JPH0582479A - Focussed ion beam device - Google Patents

Focussed ion beam device

Info

Publication number
JPH0582479A
JPH0582479A JP23931191A JP23931191A JPH0582479A JP H0582479 A JPH0582479 A JP H0582479A JP 23931191 A JP23931191 A JP 23931191A JP 23931191 A JP23931191 A JP 23931191A JP H0582479 A JPH0582479 A JP H0582479A
Authority
JP
Japan
Prior art keywords
aligner
voltage
fib
ion beam
leading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23931191A
Other languages
Japanese (ja)
Inventor
Toru Ishitani
亨 石谷
Takeshi Onishi
毅 大西
Hiroshi Hirose
博 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23931191A priority Critical patent/JPH0582479A/en
Publication of JPH0582479A publication Critical patent/JPH0582479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable the etching step, etc., in the path of a stable focussed ion beam current to be performed by a method wherein ions are led-out in a constant-current mode by feeding the aligner signals corresponding to the fluctuation in the leading-out voltage to the aligner between a leading-out electrode and an objective lens. CONSTITUTION:Ions are focussed by a focussing lens 130 including a leading-out electrode 101, a lens electrode 102 passing through an electrostatic aligner 103 for making the ions pass through the center of an objective lens 106. The leading-out electrode 101 is actuated in the constant-current mode. At this time, even if the leading-out voltage is fluctuated to shift the ion incoming direction from the focussing lens 130, the correction voltage signals are read-out by the characteristic curve of the fluctuated voltage and an aligner correction voltage so as to impress the aligner 103 with the aligner correction voltage comforming to said signals. Accordingly, the processing step such as the etching step using the focussed beams can be performed stably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体素子などの微細素
子の集束イオンビーム(Focused Ion Beam,略してFI
B)を用いたマスクレスでエッチングや堆積などの加工
装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focused ion beam (FI for short) of a fine element such as a semiconductor element.
The present invention relates to the improvement of a processing apparatus such as etching and deposition without a mask using B).

【0002】[0002]

【従来の技術】図2はガリウム(Ga)イオンを発生す
る液体金属イオン源の放出イオン電流(I)−引出し電圧
(V)特性を示すグラフである。ここで、引出し電圧はイ
オンエミッタと引出し電極間に印加する電圧である。V
には閾電圧があり、これを超えるとIは急激に増加す
る。この液体金属イオン源においては、エミッタ表面を
流れる液体金属の流れ抵抗などの経時変化のためにI−
V特性カーブ自体が他のイオン源と比べて変化しやす
い。一方、半導体素子などの微細素子のFIBを用いた
マスクレスでエッチングや堆積などの加工においては、
長時間にわたって3つの条件、つまり安定なFIB電
流,安定な照射位置、及び安定なFIB径が求めら
れる。ところで、イオン源を構成しているエミッタ,引
出し電極,レンズ電極(接地電極の場合も有る)は静電
レンズを構成しており、これらの電極の機械的な軸がず
れていると、引出し電圧が変化することにより放出イオ
ンの中心軸はずれてしまい、集束レンズの光軸ともずれ
てしまう。その結果、試料上のFIB照射位置がずれ、
またFIB径もぼけが生じて大きくなってしまう。
2. Description of the Related Art FIG. 2 shows an emission ion current (I) -extraction voltage of a liquid metal ion source for generating gallium (Ga) ions.
It is a graph which shows (V) characteristic. Here, the extraction voltage is a voltage applied between the ion emitter and the extraction electrode. V
Has a threshold voltage above which I rapidly increases. In this liquid metal ion source, due to changes with time such as the flow resistance of the liquid metal flowing on the emitter surface, I-
The V characteristic curve itself is more likely to change than other ion sources. On the other hand, in the processing such as etching and deposition without mask using FIB of fine elements such as semiconductor elements,
Three conditions are required over a long period of time: a stable FIB current, a stable irradiation position, and a stable FIB diameter. By the way, the emitter, the extraction electrode, and the lens electrode (which may be a ground electrode) that form the ion source form an electrostatic lens, and if the mechanical axes of these electrodes are deviated, the extraction voltage Changes, the central axis of the emitted ions deviates, and also shifts from the optical axis of the focusing lens. As a result, the FIB irradiation position on the sample is displaced,
Further, the FIB diameter also becomes large due to blurring.

【0003】そこで、従来装置では図3に示すようにイ
オン源の引出し電圧の変動に伴うFIBの試料上での照
射点の変動を抑えるため引出し電圧の変動に応じた偏向
信号を偏向器に供給するための手段を設けていた。しか
し、この方法では条件,が満足されるものの、条件
が満足されないという欠点があった。
Therefore, in the conventional apparatus, as shown in FIG. 3, in order to suppress the fluctuation of the irradiation point of the FIB on the sample due to the fluctuation of the extraction voltage of the ion source, a deflection signal corresponding to the fluctuation of the extraction voltage is supplied to the deflector. There was a means to do so. However, this method has a drawback that the condition is not satisfied although the condition is satisfied.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、イオ
ン源の引出し電圧の時間変動に対し安定なFIB電
流,安定な照射位置、及び安定なFIB径を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a stable FIB current, a stable irradiation position, and a stable FIB diameter with respect to the time variation of the extraction voltage of the ion source.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、イオン源からのイオンを定電流モードで引出し、引
出し電圧の変動に応じたアライナー信号を引出し電極と
対物レンズ間にある該アライナーに供給する手段を設け
る。
In order to solve the above-mentioned problems, ions from an ion source are extracted in a constant current mode, and an aligner signal corresponding to a change in extraction voltage is applied to the aligner between an extraction electrode and an objective lens. A means for supplying is provided.

【0006】[0006]

【作用】上記手段により、イオン源からのイオンは定電
流モードで引出され、かつ引出し電圧の変動に応じたア
ライナー信号を引出し電極と対物レンズ間にある該アラ
イナーに供給することにより、常にFIBの中心軸が対
物レンズの中心を通るように合わせることができる。そ
の結果、安定なFIB電流,安定なFIB照射位
置、及び安定なFIB径が供給される。
By the above means, the ions from the ion source are extracted in the constant current mode, and an aligner signal corresponding to the fluctuation of the extraction voltage is supplied to the aligner between the extraction electrode and the objective lens, so that the FIB It can be aligned so that the central axis passes through the center of the objective lens. As a result, a stable FIB current, a stable FIB irradiation position, and a stable FIB diameter are supplied.

【0007】[0007]

【実施例】以下、本発明の実施例を図1を用いて説明す
る。
EXAMPLE An example of the present invention will be described below with reference to FIG.

【0008】イオン源のエミッタ100に引出し電極1
01に対し負の高電圧を印加すると、イオンはエミッタ
100から放出され集束レンズ130(引出し電極10
1,レンズ電極102、及び接地電極で構成)で集束さ
れる。集束されたイオンビームはビーム開角を決めるア
パチャ300、さらに集束ビームを対物レンズ106の
中心に通すための8極の静電アライナー103を通す。
アライナー103の電極には、アライナー電圧にFIB
のレンズ非点収差を補正するためのスティグマ機能のス
ティグマ電圧を重畳してある。ブランカー104は試料
200上でのFIB120の照射をオン,オフし、2段
の8極静電偏向器105は試料200上でのFIB12
0の照射点を制御するものである。2次電子検出器10
7はFIB120照射による試料200からの放出2次
電子の検出用であり、デポ用ノズル108は金属などの
FIB誘起デポジション用の金属ガスを試料に吹き付け
るためのノズル部であり、その金属ガス材料の溜め部1
10もある。
Extraction electrode 1 on the emitter 100 of the ion source
When a high negative voltage is applied to 01, the ions are ejected from the emitter 100 and the focusing lens 130 (extraction electrode 10
1, lens electrode 102, and ground electrode). The focused ion beam passes through an aperture 300 that determines the beam opening angle, and further passes through an eight-pole electrostatic aligner 103 for passing the focused beam through the center of the objective lens 106.
The aligner 103 electrode has a FIB to aligner voltage.
The stigma voltage of the stigma function for correcting the lens astigmatism is superimposed. The blanker 104 turns on and off the irradiation of the FIB 120 on the sample 200, and the two-stage 8-pole electrostatic deflector 105 sets the FIB 12 on the sample 200.
The irradiation point of 0 is controlled. Secondary electron detector 10
Reference numeral 7 is for detecting secondary electrons emitted from the sample 200 by irradiation with the FIB 120, and the deposition nozzle 108 is a nozzle portion for spraying a metal gas for FIB-induced deposition such as metal onto the sample. Reservoir part 1
There are also 10.

【0009】この様に構成された装置を、本発明の目的
に沿って作動させるためには、先ず以下の準備を行う。
まず、引出し電極101に印加する引出し電圧Veの基
準値Ve0 に±ΔVeの変動を与え、試料200上にお
けるFIBの位置変動を測定する。次に、この変動位置
を元に戻すためのアライナー電圧の補正電圧ΔVax,
ΔVayを測定する。この測定は、試料表面の走査2次
電子像を観察するなどの方法によって行われる。図4
(a)の座標X,Yの原点0は引出し電圧Ve0 の基準
状態において偏向器による偏向が0の時における試料上
の照射位置に対応し、座標XとYの方向は、試料上での
FIBの移動方向を表している。直線28は引出し電圧
Veの変化に対するFIBの動きを示すものであり、原
点近傍では直線近似できる。図4(b)は座標ΔVa
x,ΔVayの原点0は補正電圧が0で、アライナー電
圧の絶対値では基準値Vax0,Vay0に対応してい
る。直線29は引出し電圧Veの変化に対するFIBの
動きを補正するために印加するアライナー補正電圧ΔV
ax,ΔVayを示す特性カーブであり、原点近傍では
直線近似できる。
In order to operate the device thus constructed in accordance with the object of the present invention, the following preparations are first made.
First, a variation of ± ΔVe is applied to the reference value Ve 0 of the extraction voltage Ve applied to the extraction electrode 101, and the position variation of the FIB on the sample 200 is measured. Next, a correction voltage ΔVax of the aligner voltage for returning the fluctuation position to the original,
Measure ΔVay. This measurement is performed by a method such as observing a scanning secondary electron image on the sample surface. Figure 4
The origin 0 of the coordinates X and Y in (a) corresponds to the irradiation position on the sample when the deflection by the deflector is 0 in the reference state of the extraction voltage Ve 0 , and the directions of the coordinates X and Y are on the sample. The moving direction of the FIB is shown. The straight line 28 shows the movement of the FIB with respect to the change in the extraction voltage Ve, and can be approximated to a straight line near the origin. FIG. 4B shows the coordinate ΔVa.
At the origin 0 of x, ΔVay, the correction voltage is 0, and the absolute value of the aligner voltage corresponds to the reference values Vax 0 , Vay 0 . A straight line 29 is an aligner correction voltage ΔV applied to correct the movement of the FIB with respect to the change of the extraction voltage Ve.
It is a characteristic curve showing ax and ΔVay, and can be linearly approximated near the origin.

【0010】この様な前準備の後、アライナー103へ
補正信号を供給する状態にしてFIB装置を作動させる。
引出し電源は引出し電極に流れ込む全イオン電流が常に
所望の設定値になる様に引出し電圧を負帰還ループで制
御、つまり定電流モードで働かせる。試料照射に使われ
るFIB電流は全イオン電流のわずかであり、全イオン
電流が一定であればFIB電流も一定となる。引出し電
圧が変動して集束レンズ130からのイオン出射方向が
ずれても図4(b)のその変動電圧とアライナー補正電
圧との特性カーブからアライナー補正電圧信号を読み出
す回路より補正電圧信号が読み出され、その補正電圧信
号に基付いたアライナー補正電圧がアライナーに印加さ
れる。その結果、出射ビームが対物レンズ106の中心
を通り、試料上でのFIB照射位置がずれない様に、か
つFIB自体のぼけが抑えられる様に補正される。
After such pre-preparation, the FIB device is operated with the correction signal being supplied to the aligner 103.
The extraction power source controls the extraction voltage by the negative feedback loop, that is, operates in the constant current mode so that the total ion current flowing into the extraction electrode always becomes a desired set value. The FIB current used for sample irradiation is a small amount of the total ion current, and if the total ion current is constant, the FIB current is also constant. Even if the extraction voltage fluctuates and the ion emission direction from the focusing lens 130 shifts, the correction voltage signal is read from the circuit that reads the aligner correction voltage signal from the characteristic curve of the fluctuation voltage and the aligner correction voltage in FIG. 4B. The aligner correction voltage based on the correction voltage signal is applied to the aligner. As a result, the emitted beam passes through the center of the objective lens 106 and is corrected so that the FIB irradiation position on the sample does not shift and the blurring of the FIB itself is suppressed.

【0011】なお引出し電圧Veの変化は、厳密には集
束レンズ130の電界強度を変えるためレンズの焦点距
離を変える。そのため、厳密には試料上でのFIBのぼ
けがまだわずかに残っている。これを補正するには前準
備として引出し電圧Veの基準値Ve0 から±ΔVeの
変動に対応したレンズ電極102に加算するレンズ補正
電圧を測定しておく。この測定にも試料表面の走査2次
電子像を観察するなどの方法によって行われる。この様
な前準備の後、上記のアライナー補正と同様な方法でレ
ンズ補正をすることができる。このレンズ補正とアライ
ナー補正を組み合わせることにより安定なFIB電流,
安定なFIB照射位置、及びより安定なFIB径が供給
できる。
Strictly speaking, the change in the extraction voltage Ve changes the focal length of the focusing lens 130 because the electric field strength of the focusing lens 130 is changed. Therefore, strictly speaking, a slight blur of FIB still remains on the sample. In order to correct this, as a preparation, the lens correction voltage to be added to the lens electrode 102 corresponding to the variation of ± ΔVe from the reference value Ve 0 of the extraction voltage Ve is measured. This measurement is also performed by a method such as observing a scanning secondary electron image on the sample surface. After such preparation, lens correction can be performed by the same method as the above aligner correction. By combining this lens correction and aligner correction, stable FIB current,
It is possible to supply a stable FIB irradiation position and a more stable FIB diameter.

【0012】[0012]

【発明の効果】本発明によれば、集束ビームを用いたマ
スクレスでエッチングや堆積などの加工が、安定なF
IB電流,安定なFIB照射位置、及び安定なFI
B径の下でできるため、これを半導体素子などの微細素
子製造に用いれば高精度,高信頼性,高付加価値プロセ
スが可能になる。
According to the present invention, it is possible to perform a stable masking process such as etching and deposition using a focused beam without a mask.
IB current, stable FIB irradiation position, and stable FI
Since it can be performed under the B diameter, high precision, high reliability, and high value-added processes can be achieved by using this for manufacturing fine elements such as semiconductor elements.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の集束イオンビーム装置の概略
図である。
FIG. 1 is a schematic diagram of a focused ion beam apparatus according to an embodiment of the present invention.

【図2】イオン源の引出しイオン電流−引出し電圧特性
カーブを示す図である。
FIG. 2 is a diagram showing an extraction ion current-extraction voltage characteristic curve of an ion source.

【図3】従来の集束イオンビーム装置の概略図である。FIG. 3 is a schematic view of a conventional focused ion beam device.

【図4】本発明装置の動作を説明するための略図であ
る。
FIG. 4 is a schematic diagram for explaining the operation of the device of the present invention.

【符号の説明】[Explanation of symbols]

1…鏡筒、2…イオン源、3…イオンビーム、4,13
0…集束レンズ、5,200…試料、6…エミッタ、7
…制御電極、8…接地電極、9…直流高電圧電源、1
0,11…絞り、12…電流電圧変換回路、13…差動
増幅回路、14…基準回路、15…高周波発信回路、1
6…可変電源、17…ステッピングトランス、18、1
9…インターフェイス、20,21…データ読み出し回
路、22,23…DA変換回路、24…偏向信号アン
プ、26,27…偏向電極、28…引出し電圧Veの変
化に対するFIBの動きを示す特性カーブ(原点近傍で
は直線近似)、29…引出し電圧Veの変化に対するF
IBの動きを補正するために印加するアライナー補正電
圧ΔVax,ΔVayを示す特性カーブ(原点近傍では
直線近似)、100…イオンエミッタ、101…引出し
電極、102…中間電極、103…アライナー、104
…ブランカー、105…偏向器、106…対物レンズ、
107…二次電子検出器、108…デポ用ノズル、11
0…デポ用ガス溜め部、120…FIB、300…可動
絞り。
1 ... Lens barrel, 2 ... Ion source, 3 ... Ion beam, 4, 13
0 ... Focusing lens, 5,200 ... Sample, 6 ... Emitter, 7
... control electrode, 8 ... ground electrode, 9 ... DC high voltage power supply, 1
0, 11 ... Aperture, 12 ... Current-voltage conversion circuit, 13 ... Differential amplification circuit, 14 ... Reference circuit, 15 ... High-frequency transmission circuit, 1
6 ... Variable power source, 17 ... Stepping transformer, 18, 1
9 ... Interface, 20, 21 ... Data reading circuit, 22, 23 ... DA conversion circuit, 24 ... Deflection signal amplifier, 26, 27 ... Deflection electrode, 28 ... Characteristic curve showing movement of FIB with respect to change of extraction voltage Ve (origin (Linear approximation in the vicinity), 29 ... F with respect to change in extraction voltage Ve
Characteristic curves showing aligner correction voltages ΔVax and ΔVay applied to correct the movement of IB (linear approximation in the vicinity of the origin), 100 ... Ion emitter, 101 ... Extraction electrode, 102 ... Intermediate electrode, 103 ... Aligner, 104
... Blanker, 105 ... Deflector, 106 ... Objective lens,
107 ... Secondary electron detector, 108 ... Depot nozzle, 11
0 ... Gas reservoir for deposit, 120 ... FIB, 300 ... Movable diaphragm.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】イオン源からの放出イオンを複数段の静電
レンズにより集束して集束イオンビームを形成し、該レ
ンズ間のアライナーによりビーム光軸合わせを行い、か
つ該集束ビームを偏向器により試料表面上で走査する集
束イオンビーム装置において、該イオン源の引出し電圧
の変動に伴って該集束イオンビームの試料への照射点が
変動するのを抑えるため、該引出し電圧の変動に応じた
アライナー信号を該アライナーに供給するための手段を
備えることを特徴とした集束イオンビーム装置。
1. A focused ion beam is formed by focusing ions emitted from an ion source by a plurality of stages of electrostatic lenses, the beam optical axis is aligned by an aligner between the lenses, and the focused beam is deflected by a deflector. In a focused ion beam apparatus for scanning on a sample surface, in order to prevent the irradiation point of the focused ion beam on a sample from varying with the variation of the extraction voltage of the ion source, an aligner according to the variation of the extraction voltage is used. A focused ion beam device comprising means for supplying a signal to the aligner.
【請求項2】該イオン源の引出し電圧の変動に伴って該
集束イオンビームの試料上での照射ビームがぼけるのを
抑えるため、該引出し電圧の変動に応じた集束レンズ信
号を該集束レンズに供給するための手段をも備えたこと
を特徴とした請求項1記載の集束イオンビーム装置。
2. In order to prevent the irradiation beam of the focused ion beam on the sample from being blurred due to the fluctuation of the extraction voltage of the ion source, a focusing lens signal according to the fluctuation of the extraction voltage is sent to the focusing lens. The focused ion beam device according to claim 1, further comprising means for supplying.
JP23931191A 1991-09-19 1991-09-19 Focussed ion beam device Pending JPH0582479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23931191A JPH0582479A (en) 1991-09-19 1991-09-19 Focussed ion beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23931191A JPH0582479A (en) 1991-09-19 1991-09-19 Focussed ion beam device

Publications (1)

Publication Number Publication Date
JPH0582479A true JPH0582479A (en) 1993-04-02

Family

ID=17042830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23931191A Pending JPH0582479A (en) 1991-09-19 1991-09-19 Focussed ion beam device

Country Status (1)

Country Link
JP (1) JPH0582479A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079846A (en) * 2004-09-07 2006-03-23 Canon Inc Cross section evaluation device of sample and cross section evaluation method of sample
US9362088B2 (en) 2012-10-15 2016-06-07 Hitachi High-Technologies Corporation Charged particle beam device and sample preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079846A (en) * 2004-09-07 2006-03-23 Canon Inc Cross section evaluation device of sample and cross section evaluation method of sample
US9362088B2 (en) 2012-10-15 2016-06-07 Hitachi High-Technologies Corporation Charged particle beam device and sample preparation method

Similar Documents

Publication Publication Date Title
US11145483B2 (en) Charged particle beam writing apparatus, method of adjusting beam incident angle to target object surface, and charged particle beam writing method
KR20040010083A (en) Charged beam exposing device, exposing method using charged beam, controlling method of charged beam, and manufacturing method of semiconductor device
US4287450A (en) Electric circuit arrangements incorporating cathode ray tubes
US20020033458A1 (en) Charged particle beam exposure system
JPH0129302B2 (en)
US6897457B1 (en) Apparatus and method for monitoring and tuning an ion beam in ion implantation apparatus
US20030030007A1 (en) Charged particle beam control apparatus
JPH0582479A (en) Focussed ion beam device
JP5199921B2 (en) Charged particle beam drawing apparatus and optical axis deviation correction method for charged particle beam
Thomson et al. The EBES4 electron‐beam column
JPH08195345A (en) Electron beam drawing device
JP2946537B2 (en) Electron optical column
JPH09260237A (en) Electron gun, electron beam equipment and electron beam irradiation method
CN115202158A (en) Charged particle beam lithography apparatus
JP2002198294A (en) Electron beam drawing apparatus and semiconductor device manufactured by it
KR20000058187A (en) Focused ion beam apparatus
JP2000090866A (en) Electron gun, electron beam generating method by electron gun, and exposing device using electron gun
JP2002216690A (en) Method and device for controlling charged beam
KR20190138583A (en) Charged particle beam writing apparatus and charged particle beam writing method
JP3469404B2 (en) Field emission type charged particle gun and charged particle beam irradiation device
US6933512B2 (en) Charged particle beam instrument
JP2000003689A (en) Electron gun and exposure device using same
JP2001243904A (en) Scanning electron microscope
JPH10208653A (en) Ion source unit and focusing ion beam device using the same
JPH0530277Y2 (en)