JPH0582900A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH0582900A
JPH0582900A JP27203791A JP27203791A JPH0582900A JP H0582900 A JPH0582900 A JP H0582900A JP 27203791 A JP27203791 A JP 27203791A JP 27203791 A JP27203791 A JP 27203791A JP H0582900 A JPH0582900 A JP H0582900A
Authority
JP
Japan
Prior art keywords
layer
type inp
ingaasp
buffer layer
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27203791A
Other languages
Japanese (ja)
Inventor
Katsushi Ota
克志 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP27203791A priority Critical patent/JPH0582900A/en
Publication of JPH0582900A publication Critical patent/JPH0582900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent generation of a kink and fluctuations in a far field pattern when a high current is injected in an LD by eliminating 4 asymmetrical properties forbidden band width and a refractive index of the LD and reducing a spatial hole burning. CONSTITUTION:The method for manufacturing a semiconductor laser comprises the step of sequentially laminating a first conductivity type InP buffer layer 2, an InGaAsP buffer layer 3, an InGaAsP active layer 4, an anti-meltback layer 5 having the same composition and thickness as those of the layer 3, and a second conductivity type InP clad layer 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、埋め込みヘテロ構造
の半導体レーザの製造方法についてのものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor laser having a buried hetero structure.

【0002】[0002]

【従来の技術】光ファイバ通信には、埋め込みヘテロ構
造の半導体レーザ(以下、LDという)が主に用いられ
る。特に、1.55μm帯の石英系光ファイバは低損失であ
り、長距離光ファイバ通信に用いられる。
2. Description of the Related Art A semiconductor laser (hereinafter referred to as LD) having a buried hetero structure is mainly used for optical fiber communication. In particular, the 1.55 μm band silica optical fiber has low loss and is used for long-distance optical fiber communication.

【0003】次に、従来の液相エピタキシャル成長法に
よる1.55μm帯LDの構造を図3により説明する。図3
の1はn型InP基板、2はn型InPバッファ層、4
はInGaAsP活性層、5はInGaAsPアンチメ
ルトバック層、6はp型InPクラッド層、7はp型I
nP電流阻止層、8はn型InP埋め込み層、9はp型
InP埋め込み層、10はp型電極、11はn型電極で
ある。
Next, the structure of a 1.55 μm band LD manufactured by the conventional liquid phase epitaxial growth method will be described with reference to FIG. Figure 3
1 is an n-type InP substrate, 2 is an n-type InP buffer layer, 4
Is an InGaAsP active layer, 5 is an InGaAsP antimeltback layer, 6 is a p-type InP clad layer, and 7 is a p-type I.
nP current blocking layer, 8 is an n-type InP buried layer, 9 is a p-type InP buried layer, 10 is a p-type electrode, and 11 is an n-type electrode.

【0004】図3アは、第1回目の結晶成長で基板1の
上に発光領域となる活性層4を含むダブルヘテロ構造を
もつ半導体成長層を形成したウェーハである。ここでI
nGaAsPアンチメルトバック層5は、活性層4のメ
ルトバックを防ぐために積層されるもので、活性層4の
InGaAsPよりも禁止帯幅が大きく屈折率の小さな
ものが使用される。
FIG. 3A shows a wafer in which a semiconductor growth layer having a double hetero structure including an active layer 4 serving as a light emitting region is formed on a substrate 1 in the first crystal growth. Where I
The nGaAsP anti-meltback layer 5 is laminated in order to prevent the meltback of the active layer 4, and the nGaAsP antimeltback layer 5 having a larger band gap and a smaller refractive index than InGaAsP of the active layer 4 is used.

【0005】図3イは、ウェーハ上にストライプ状の凸
部を残し、他の部分を活性層4よりも深くエッチングし
た後、第2回目の結晶成長でストライプ状の凸部を除い
た部分にp型InP電流阻止層7、n型InP埋め込み
層8、さらに全面にp型InP埋め込み層を順次成長さ
せたものである。
In FIG. 3A, after the stripe-shaped convex portions are left on the wafer and the other portions are etched deeper than the active layer 4, the portions except the stripe-shaped convex portions are removed by the second crystal growth. The p-type InP current blocking layer 7, the n-type InP buried layer 8 and a p-type InP buried layer are sequentially grown on the entire surface.

【0006】[0006]

【発明が解決しようとする課題】次に、図3の接合面に
垂直方向の距離に対する禁止帯幅と屈折率の関係を図4
に示す。図4アが禁止帯幅との関係図であり、図4イが
屈折率との関係図である。図3にはInGaAsPアン
チメルトバック層5があるので、図4アと図4イに示す
とおり、接合面に禁止帯幅と屈折率とが非対称になる。
図3では、電流を増加して光出力を大きくすると、活性
層4の中央部分で強い誘導放出のためキャリアの再結合
が速くなり、電子密度が低下する空間的ホールバーニン
グを起こす。その結果、レーザモードの位置が利得のピ
ーク位置よりずれるので、電流を増加しても光出力が大
きくならないキンクが発生する。また、利得分布が非対
称になり、レーザ光波面が軸に対して傾くので、遠視野
像のゆらぎを起こす。
Next, the relationship between the forbidden band width and the refractive index with respect to the distance in the direction perpendicular to the joint surface in FIG. 3 is shown in FIG.
Shown in. FIG. 4A is a relationship diagram with the band gap, and FIG. 4A is a relationship diagram with the refractive index. Since the InGaAsP anti-meltback layer 5 is present in FIG. 3, the band gap and the refractive index are asymmetrical at the junction surface, as shown in FIGS. 4A and 4A.
In FIG. 3, when the current is increased and the light output is increased, the recombination of carriers is accelerated due to the strong stimulated emission in the central portion of the active layer 4, causing spatial hole burning in which the electron density is reduced. As a result, the position of the laser mode deviates from the peak position of the gain, which causes a kink in which the optical output does not increase even if the current is increased. Further, the gain distribution becomes asymmetric and the wavefront of the laser light is tilted with respect to the axis, which causes fluctuations in the far-field pattern.

【0007】この発明は、LDの禁止帯幅と屈折率の非
対称性をなくし、空間的ホールバーニングを少なくし、
LDに高電流を注入したときのキンクの発生や、遠視野
像のゆらぎを防止することを目的とする。
The present invention eliminates the asymmetry between the forbidden band width and the refractive index of the LD, reduces the spatial hole burning,
It is intended to prevent the occurrence of kinks and the fluctuation of far-field images when a high current is injected into the LD.

【0008】[0008]

【課題を解決するための手段】この目的を達成するた
め、この発明では第1導電型InP基板1上に、第1導
電型InPバッファ層2と、InGaAsPバッファ層
3と、InGaAsP活性層4と、InGaAsPバッ
ファ層3と同じ組成で同じ膜厚のアンチメルトバック層
5と、第2導電型InPクラッド層6とを順次積層させ
る工程をもつ。
To achieve this object, according to the present invention, a first conductivity type InP buffer layer 2, an InGaAsP buffer layer 3, and an InGaAsP active layer 4 are formed on a first conductivity type InP substrate 1. , The InGaAsP buffer layer 3 having the same composition and the same film thickness, and the second conductivity type InP clad layer 6 are sequentially laminated.

【0009】[0009]

【作用】次に、この発明によるLDの製造方法を図1に
より説明する。図1の3はInGaAsPバッファ層で
あり、その他は図3と同じものである。InGaAsP
バッファ層3はアンチメルトバック層5と同じ組成で同
じ膜厚のものである。図1アは第1回目の結晶成長を示
し、n型InP基板1上にn型InPバッファ層2、I
nGaAsPバッファ層3、InGaAsP活性層4、
InGaAsPアンチメルトバック層5、p型InPク
ラッド層6を順次積層する。
Next, the method of manufacturing the LD according to the present invention will be described with reference to FIG. Reference numeral 3 in FIG. 1 is an InGaAsP buffer layer, and the others are the same as those in FIG. InGaAsP
The buffer layer 3 has the same composition and the same film thickness as the anti-meltback layer 5. FIG. 1A shows the first crystal growth, in which the n-type InP buffer layer 2, I is formed on the n-type InP substrate 1.
nGaAsP buffer layer 3, InGaAsP active layer 4,
The InGaAsP anti-melt back layer 5 and the p-type InP clad layer 6 are sequentially laminated.

【0010】次に、化学エッチングによりストライプ状
の凸部を残し、他の部分を活性層4より深くエッチング
する。図1イは第2回目の結晶成長を示し、ストライプ
状の凸部を除く部分に、p型InP電流阻止層7、n型
InP埋め込み層8、さらに全面にp型InP埋め込み
層9を順次形成し、最後にp型電極10、n型電極11
を形成する。
Next, by chemical etching, the stripe-shaped convex portions are left, and the other portions are etched deeper than the active layer 4. FIG. 1A shows the second crystal growth, in which a p-type InP current blocking layer 7, an n-type InP buried layer 8 and a p-type InP buried layer 9 are sequentially formed on the entire surface except the stripe-shaped convex portion. And finally, the p-type electrode 10 and the n-type electrode 11
To form.

【0011】次に、図1の接合面に垂直方向の距離に対
する禁止帯幅と屈折率の関係を図2に示す。図2アが禁
止帯幅との関係図であり、図2イが屈折率との関係図で
ある。活性層4の組成は、発振波長1.55μmの場合、I
nPと格子整合をとるためにIn0.65Ga0.35As0.79
0.21となり、禁止帯幅 0.8eV、屈折率は3.54であ
る。活性層4の膜厚は 0.1μm程度である。またInG
aAsPバッファ層3とInGaAsPアンチメルトバ
ック層5の組成はIn0.76Ga0.24As0.550.45で屈
折率は3.51である。膜厚は活性層4に比べ十分に薄い0.
03μm程度である。一方、InPは禁止帯幅1.35eV、
屈折率は3.40なので、図2に示すような禁止帯幅の分布
と屈折率分布になる。
Next, FIG. 2 shows the relationship between the forbidden band width and the refractive index with respect to the distance in the direction perpendicular to the joint surface in FIG. FIG. 2A is a relationship diagram with the band gap, and FIG. 2A is a relationship diagram with the refractive index. The composition of the active layer 4 is I when the oscillation wavelength is 1.55 μm.
In 0.65 Ga 0.35 As 0.79 for lattice matching with nP
P 0.21 , the band gap is 0.8 eV, and the refractive index is 3.54. The thickness of the active layer 4 is about 0.1 μm. InG
The composition of the aAsP buffer layer 3 and the InGaAsP anti-meltback layer 5 is In 0.76 Ga 0.24 As 0.55 P 0.45 and the refractive index is 3.51. The film thickness is sufficiently thinner than that of the active layer 4.
It is about 03 μm. On the other hand, InP has a band gap of 1.35 eV,
Since the refractive index is 3.40, the bandgap distribution and the refractive index distribution shown in FIG. 2 are obtained.

【0012】[0012]

【発明の効果】この発明によれば、InGaAsPアン
チメルトバック層5と同じ組成で同じ膜厚のInGaA
sPバッファ層3が活性層4の下側に積層されるので、
接合面に垂直な方向の禁止帯幅の分布と屈折率分布が対
称になり、高電流注入時にも空間的ホールバーニングが
少なくなり、キンクの発生や遠視野像のゆらぎがないL
Dを製造することができる。
According to the present invention, InGaA having the same composition and the same film thickness as the InGaAsP anti-melt back layer 5 is formed.
Since the sP buffer layer 3 is stacked below the active layer 4,
The distribution of the forbidden band in the direction perpendicular to the junction surface and the refractive index distribution are symmetrical, spatial hole burning is reduced even at the time of high current injection, and there is no kink or fluctuation in the far-field pattern.
D can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明によるLDの製造方法の説明図であ
る。
FIG. 1 is an explanatory view of a method for manufacturing an LD according to the present invention.

【図2】図1の接合面に垂直方向の距離に対する禁止帯
幅と屈折率の関係図である。
FIG. 2 is a relationship diagram of a forbidden band width and a refractive index with respect to a distance in a direction perpendicular to a joint surface of FIG.

【図3】従来技術によるLDの製造方法の説明図であ
る。
FIG. 3 is an explanatory diagram of a method for manufacturing an LD according to a conventional technique.

【図4】図3の接合面に垂直方向の距離に対する禁止帯
幅と屈折率の関係図である。
FIG. 4 is a relationship diagram of a forbidden band width and a refractive index with respect to a distance in a direction perpendicular to a joint surface of FIG.

【符号の説明】[Explanation of symbols]

1 n型InP基板 2 n型InPバッファ層 3 InGaAsPバッファ層 4 InGaAsP活性層 5 InGaAsPアンチメルトバック層 6 p型InPクラッド層 1 n-type InP substrate 2 n-type InP buffer layer 3 InGaAsP buffer layer 4 InGaAsP active layer 5 InGaAsP anti-melt back layer 6 p-type InP clad layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型InP基板(1) 上に、第1導
電型InPバッファ層(2) と、InGaAsPバッファ
層(3) と、InGaAsP活性層(4) と、InGaAs
Pバッファ層(3) と同じ組成で同じ膜厚のアンチメルト
バック層(5)と、第2導電型InPクラッド層(6) とを
順次積層させる工程をもつことを特徴とする半導体レー
ザの製造方法。
1. A first conductivity type InP substrate (1), a first conductivity type InP buffer layer (2), an InGaAsP buffer layer (3), an InGaAsP active layer (4), and InGaAs.
Manufacturing of a semiconductor laser characterized by comprising a step of sequentially laminating an anti-meltback layer (5) having the same composition and thickness as the P buffer layer (3) and a second conductivity type InP clad layer (6). Method.
JP27203791A 1991-09-24 1991-09-24 Manufacture of semiconductor laser Pending JPH0582900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27203791A JPH0582900A (en) 1991-09-24 1991-09-24 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27203791A JPH0582900A (en) 1991-09-24 1991-09-24 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH0582900A true JPH0582900A (en) 1993-04-02

Family

ID=17508247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27203791A Pending JPH0582900A (en) 1991-09-24 1991-09-24 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0582900A (en)

Similar Documents

Publication Publication Date Title
JP2004179274A (en) Optical semiconductor device
KR100232993B1 (en) Semiconductor laser device and method of fabricating semiconductor laser device
WO2024165037A1 (en) Electric-injection mixing-cavity dfb laser and manufacturing method therefor
CN219086444U (en) Semiconductor laser
JP2003142774A (en) Semiconductor laser and its manufacturing method
JP4599700B2 (en) Distributed feedback laser diode
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
JP3488137B2 (en) Optical semiconductor device and method of manufacturing the same
US5917846A (en) Optical Semiconductor device with carrier recombination layer
JPH0582900A (en) Manufacture of semiconductor laser
JP2940158B2 (en) Semiconductor laser device
JPS61176181A (en) Semiconductor light emitting device
JP2973215B2 (en) Semiconductor laser device
JPS61220389A (en) Integrated type semiconductor laser
JPH09214058A (en) Semiconductor laser device
JP3022351B2 (en) Optical semiconductor device and method of manufacturing the same
JP3235588B2 (en) Semiconductor laser device and method of manufacturing the same
JPH1140897A (en) Semiconductor laser element and its manufacture
CN118299928A (en) Semiconductor laser and preparation method thereof
JP2001077466A (en) Semiconductor laser
JPS6239088A (en) Semiconductor laser
JPH0677594A (en) Semiconductor laser
JPH04229682A (en) Manufacture of semiconductor laser
JPH01309393A (en) Semiconductor laser device and its manufacture
JPH0233988A (en) Semiconductor laser