = R '+ RD.

【0078】この粒子製造用基板20では凹部104の
深さDはL/2となり、導電性粒子11の中心から凹部
104の最深部までの距離R’はR/cosθであるか
ら、下記(9)式が成立する。なお、この粒子製造用基
板20では基板20の表面と底面29とのなす角θが3
5.26度である。
In this particle manufacturing substrate 20, the depth D of the recess 104 is L / 2, and the distance R ′ from the center of the conductive particle 11 to the deepest part of the recess 104 is R / cos θ. ) Formula holds. In the particle manufacturing substrate 20, the angle θ formed by the surface of the substrate 20 and the bottom surface 29 is 3
It is 5.26 degrees.

【0079】[0079]

【数9】 [Equation 9]

【0080】上記(8)式と(9)式から導電性材料を
成膜する厚さtと導電性粒子11の突出高さHと開口部
の短い対角線の長さLとの関係を求めると図12のよう
になる。
From the above equations (8) and (9), the relationship between the thickness t for depositing the conductive material, the protruding height H of the conductive particles 11 and the length L of the short diagonal line of the opening is obtained. It becomes like FIG.

【0081】この実施例の粒子製造用基板20において
も、実施例1の粒子製造用基板20と同様な作用効果が
得られる他、この実施例の粒子製造用基板20は、凹部
104が垂直な側面30によって囲まれているので、こ
の基板20を用いて導電性粒子11を製造するとき、隣
接する凹部104にある溶融された導電性材料同士の結
合が起こりにくい利点がある。
The particle production substrate 20 of this embodiment can obtain the same effects as the particle production substrate 20 of the embodiment 1, and the concave portion 104 is vertical in the particle production substrate 20 of this embodiment. Since it is surrounded by the side surface 30, when the conductive particles 11 are manufactured using this substrate 20, there is an advantage that the molten conductive materials in the adjacent recesses 104 are unlikely to bond with each other.

【0082】(実施例5)図13は、本発明の導電性粒
子の製造方法の他の実施例の各工程を示すものである。
(Embodiment 5) FIG. 13 shows steps of another embodiment of the method for producing conductive particles of the present invention.

【0083】この実施例では、粒子製造用基板20とし
て、導電体あるいは絶縁体からなる基板26の表面に、
後に蒸着する導電性材料の溶融物と濡れ性の悪い導体層
27例えばインジュウムすず酸化物からなる導体層27
などを形成し、その上にやはり導電性材料の溶融物との
濡れ性の悪い絶縁膜28を形成したもので、絶縁膜28
をエッチングすることによって凹部10が形成されてい
る。凹部10の底には導体層27が露出している。
In this embodiment, as the particle production substrate 20, a surface of a substrate 26 made of a conductor or an insulator is used.
A conductor layer 27 having poor wettability with a melt of a conductive material to be vapor-deposited later, for example, a conductor layer 27 made of indium tin oxide.
Etc., and an insulating film 28 having poor wettability with the melt of the conductive material is formed on the insulating film 28.
The recess 10 is formed by etching. The conductor layer 27 is exposed at the bottom of the recess 10.

【0084】この実施例の導電性粒子の製造方法では、
まず前記粒子製造用基板20を電気めっき浴に浸漬して
導体層27に通電することにより、図13(b)に示す
ように、凹部10内に金属を析出させて材料膜12を各
凹部10に形成する。
In the method for producing conductive particles of this example,
First, the particle-producing substrate 20 is immersed in an electroplating bath and the conductor layer 27 is energized to deposit metal in the recesses 10 to form the material film 12 in each recess 10 as shown in FIG. 13B. To form.

【0085】ついでこの粒子製造用基板20を加熱して
各凹部10の材料膜12を溶融した後冷却すると、溶融
した導電性材料が表面張力によって球状になり、図13
(c)に示すように、各凹部10に導電性粒子11が作
られる。
Then, when the particle manufacturing substrate 20 is heated to melt the material film 12 in each recess 10 and then cooled, the molten conductive material becomes spherical due to the surface tension, and FIG.
As shown in (c), conductive particles 11 are formed in each recess 10.

【0086】この実施例の導電性粒子の製造方法によっ
ても、実施例1と同様な作用効果を得られる。
The same effect as in Example 1 can be obtained by the method for producing conductive particles of this example.

【0087】(実施例6)図14は、本発明の導電性粒
子製造用基板の第6実施例を示すものである。
(Embodiment 6) FIG. 14 shows a sixth embodiment of the substrate for producing conductive particles of the present invention.

【0088】この粒子製造用基板20では、基板26の
表面に各凹部10を仕切る壁部10aを形成する絶縁膜
28が設けられており、この上に全面に渡って導体層2
7が形成されている。
In this particle manufacturing substrate 20, an insulating film 28 is provided on the surface of the substrate 26 for forming the wall portions 10a for partitioning the recesses 10, and the conductor layer 2 is formed over the entire surface thereof.
7 are formed.

【0089】この粒子製造用基板20を用いても、前記
実施例5と同様にして導電性粒子11を製造することが
できる。
By using this particle manufacturing substrate 20, the conductive particles 11 can be manufactured in the same manner as in Example 5.

【0090】[0090]

【発明の効果】以上説明したように本発明の端子接続構
造は、導電性粒子が全て互いに離間した状態で配置され
ていることを特徴とする構造である。このような端子接
続構造によれば、導電性粒子を介して隣接する端子間が
ショートすることはない。従ってこの端子接続構造によ
れば、端子を狭いピッチで配置することが可能となり高
密度実装が可能となる。
As described above, the terminal connection structure of the present invention is characterized in that the conductive particles are all arranged in a state of being separated from each other. According to such a terminal connection structure, adjacent terminals are not short-circuited via the conductive particles. Therefore, according to this terminal connection structure, the terminals can be arranged at a narrow pitch, which enables high-density mounting.

【0091】また請求項2の端子接続方法は、表面に微
細な凹部が形成された導電性粒子製造用基板の表面に導
電性材料の膜を形成し、ついでこの膜を加熱溶融して溶
融物が表面張力により球状化したのち冷却することによ
り前記導電性粒子製造用基板の各凹部に導電性粒子を生
成せしめ、この後導電性粒子製造用基板の表面に第1の
電子部品を重ね合わせることによって導電性粒子を第1
の電子部品の少なくとも端子の設けられた部分に移し、
ついでこの第1の電子部品に第2の電子部品を重ね合わ
せて互いの端子を前記導電性粒子を介して電気的に接続
することを特徴とする方法である。このような請求項2
の端子接続方法によれば、導電性粒子は粒子製造用基板
の凹部間の壁によって離間されている状態を維持したま
ま電子部品に転写される。従ってこの端子接続方法によ
れば、導電性粒子を介して端子間がショートすることが
なく、端子を狭いピッチで配置して高密度実装すること
が可能となる。
According to a second aspect of the present invention, there is provided a terminal connecting method, wherein a film of a conductive material is formed on the surface of a substrate for producing conductive particles having fine recesses formed on the surface, and then the film is heated and melted to melt Are spheroidized by surface tension and then cooled to form conductive particles in the recesses of the conductive particle manufacturing substrate, and then the first electronic component is superposed on the surface of the conductive particle manufacturing substrate. First conductive particles by
Move to at least the part of the electronic component where the terminal is provided,
Then, the second electronic component is superposed on the first electronic component and their terminals are electrically connected to each other through the conductive particles. Such claim 2
According to the terminal connection method of (1), the conductive particles are transferred to the electronic component while maintaining the state of being separated by the walls between the recesses of the particle manufacturing substrate. Therefore, according to this terminal connection method, the terminals are not short-circuited via the conductive particles, and the terminals can be arranged at a narrow pitch for high-density mounting.

【0092】請求項3の導電性粒子の製造方法は、表面
に微細な凹部が形成された導電性粒子製造用基板の表面
に導電性材料の膜を形成し、ついでこの膜を加熱溶融し
て溶融物が表面張力により球状化したのち冷却すること
により前記導電性粒子製造用基板の各凹部に導電性粒子
を生成せしめることを特徴とする方法である。このよう
な請求項3の導電性粒子の製造方法では、粒子製造用基
板の凹部には凹部の開口面積に応じた量の導電性材料が
成膜される。そしてこの導電性材料を溶融させると溶融
した材料は凹部内で集まり表面張力によって自ずと球状
化して導電性粒子となる。導電性粒子の大きさは導電性
材料の量で決まるので、凹部の開口面積と導電性材料の
厚さが同一で有れば同一径の導電性粒子が製造される。
従ってこの導電性粒子の製造方法によれば、所望の粒径
の導電性粒子をバラツキなく製造できる。
According to a third aspect of the present invention, there is provided a method for producing conductive particles, which comprises forming a film of a conductive material on the surface of a substrate for producing conductive particles having fine recesses formed on the surface, and then heating and melting the film. The method is characterized in that after the melt is made spherical by surface tension and then cooled, conductive particles are generated in each recess of the substrate for manufacturing conductive particles. In the method for producing conductive particles according to the third aspect, the conductive material is deposited in the recess of the particle production substrate in an amount corresponding to the opening area of the recess. Then, when the conductive material is melted, the melted material gathers in the recesses and is naturally spherical due to the surface tension to become conductive particles. Since the size of the conductive particles is determined by the amount of the conductive material, if the opening area of the recess and the thickness of the conductive material are the same, the conductive particles having the same diameter are manufactured.
Therefore, according to this method for producing conductive particles, it is possible to produce conductive particles having a desired particle size without variation.

【0093】さらに請求項4の導電性粒子製造用基板
は、表面に微細な凹部が形成されものなので、この基板
を用いれば前記請求項2,3の方法を実施することがで
き、請求項1の端子接続構造を形成することができる。
Furthermore, since the substrate for producing conductive particles according to claim 4 has fine recesses formed on the surface, the method according to claims 2 and 3 can be carried out by using this substrate. The terminal connection structure can be formed.

【0094】請求項5の導電性粒子製造用基板は、開口
面積の異なる複数種類の凹部を設けたものなので、この
粒子製造用基板に導電性材料を成膜すると各凹部内に積
層される導電性材料の量に差が生じる。この結果各凹部
に作られた導電性粒子の大きさに差が生じ、ひいては粒
子製造用基板の表面から各導電性粒子の頂部までの突出
高さに差が生じる。このためこの導電性粒子製造用基板
を用いて導電性粒子を製造してこれに第1の電子部品を
重ねて導電性粒子を付着させると、高く突出している導
電性粒子が第1の電子部品に移る。従ってこの導電性粒
子製造用基板を用いると、所定のパターンで導電性粒子
が配置された端子接続構造を得ることができる。
Since the substrate for producing conductive particles according to claim 5 is provided with a plurality of types of recesses having different opening areas, when a conductive material is deposited on the substrate for producing particles, the conductive material laminated in each recess is formed. There is a difference in the amount of the conductive material. As a result, there is a difference in the size of the conductive particles formed in the recesses, which in turn causes a difference in the protrusion height from the surface of the particle manufacturing substrate to the top of each conductive particle. For this reason, when conductive particles are manufactured using this substrate for manufacturing conductive particles, and the first electronic component is superposed on the conductive particles and the conductive particles are adhered thereto, the highly protruding conductive particles become the first electronic component. Move on to. Therefore, by using this substrate for producing conductive particles, it is possible to obtain a terminal connection structure in which conductive particles are arranged in a predetermined pattern.

【0095】請求項6の導電性粒子製造用基板は、深さ
の異なる複数種類の凹部を設けたものなので、この粒子
製造用基板に導電性材料を成膜すると、深い凹部に形成
された導電性粒子はその分奥まって凹部内に位置するこ
ととなる。この結果粒子製造用基板の表面から各凹部に
形成された導電性粒子の頂部までの突出高さに差が生じ
る。よってこの導電性粒子製造用基板を用いても、所定
のパターンで導電性粒子が配置された端子接続構造を得
ることができる。
The substrate for producing conductive particles according to claim 6 is provided with a plurality of types of recesses having different depths. Therefore, when a conductive material is deposited on the substrate for producing particles, the conductive material formed in the deep recesses is formed. The characteristic particles will be recessed by that amount and will be located in the concave portion. As a result, there is a difference in the protrusion height from the surface of the particle manufacturing substrate to the top of the conductive particles formed in each recess. Therefore, even if this substrate for producing conductive particles is used, it is possible to obtain a terminal connection structure in which conductive particles are arranged in a predetermined pattern.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の端子接続方法の各工程を示すもの
で、(a)ないし(c)は断面図、(d)は平面図、
(e)は断面図。
1A to 1C show respective steps of a terminal connecting method of Embodiment 1, (a) to (c) are sectional views, (d) is a plan view,
(E) is a sectional view.

【図2】実施例1で用いた粒子製造用基板の凹部を示す
もので、(a)は平面図、(b)は断面図。
2A and 2B show a concave portion of the particle production substrate used in Example 1, where FIG. 2A is a plan view and FIG. 2B is a sectional view.

【図3】実施例1で用いた粒子製造用基板の凹部の配置
を示す平面図。
FIG. 3 is a plan view showing the arrangement of recesses in the particle manufacturing substrate used in Example 1.

【図4】実施例1の粒子製造用基板の凹部表面に成膜さ
れる導電性材料の量を計算する際の条件を説明するため
の断面図。
FIG. 4 is a cross-sectional view for explaining conditions for calculating the amount of a conductive material deposited on the surface of the recess of the particle production substrate of Example 1.

【図5】(100)面のシリコン結晶を用いて製造され
た実施例1ないし実施例3の粒子製造用基板を用いて導
電性粒子を製造した場合の導電性粒子の突出高さを計算
した結果を示す、材料膜の膜厚と突出高さのグラフ。
FIG. 5 is a graph showing the protrusion height of conductive particles when conductive particles are manufactured using the particle manufacturing substrates of Examples 1 to 3 manufactured by using (100) -plane silicon crystals. The graph of the film thickness of a material film and protrusion height which shows a result.

【図6】実施例2の端子接続方法の各工程を示すもの
で、(a)ないし(c)は断面図、(d)は平面図。
6A and 6B are diagrams showing respective steps of the terminal connecting method of Embodiment 2, wherein FIGS. 6A to 6C are sectional views and FIG.

【図7】実施例2で用いた粒子製造用基板の凹部の配置
を示す平面図。
FIG. 7 is a plan view showing the arrangement of recesses in the particle production substrate used in Example 2.

【図8】実施例3で用いた粒子製造用基板の凹部の配置
を示す平面図。
FIG. 8 is a plan view showing the arrangement of recesses in the particle manufacturing substrate used in Example 3.

【図9】実施例3で用いた粒子製造用基板の凹部の一つ
を示す図で、(a)は平面図、(b)は(a)図中A−
A線視断面図、(c)は(a)図中B−B線視断面図。
9A and 9B are views showing one of the recesses of the particle-producing substrate used in Example 3, in which FIG. 9A is a plan view and FIG. 9B is a view in FIG.
A sectional view taken along line A, and (c) is a sectional view taken along line BB in FIG.

【図10】実施例4で用いた粒子製造用基板の凹部を示
すもので、(a)は平面図、(b)は(a)図中C−C
線視断面図、(c)は(a)図中D−D線視断面図。
10 is a plan view of the concave portion of the substrate for producing particles used in Example 4, (a) is a plan view, and (b) is CC in FIG.
FIG. 6C is a sectional view taken along line D-D in FIG.

【図11】同実施例4の粒子製造用基板の凹部を示す斜
視図。
FIG. 11 is a perspective view showing a recessed portion of the substrate for producing particles of Example 4.

【図12】(110)面のシリコン結晶を用いて製造さ
れた実施例4の粒子製造用基板を用いて導電性粒子を製
造した場合の導電性粒子の突出高さを計算した結果を示
す、材料膜の膜厚と突出高さのグラフ。
FIG. 12 shows a result of calculating the protrusion height of the conductive particles when the conductive particles are manufactured using the particle manufacturing substrate of Example 4 manufactured using the (110) plane silicon crystal, Graph of the thickness of the material film and the protrusion height.

【図13】実施例5の導電性粒子の製造方法の各工程を
示す断面図。
FIG. 13 is a cross-sectional view showing each step of the method for producing conductive particles of Example 5.

【図14】実施例6の粒子製造用基板を示す断面図。FIG. 14 is a sectional view showing a substrate for producing particles of Example 6.

【図15】従来の端子接続構造を示す断面図。FIG. 15 is a sectional view showing a conventional terminal connection structure.

【図16】従来の端子接続構造の問題点を説明するため
の断面図。
FIG. 16 is a cross-sectional view for explaining problems of the conventional terminal connection structure.

【符号の説明】[Explanation of symbols]

1 基板 2 基板 4 端子 5 端子 6 導電性粒子 7 接着剤層 10 凹部 11 導電性粒子 12 材料膜 20 粒子製造用基板 21 第1の電子部品 23 接着剤 25 第2の電子部品 26 基板 27 導体層 28 絶縁膜 29 底面 30 側面 101 凹部 102 凹部 104 凹部 111 導電性粒子 112 導電性粒子 1 Substrate 2 Substrate 4 Terminal 5 Terminal 6 Conductive Particle 7 Adhesive Layer 10 Recessed Part 11 Conductive Particle 12 Material Film 20 Particle Manufacturing Substrate 21 First Electronic Component 23 Adhesive 25 Second Electronic Component 26 Substrate 27 Conductor Layer 28 Insulating film 29 Bottom surface 30 Side surface 101 Recessed portion 102 Recessed portion 104 Recessed portion 111 Conductive particle 112 Conductive particle

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 第1の電子部品の端子と第2の電子部品
の端子とが、導電性粒子を介して電気的に接続された端
子接続構造において、前記導電性粒子が全て互いに離間
した状態で配置されていることを特徴とする端子接続構
造。
1. In a terminal connection structure in which a terminal of a first electronic component and a terminal of a second electronic component are electrically connected via conductive particles, the conductive particles are all separated from each other. Terminal connection structure characterized by being arranged in.
【請求項2】 表面に微細な凹部が形成された導電性粒
子製造用基板の表面に導電性材料の膜を形成し、ついで
この膜を加熱溶融して溶融物が表面張力により球状化し
たのち冷却することにより前記導電性粒子製造用基板の
各凹部に導電性粒子を生成せしめ、この後導電性粒子製
造用基板の表面に第1の電子部品を重ね合わせることに
よって導電性粒子を第1の電子部品の少なくとも端子の
設けられた部分に移し、ついでこの第1の電子部品に第
2の電子部品を重ね合わせて互いの端子を前記導電性粒
子を介して電気的に接続することを特徴とする端子接続
方法。
2. A film of a conductive material is formed on the surface of a substrate for producing conductive particles having fine recesses formed on the surface thereof, and the film is heated and melted so that the melt becomes spherical due to surface tension. By cooling, the conductive particles are produced in the respective concave portions of the conductive particle producing substrate, and then the first electronic component is superposed on the surface of the conductive particle producing substrate to form the first conductive particles. The electronic component is transferred to at least a portion provided with a terminal, and then the second electronic component is superposed on the first electronic component to electrically connect the terminals to each other through the conductive particles. How to connect terminals.
【請求項3】 表面に微細な凹部が形成された導電性粒
子製造用基板の表面に導電性材料の膜を形成し、ついで
この膜を加熱溶融して溶融物が表面張力により球状化し
たのち冷却することにより前記導電性粒子製造用基板の
各凹部に導電性粒子を生成せしめることを特徴とする導
電性粒子製造方法。
3. A film of a conductive material is formed on the surface of a substrate for producing conductive particles having fine recesses formed on the surface thereof, and then the film is heated and melted to make the melt spherical due to surface tension. A method for producing conductive particles, characterized in that conductive particles are produced in each recess of the substrate for producing conductive particles by cooling.
【請求項4】 表面に微細な凹部が形成された導電性粒
子製造用基板。
4. A substrate for producing conductive particles, which has fine recesses formed on its surface.
【請求項5】 凹部として、開口面積の異なる複数種類
の凹部が設けられたことを特徴とする請求項4記載の導
電性粒子製造用基板。
5. The substrate for producing conductive particles according to claim 4, wherein a plurality of types of recesses having different opening areas are provided as the recesses.
【請求項6】 凹部として、深さの異なる複数種類の凹
部が設けられたことを特徴とする請求項4記載の導電性
粒子製造用基板。
6. The substrate for producing conductive particles according to claim 4, wherein a plurality of types of recesses having different depths are provided as the recesses.
JP3167258A 1991-07-08 1991-07-08 Terminal connection structure, terminal connection method, and conductive particle manufacturing method Expired - Fee Related JP2740699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3167258A JP2740699B2 (en) 1991-07-08 1991-07-08 Terminal connection structure, terminal connection method, and conductive particle manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3167258A JP2740699B2 (en) 1991-07-08 1991-07-08 Terminal connection structure, terminal connection method, and conductive particle manufacturing method

Publications (2)

Publication Number Publication Date
JPH0582934A true JPH0582934A (en) 1993-04-02
JP2740699B2 JP2740699B2 (en) 1998-04-15

Family

ID=15846403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3167258A Expired - Fee Related JP2740699B2 (en) 1991-07-08 1991-07-08 Terminal connection structure, terminal connection method, and conductive particle manufacturing method

Country Status (1)

Country Link
JP (1) JP2740699B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004510A1 (en) * 2018-06-26 2020-01-02 日立化成株式会社 Anisotropic conductive film, method for producing same, and method for producing connection structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113369A (en) * 1985-11-12 1987-05-25 セイコーエプソン株式会社 Jointing material of electronic circuit
JPS63310581A (en) * 1987-06-12 1988-12-19 Canon Inc Film body for electric connection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113369A (en) * 1985-11-12 1987-05-25 セイコーエプソン株式会社 Jointing material of electronic circuit
JPS63310581A (en) * 1987-06-12 1988-12-19 Canon Inc Film body for electric connection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004510A1 (en) * 2018-06-26 2020-01-02 日立化成株式会社 Anisotropic conductive film, method for producing same, and method for producing connection structure
JPWO2020004510A1 (en) * 2018-06-26 2021-08-05 昭和電工マテリアルズ株式会社 Anisotropic conductive film and its manufacturing method and manufacturing method of connecting structure

Also Published As

Publication number Publication date
JP2740699B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
US10892246B2 (en) Structures and methods for low temperature bonding using nanoparticles
US9818713B2 (en) Structures and methods for low temperature bonding using nanoparticles
US6324754B1 (en) Method for fabricating microelectronic assemblies
US20100071944A1 (en) Chip capacitor embedded pwb
JPS63141356A (en) Manufacture of semiconductor device
JP2014090183A (en) Microelectronic substrate having metal post connected with substrate by using bonding layer
JPH08340025A (en) Film carrier and semiconductor device using the same
US8166648B2 (en) Method of manufacturing a wiring substrate
US11973056B2 (en) Methods for low temperature bonding using nanoparticles
JP2001511602A (en) Method for producing anisotropic conductive film having conductive insert
JPS6221268B2 (en)
JPH04277639A (en) Mounting structure of electronic component
JP2740699B2 (en) Terminal connection structure, terminal connection method, and conductive particle manufacturing method
JPH07335992A (en) Interconnection board and production process thereof
JP2699951B2 (en) Electronic component connection structure and manufacturing method
JP2849283B2 (en) Method for producing conductive particles
US12027487B2 (en) Structures for low temperature bonding using nanoparticles
JP2023063917A (en) Wiring board and functional device
TW202414634A (en) Structures and methods for low temperature bonding
JPH03291879A (en) Manufacture of electric connection member
JPH02129938A (en) Wiring board and its manufacture
JPH08204113A (en) Semiconductor device and manufacture thereof
JPS63268114A (en) Thin film magnetic head

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980106

LAPS Cancellation because of no payment of annual fees