JPH0582563B2 - - Google Patents

Info

Publication number
JPH0582563B2
JPH0582563B2 JP59083563A JP8356384A JPH0582563B2 JP H0582563 B2 JPH0582563 B2 JP H0582563B2 JP 59083563 A JP59083563 A JP 59083563A JP 8356384 A JP8356384 A JP 8356384A JP H0582563 B2 JPH0582563 B2 JP H0582563B2
Authority
JP
Japan
Prior art keywords
optical fiber
heat
resistant pipe
pipe
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59083563A
Other languages
Japanese (ja)
Other versions
JPS60227206A (en
Inventor
Naoshi Hakamata
Toshiaki Kakii
Tadashi Haibara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8356384A priority Critical patent/JPS60227206A/en
Publication of JPS60227206A publication Critical patent/JPS60227206A/en
Publication of JPH0582563B2 publication Critical patent/JPH0582563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

【発明の詳細な説明】 発明の技術分野 本発明は光フアイバ融着接続部の強度を高める
ための光フアイバ接続部の火炎研磨方法に関する
ものである。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of flame polishing an optical fiber splice to increase the strength of the optical fiber fusion splice.

技術の背景 一般に光フアイバ相互を融着接続する場合、ま
ず光フアイバの二次被覆を除去し、次に一次被覆
を除去し、光フアイバ素線のガラスを融着接続す
るという手順により行う。一次被覆を除去する手
法としては、アルコール等を湿らせたガーゼなど
で光フアイバ表面を拭く方法や熱硫酸等による方
法が用いられる。
Background of the Technology Generally, when optical fibers are fusion spliced, the secondary coating of the optical fibers is first removed, then the primary coating is removed, and the glass of the optical fibers is fusion spliced. The primary coating can be removed by wiping the surface of the optical fiber with gauze moistened with alcohol or the like, or by using hot sulfuric acid.

従来技術と問題点 従来の光フアイバ融着接続法において、アルコ
ール等を湿らせたガーゼ等による一次被覆除去方
法では、接続部の強度が約700gで、通常の光フ
アイバの強度が約6〜7Kgあるのに対し約1/10
程度に低下する。この原因は、一次被覆除去に際
し、アルコール等を湿らせたガーゼなどで光フア
イバ表面を拭く方法では、光フアイバ素線のガラ
ス表面にクラツクが発生するためである。また熱
硫酸等による一次被覆除去の場合は、一次被覆除
去工程において溶剤中に異物が混入し、光フアイ
バ表面にクラツクを生ずるため、融着接続部の強
度は高高2Kg程度で強度の低下は避けられない。
さらに融着に際して、急加熱、急冷による光フア
イバ素線のガラスの熱歪によりクラツクの発生す
ることも強度低下の一因となつている。
Prior art and problems In the conventional optical fiber fusion splicing method, when the primary coating is removed using gauze moistened with alcohol, etc., the strength of the spliced part is about 700 g, and the strength of a normal optical fiber is about 6 to 7 kg. Approximately 1/10 of that
decreases to a certain degree. The reason for this is that when the primary coating is removed by wiping the surface of the optical fiber with gauze moistened with alcohol or the like, cracks occur on the glass surface of the optical fiber. In addition, when removing the primary coating using hot sulfuric acid, etc., foreign matter gets mixed into the solvent during the primary coating removal process, causing cracks on the optical fiber surface, so the strength of the fusion splice is only about 2 kg, and there is no decrease in strength. Inevitable.
Furthermore, during fusion bonding, cracks occur due to thermal distortion of the glass of the optical fiber wire due to rapid heating and cooling, which also causes a decrease in strength.

これらの現象により、光フアイバの融着接続に
おいて接続部周辺にクラツクの発生することは避
けられない。光フアイバ融着接続部の強度低下の
原因となる光フアイバ素線のガラス表面のクラツ
クの除去は強度向上のため極めて重要な課題であ
る。
Due to these phenomena, it is inevitable that cracks will occur around the spliced portion in the fusion splicing of optical fibers. Removal of cracks on the glass surface of optical fiber wires, which cause a decrease in the strength of optical fiber fusion splices, is an extremely important issue in order to improve the strength.

ガラス表面クラツク除去法の一つとして火炎研
磨が有効な方法であるが、外径100μm程度の光フ
アイバを単に直接火炎研磨を行うと、光フアイバ
全体が溶解してしまう。火炎研磨により光フアイ
バ表面を数μmから数10μmだけ加熱して溶解し、
クラツクを除去することは、温度制御が極めて困
難で実用上問題があつた。
Flame polishing is an effective method for removing cracks on the glass surface, but if an optical fiber with an outer diameter of about 100 μm is simply directly flame polished, the entire optical fiber will melt. Flame polishing heats and melts the optical fiber surface by several micrometers to several tens of micrometers,
Removing cracks was a practical problem because temperature control was extremely difficult.

発明の目的 本発明は従来の欠点を克服し、光フアイバ融着
接続部を耐熱性パイプ内に挿入し、該耐熱性パイ
プの外部を加熱して該光フアイバのガラス表面層
を溶融する光フアイバ接続部の火炎研磨方法にお
いて、前記耐熱性パイプ内に流量を制御しながら
不活性ガスを流すことにより温度制御を行うこと
を特徴とし、その目的は光フアイバ融着接続部の
強度を向上させる光フアイバ接続部の火炎研磨方
法を提供することにある。以下図面により詳細に
説明する。
OBJECTS OF THE INVENTION The present invention overcomes the drawbacks of the prior art and provides an optical fiber fusion splice in which an optical fiber fusion splice is inserted into a heat resistant pipe and the exterior of the heat resistant pipe is heated to melt the glass surface layer of the optical fiber. The flame polishing method for a joint part is characterized by controlling the temperature by flowing an inert gas through the heat-resistant pipe while controlling the flow rate, and the purpose is to control the temperature by flowing an inert gas into the heat-resistant pipe, and the purpose is to polish the optical fiber to improve the strength of the optical fiber fusion splice. An object of the present invention is to provide a method for flame polishing a fiber joint. This will be explained in detail below with reference to the drawings.

発明の実施例 第1図は本発明による火炎研磨方法を説明する
図で、1は二次被覆の施されている状態の光フア
イバ、2は光フアイバ素線でガラス部分、21は
接続部、3は高融点の物質、たとえばセラミツ
ク、石英等からなる耐熱性のパイプ、31はパイ
プのスリツト、4は光フアイバを冷却するための
冷却台、5はバーナ、6は不活性ガスパイプ、7
は不活性ガスの流量を制御する流量コントロー
ラ、8はAr、He、Neなどの不活性ガスボンベ、
91はH2ガスボンベ、92はO2ガスボンベであ
る。第2図はバーナ5による耐熱性のパイプ3の
加熱状態を示す断面図である。
Embodiments of the Invention FIG. 1 is a diagram illustrating the flame polishing method according to the present invention, in which 1 is an optical fiber with a secondary coating applied, 2 is an optical fiber bare wire with a glass portion, 21 is a connecting portion, 3 is a heat-resistant pipe made of a material with a high melting point, such as ceramic or quartz; 31 is a pipe slit; 4 is a cooling stand for cooling the optical fiber; 5 is a burner; 6 is an inert gas pipe; 7
8 is a flow rate controller that controls the flow rate of inert gas, 8 is an inert gas cylinder such as Ar, He, Ne, etc.
91 is an H 2 gas cylinder, and 92 is an O 2 gas cylinder. FIG. 2 is a cross-sectional view showing the state in which the heat-resistant pipe 3 is heated by the burner 5.

耐熱性のパイプ3の中に光フアイバ1の光フア
イバ素線2のガラス部分を入れる。光フアイバ素
線2のガラス部分の両端部には、たとえば水を循
環させる構成などの冷却装置4を設け、光フアイ
バ1の2次被覆が溶解することを防いでいる。耐
熱性のパイプ3の下部より、たとえば酸水素バー
ナ5を用いてトーチ加熱を行う。このときバーナ
5を移動可能にしてもよい。またバーナ5により
耐熱性パイプ3を加熱する際、同時に耐熱性パイ
プ3の中に、たとえばAr、He、Neなどの不活
性ガスを不活性ガスボンベ8から、流量コントロ
ーラ7により流量を制御しながら不活性ガスパイ
プ6を通して流し込むことにより高精度の温度制
御ができ、ひいては光フアイバ素線2のガラス部
分へ生ずるクラツク除去の効果を高めることがで
きる。また本実施例では、耐熱性パイプ3として
スリツト31のある例を示したが、熱効率をよく
するため耐熱性パイプ3の表面に、たとえば直径
10μmの小穴を複数あけたものを用いるとよい。
小穴32をあけた例を第3図dに示す。なお耐熱
性パイプ3の他の例を第3図a,b,cに示す。
第3図aはさきに説明した本実施例のスリツト入
りパイプ、第3図bは割り型パイプ、第3図cは
密閉型パイプの断面を示す。
The glass portion of the optical fiber strand 2 of the optical fiber 1 is put into a heat-resistant pipe 3. A cooling device 4 configured to circulate water, for example, is provided at both ends of the glass portion of the optical fiber 2 to prevent the secondary coating of the optical fiber 1 from melting. Torch heating is performed from the lower part of the heat-resistant pipe 3 using, for example, an oxyhydrogen burner 5. At this time, the burner 5 may be made movable. Furthermore, when heating the heat-resistant pipe 3 with the burner 5, an inert gas such as Ar, He, or Ne is simultaneously introduced into the heat-resistant pipe 3 from an inert gas cylinder 8 while controlling the flow rate with the flow rate controller 7. By flowing the active gas through the active gas pipe 6, it is possible to control the temperature with high precision, and as a result, the effect of removing cracks that occur in the glass portion of the optical fiber strand 2 can be enhanced. In addition, in this embodiment, an example in which the heat-resistant pipe 3 has a slit 31 is shown, but in order to improve thermal efficiency, the surface of the heat-resistant pipe 3 has, for example,
It is best to use one with multiple small holes of 10 μm.
An example in which a small hole 32 is made is shown in FIG. 3d. Other examples of the heat-resistant pipe 3 are shown in FIGS. 3a, b, and c.
FIG. 3a shows a cross-section of the slit pipe of this embodiment described above, FIG. 3b shows a split pipe, and FIG. 3c shows a closed pipe.

本発明の方法を実施した具体例を次に説明す
る。内径10.0mm、外径12.0mmのスリツト入りの耐
熱性パイプを用いた。耐熱性パイプ内にガスを流
さず2000℃〜3000℃の火炎でトーチ加熱を行つ
た。約1分間の加熱により、20本の光フアイバ接
続部の火炎研磨の結果の光フアイバの強度は、平
均で3.2Kgであり、最高は3.8Kgであつた。この場
合炎とパイプ間の距離は約15mmとした。
A specific example of implementing the method of the present invention will be described next. A heat-resistant pipe with slits with an inner diameter of 10.0 mm and an outer diameter of 12.0 mm was used. Torch heating was performed with a flame at 2000°C to 3000°C without flowing gas into the heat-resistant pipe. After heating for about 1 minute, the strength of the optical fibers resulting from flame polishing of the 20 optical fiber connections was 3.2 kg on average and 3.8 kg at the highest. In this case, the distance between the flame and the pipe was approximately 15 mm.

次に同じ型の耐熱性パイプを用い、窒素ガスを
流しながら2000℃〜3000℃の火炎でトーチ加熱を
行つた。約3分間の加熱により、20本の光フアイ
バについて強度が平均で4.5Kgであり、最高は5.3
Kgであつた。これにより耐熱性パイプ内に不活性
ガスを流入することにより、クラツク除去に顕著
な効果があることが確認された。
Next, using the same type of heat-resistant pipe, torch heating was performed with a flame at 2000°C to 3000°C while flowing nitrogen gas. After heating for about 3 minutes, the average strength of 20 optical fibers was 4.5 kg, and the maximum was 5.3 kg.
It was Kg. This confirmed that flowing inert gas into the heat-resistant pipe has a significant effect on crack removal.

なお以上のそれぞれの具体例において、一次被
覆除去方法はすべて100℃の熱硫酸に30秒間一次
被覆状態の光フアイバをつけることにより行なつ
た。
In each of the above specific examples, the primary coating was removed by soaking the optical fiber in the primary coating state in hot sulfuric acid at 100° C. for 30 seconds.

発明の効果 以上述べたように、本発明は光フアイバ融着接
続部を耐熱パイプ内に挿入し、とくに耐熱性パイ
プ内に不活性ガスを流しながらトーチ加熱を行う
ことから、耐熱性パイプ内の化学反応に寄与せず
光フアイバ表面に余分なダメージを与えることな
く、次の効果がある。
Effects of the Invention As described above, the present invention inserts an optical fiber fusion splice into a heat-resistant pipe and performs torch heating while flowing an inert gas into the heat-resistant pipe. It does not contribute to chemical reactions, does not cause unnecessary damage to the optical fiber surface, and has the following effects.

(1) 光フアイバ表面に生じたクラツクを除去でき
る。
(1) Cracks that occur on the optical fiber surface can be removed.

(2) クラツクを除去したあと、熱せられている光
フアイバを除冷することができ、熱歪によるあ
らたなクラツクの発生を防止できる。
(2) After cracks are removed, the heated optical fiber can be cooled slowly, preventing new cracks from occurring due to thermal distortion.

(3) 耐熱性パイプ内に不活性ガス等を流し込み、
その流量を制御することにより、高精度に温度
制御ができ、かつクラツク除去が一層効果的に
できる。
(3) Pour inert gas etc. into the heat resistant pipe,
By controlling the flow rate, temperature can be controlled with high precision and cracks can be removed more effectively.

(4) 火炎研磨装置全体が小形簡単で、継続的に使
用可能であり廉価で経済的である。
(4) The entire flame polishing device is small and simple, can be used continuously, and is inexpensive and economical.

(5) 耐熱性パイプが光フアイバの融着接続部を囲
繞しており、光フアイバの外周表面上均一にク
ラツクの除去ができる。
(5) A heat-resistant pipe surrounds the fusion spliced portion of the optical fiber, making it possible to remove cracks uniformly on the outer peripheral surface of the optical fiber.

(6) 加熱用トーチを光フアイバ融着接続部の真下
に設置することにより、特に問題となる接続部
1mm間の微小間隔におけるクラツクの除去に有
効である。
(6) By installing the heating torch directly below the optical fiber fusion splicing part, it is effective to eliminate cracks that are particularly problematic at minute intervals of 1 mm between the spliced parts.

(7) 以上の各利点により、光フアイバの融着接続
部の強度を通常の光フアイバの強度の約6〜7
Kg近くまで確保できる。
(7) Due to each of the above advantages, the strength of the fusion spliced part of the optical fiber is approximately 6 to 7 times higher than that of ordinary optical fiber.
You can secure up to almost Kg.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による火炎研磨方法を説明する
図、第2図はバーナによる耐熱性パイプの加熱状
態を示す断面図、第3図a乃至dはそれぞれ本発
明に用いる耐熱性パイプの実施例である。 1…二次被覆の施されている状態の光フアイ
バ、2…光フアイバ素線、21…光フアイバ融着
接続部、3…耐熱性パイプ、31…パイプ3のス
リツト、32…パイプ3表面にあけた小穴、4…
冷却台、5…バーナ、6…不活性ガスパイプ、7
…不活性ガスの流量制御用コントローラ、8…不
活性ガスボンベ、91…H2ガスボンベ、92…
O2ガスボンベ。
Fig. 1 is a diagram explaining the flame polishing method according to the present invention, Fig. 2 is a cross-sectional view showing the heating state of a heat-resistant pipe by a burner, and Fig. 3 a to d are examples of heat-resistant pipes used in the present invention. It is. DESCRIPTION OF SYMBOLS 1... Optical fiber with secondary coating applied, 2... Optical fiber bare wire, 21... Optical fiber fusion splicing part, 3... Heat resistant pipe, 31... Slit of pipe 3, 32... On the surface of pipe 3 The small hole I made, 4...
Cooling stand, 5...Burner, 6...Inert gas pipe, 7
...Inert gas flow rate control controller, 8...Inert gas cylinder, 91... H2 gas cylinder, 92...
O2 gas cylinder.

Claims (1)

【特許請求の範囲】 1 光フアイバ融着接続部を耐熱性パイプ内に挿
入し、該耐熱性パイプの外部を加熱して該光フア
イバのガラス表面層を溶融する光フアイバ接続部
の火炎研磨方法において、 前記耐熱性パイプ内に流量を制御しながら不活
性ガスを流すことにより温度制御を行うことを特
徴とする光フアイバ接続部の火炎研磨方法。
[Scope of Claims] 1. A flame polishing method for an optical fiber joint, which involves inserting an optical fiber fusion splice into a heat-resistant pipe and heating the outside of the heat-resistant pipe to melt the glass surface layer of the optical fiber. A method for flame polishing an optical fiber connection part, characterized in that the temperature is controlled by flowing an inert gas into the heat-resistant pipe while controlling the flow rate.
JP8356384A 1984-04-25 1984-04-25 Method for polishing connected part of optical fiber in flame Granted JPS60227206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8356384A JPS60227206A (en) 1984-04-25 1984-04-25 Method for polishing connected part of optical fiber in flame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8356384A JPS60227206A (en) 1984-04-25 1984-04-25 Method for polishing connected part of optical fiber in flame

Publications (2)

Publication Number Publication Date
JPS60227206A JPS60227206A (en) 1985-11-12
JPH0582563B2 true JPH0582563B2 (en) 1993-11-19

Family

ID=13805980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8356384A Granted JPS60227206A (en) 1984-04-25 1984-04-25 Method for polishing connected part of optical fiber in flame

Country Status (1)

Country Link
JP (1) JPS60227206A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2520896B2 (en) * 1987-03-04 1996-07-31 株式会社フジクラ Method of joining optical fiber and fiber in optical connector
US4958905A (en) * 1989-06-19 1990-09-25 Tynes Arthur R Method and apparatus for forming high strength splices in optical fibers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842014A (en) * 1981-09-07 1983-03-11 Nippon Telegr & Teleph Corp <Ntt> Method for reinforcing treatment of fusion-fixing connection part of optical fiber
JPS5842017A (en) * 1981-09-07 1983-03-11 Nippon Telegr & Teleph Corp <Ntt> Method and device for reinforcing treatment of fusion-fixing connection part of optical fiber
JPS59115A (en) * 1982-06-25 1984-01-05 Nippon Telegr & Teleph Corp <Ntt> Method for connecting optical fiber by fusing
JPS6019114A (en) * 1983-07-12 1985-01-31 Dainichi Nippon Cables Ltd Surface treatment of connection part of optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842014A (en) * 1981-09-07 1983-03-11 Nippon Telegr & Teleph Corp <Ntt> Method for reinforcing treatment of fusion-fixing connection part of optical fiber
JPS5842017A (en) * 1981-09-07 1983-03-11 Nippon Telegr & Teleph Corp <Ntt> Method and device for reinforcing treatment of fusion-fixing connection part of optical fiber
JPS59115A (en) * 1982-06-25 1984-01-05 Nippon Telegr & Teleph Corp <Ntt> Method for connecting optical fiber by fusing
JPS6019114A (en) * 1983-07-12 1985-01-31 Dainichi Nippon Cables Ltd Surface treatment of connection part of optical fiber

Also Published As

Publication number Publication date
JPS60227206A (en) 1985-11-12

Similar Documents

Publication Publication Date Title
JP3292882B2 (en) Method of forming an enlarged tapered hole in a shaft hole of a capillary tube
AU775675B2 (en) Method of splicing two optical fibers
JP2003098378A (en) Heating method and device for fusion spliced part of optical fiber, and optical fiber array
JPH0582563B2 (en)
JP2883106B2 (en) Manufacturing method of optical fiber coupler
JPS58108507A (en) Production of optical fiber connector
JPS61284710A (en) Method for fixing connector to optical fiber terminal
JPS6235643B2 (en)
JP3819054B2 (en) Method for forming terminal portion of optical fiber bundle
JPS6028325B2 (en) Manufacturing method of optical fiber end
EP1154295A2 (en) Method of fabricating optical fiber fusion splice and optical device
JPH04198036A (en) Heating furnace for wire drawing of optical fiber
JPS62184403A (en) Fusion splicing method for optical fiber
JPH0387703A (en) Method for fixing optical fiber end
JPH01284806A (en) Erasing method for flaw on surface of optical fiber
JPS6151765B2 (en)
JP2748460B2 (en) Manufacturing method of fiber coupler
JP3344061B2 (en) Optical fiber fusion splicing method
JP2771737B2 (en) Fabrication method of core expanded optical fiber
JPH07294770A (en) Method for connecting quartz waveguide to optical fiber and structure of juncture
JPS6161646B2 (en)
JPS614006A (en) Method and mechanism for connecting optical fiber by welding
JPH1039148A (en) Production of ribbon-like multicore fiber
JPS6019114A (en) Surface treatment of connection part of optical fiber
JPS58108502A (en) Treatment of peripheral side of optical fiber