JPH0582249B2 - - Google Patents

Info

Publication number
JPH0582249B2
JPH0582249B2 JP13377188A JP13377188A JPH0582249B2 JP H0582249 B2 JPH0582249 B2 JP H0582249B2 JP 13377188 A JP13377188 A JP 13377188A JP 13377188 A JP13377188 A JP 13377188A JP H0582249 B2 JPH0582249 B2 JP H0582249B2
Authority
JP
Japan
Prior art keywords
porous
thin film
pore diameter
average pore
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13377188A
Other languages
Japanese (ja)
Other versions
JPH01304006A (en
Inventor
Fumio Abe
Shigekazu Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP13377188A priority Critical patent/JPH01304006A/en
Priority to EP95115691A priority patent/EP0692303B1/en
Priority to US07/357,268 priority patent/US4929406A/en
Priority to EP89305361A priority patent/EP0344011A1/en
Priority to DE68928924T priority patent/DE68928924T2/en
Publication of JPH01304006A publication Critical patent/JPH01304006A/en
Priority to US07/452,241 priority patent/US4971696A/en
Publication of JPH0582249B2 publication Critical patent/JPH0582249B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は濾過、ガス分離等に使用される無機多
孔質膜およびその製造法に関する。 (従来技術) 無機多孔質膜の一種類として、耐食性無機質材
料からなる1または複数層の多孔質支持体の少な
くとも一側面に、同支持体の平均細孔径より小さ
い平均細孔径を有する多孔質薄膜を備えてなる無
機多孔質膜がある。この種の多孔質膜は各種の濾
過、ガス分離の膜に使用されるが、各用途に応じ
て耐熱性、耐食性、高い濾過精度および分離精度
を要求される。この場合、特に濾過膜、分離膜と
して機能する多孔質薄膜には組成的に耐食性を付
与する必要があるとともに、同薄膜内にピンホー
ル、クラツク等が存在しないように注意すること
が必要である。例えば、有機コロイド等の微小粒
子を濾別する限外濾過、精密濾過の分野では、目
詰り等による膜性能の低下の再生手段に酸、アル
カリ洗浄が施され、かつ殺菌手段にスチーム洗浄
が施されるが、この場合には高い耐食性が要求さ
れる。また、薄膜内にピンホール、クラツク等が
存在すると濾過精度、分離精度が低下することは
勿論であるが、上記した酸、アルカリ、スチーム
洗浄等によりピンホール、クラツク等が増大して
耐食性、濾過精度、分離精度を一層低下させるこ
とになる。 ところで、上記した複層構造の無機多孔質膜に
関する技術はすでに多数開示されており、かかる
技術を開示する刊行物の一例として特開昭60−
156510号公報を挙げることができる。 同公報にはクラツクの生じない無機半透過膜の
製法、具体的には焼結した無機酸化物からなる多
孔質支持体に無機膜形成コーテイング材料の懸濁
液(ゾル液)をコーテイングして加熱することか
らなる製法が開示されている。かかる製法によ
り、多孔質支持体上にγ−アルミナからなる多孔
質薄膜が被覆された限外濾過膜を得ている。しか
して、同公報には、多孔質支持体の適確性は同支
持体が有する孔寸法(平均細孔径)により定まる
旨記載され、好ましい平均細孔径として0.10μm
〜0.50μmを挙げている。多孔質薄膜については
膜厚が20μm以下である旨、またコーテイングゾ
ル液については媒体中の分散相の濃度が0.01wt%
〜25wt%である旨記載されている。 (発明が解決しようとする課題) ところで、複層構造の無機多孔質膜における多
孔質薄膜のピンホール、クラツクは同薄膜の形成
時に発生する。一般に、多孔質薄膜は微小粒子の
ゾル液を多孔質支持体の一側に担持させ乾燥、焼
成することにより形成される。この場合、担持さ
れたゾル液は多孔質支持体の細孔に侵入するとと
もに表面にて濃縮現像が生じて薄膜となるが、ゾ
ル液中の粒子が局部的に支持体内に吸込まれると
ピンホールが発生し、また膜厚が局部的に厚くな
るとその後の乾燥、焼成時の熱収縮によりクラツ
クが発生する。本発明者はピンホール、クラツク
の発生要因として多孔質支持体、多孔質薄膜の平
均細孔径、同薄膜の膜厚、組成に着目し、これら
を規定することによりピンホール、クラツク等が
存在しない構造的にも組成的にも極めて優れた耐
食性を備え、かつ濾過、分離効率の優れた多孔質
膜が得られる旨の知見を得た。 従つて、かかる多孔質膜を得るには上記した各
要因を規定する必要がある。この点について前記
公報の記載を参照してみると、同公報には多孔質
支持体の平均細孔径、多孔質薄膜の膜厚が広範囲
の値で規定しているにすぎず、かかる多孔質膜に
おいてはピンホール、クラツクの発生は避けられ
ない。このため、濾過、分離精度および濾過、分
離効率が高く、かつ耐食性に優れた多孔質膜は期
待し得ない。また、薄膜の組成からも耐食性は期
待し得ない。 従つて、本発明の目的はピンホール、クラツク
が存在せず、濾過、分離精度および濾過、分離効
率が高くかつ耐食性に優れた多孔質膜およびその
製造法を提供することにある。 (課題を解決するための手段) 本発明の第1の発明は、耐食性無機質材料から
なる1または複数層の多孔質支持体の少なくとも
一側面に同支持体の平均細孔径より小さい平均細
孔径を有する多孔質薄膜を備えてなる無機多孔質
膜であり、前記多孔質薄膜は純度99.5%以上の酸
化チタンからなり、その平均細孔径が800Å以下、
膜厚が2μm以下であり、かつ前記多孔質支持体の
前記多孔質薄膜が付着する層の平均細孔径が
0.1μm以下であることを特徴とするものである。 また、本発明の第2の発明は前記多孔質支持体
の少なくとも一側面に水酸化チタンまたは酸化チ
タンを含むハイドロゾル液を担持させて前記多孔
質薄膜を形成することからなる前記第1の発明に
かかる無機多孔質膜の製造法であり、前記ハイド
ロゾル液を形成する前駆体を酸の存在下で前駆
体/水のモル比を1/200以上で加水分解すると
ともに、得られたゾル液のチタン化合物/水のモ
ル比を1/500以下に希釈して前記ハイドロゾル
液を調製し、このハイドロゾル液を前記多孔質支
持体の少なくとも一側面にコーテイングして乾燥
後300℃〜700℃にて焼成することを特徴とするも
のである。 本発明において、多孔質支持体はアルミナ、ジ
ルコニア、チタニア等のセラミツクホウケイ酸ガ
ラス等のガラス、ニツケル等の金属からなり、パ
イプ状、平板状、ハニカム状等適宜の形状のもの
である。また、多孔質支持体は平均細孔径が
0.1μm以下の1層のみからなる単層構造、または
同層とこれにより大きな平均細孔径の層とからな
る複層構造のもので、複層構造の多孔質支持体に
あつては平均細孔径が0.1μm以下の層(中間層)
側に多孔質薄膜が担持される。ハイドロゾル液を
形成する前駆体はアルコキシド、アシレート、キ
レート等の有機チタネート化合物、四塩化チタ
ン、硫酸チタニル等のチタニウム塩、メタおよび
オルトチタン酸、チタニア等である。なお、多孔
質支持体の一側面とは、パイプ状の支持体の場合
には内側か外側かどちらか一方、平板状の支持体
の場合には表側か裏側かどちらか一方、ハニカム
状の支持体の場合にはある特定の貫通孔の内周の
全てか、全ての貫通孔の内周か、または同支持体
の外周を意味する。 (発明の作用・効果) 本発明の第1の発明に係る多孔質膜において
は、多孔質薄膜中にピンホール、クラツクが実質
的に存在しないとともに、組成上耐食性が著しく
高い、従つて、高い濾過精度および分離精度を備
えるとともに高い耐食性を備え、かつ酸、アルカ
リ、スチーム洗浄等によつてピンホール、クラツ
クが発生したり増大することがないため上記各特
性が長期間維持される。 しかして、多孔質膜を構成する多孔質支持体に
ついて、多孔質支持体の平均細孔径、複層構造の
多孔質支持体にあつては中間層の平均細孔径は
0.1μm以下であることが必須の要件であり、これ
によりピンホール、クラツクが存在しない平均細
孔径が800Å以下の多孔質薄膜が担持され、かか
る薄膜を膜厚が2μm以下と極めて薄い均一なもの
とすることができる。なお、支持体の最大気孔径
を規定することによりピンホール、クラツクの存
在しない均一で極めて薄い薄膜の担持が可能であ
り、同最大気孔径は多孔質薄膜の平均細孔径の1
〜100倍の範囲であること、好ましくは0.1μm以
下である。複層構造の支持体においては、平均細
孔径の小さい中間層側に薄膜が担持されるため、
流体の拡散抵抗の影響を少くし得て好ましい。こ
の場合、支持体の中間層を除く主体層は平均細孔
径0.5μm〜30μmのものを採用することができる。
主体層の厚さ、平均細孔径の値は流体の拡散抵
抗、機械的強度等により定める。 また、多孔質支持体について、耐食性の向上お
よび支持体成分の微量の溶出を防止するために
は、支持体成分中アルカリ金属化合物、アルカリ
土類、金属化合物、イツトリウム、ランタノイド
元素化合物、族元素化合物、化合物を構成する
陽イオンの半径が0.6Å未満または0.9Åを超えか
つ同化合物の比表面積が10m2/g以上である化合
物の混在量が酸化物換算で0.5wt%未満であるこ
とが好ましい。具体的には、高純度のα−アルミ
ナ、チタニアを主原料とし上記各化合物の総重量
が0.5wt%未満となるように無機バインダー、有
機バインダー、界面活性剤を添加する。 多孔質薄膜については、純度99.5%以上の酸化
チタンからなるもので製膜性、耐食性に優れ、か
つ薄膜成分の微量な溶出が実質的に防止される。 本発明において多孔質支持体の少なくとも一側
面に多孔質薄膜を形成する場合には、先づ水酸化
チタンまたは酸化チタンを含むハイドロゾル液を
調製する。ハイドロゾル液は水酸化チタン、酸化
チタンを形成する前駆体を酸の存在下で加水分解
することにより得られる。前駆体の例としてはア
ルコキシド、アシレート、キレート等の有機チタ
ネート化合物、四塩化チタン等のチタニウム塩、
メタおよびオルトチタン酸、微粒チタニア等が挙
げられるが、純度および取扱い易さの点から有機
チタネート化合物が好ましい。添加する酸として
は硝酸、塩酸、酢酸、低級脂肪酸等が挙げられ、
その添加量は0.01〜0.5mol/lである。好ましく
は、酸は硝酸、塩酸でそれらの添加量は0.05〜
0.15mol/lであり、液のPHを0.5〜2の範囲とす
る。酸の添加量が適正範囲を外れると、ゾル粒子
が凝集して沈殿するがゾル粒子の粒径が細かくな
りすぎて担持液として適さない。第1の重要な点
は前駆体/水のモル比を1/200以上、好ましく
は1/200〜1/40にすることにあり、これによ
り前駆体は酸の存在下で適正な加水分解が生じ
る。上記モル比が1/40以上になると得られるゾ
ル液がゲル化し易くなり、作業性に支障をきた
す。 第2の重要な点は上記した加水分解の条件を制
御することにあり、先づ前駆体を50℃以上の熱水
中に添加して少なくとも10分エージングし、その
後酸を添加して70℃以上で少なくとも30分エージ
ングする。これにより、前駆体を添加した時点で
は白色の懸濁液であつたものが、最終的には透明
感のある乳白色のハイドロゾル液となる。得られ
るハイドロゾル液のゾル粒子は30Å〜1000Åの粒
径であり、この粒径は加水分解温度、時間等によ
り調整させる。かかるゾル液を水で希釈すること
により、担持に適したハイドロゾル液(以下担持
ゾル液という)が得られる。 担持ゾル液の濃度(水酸化チタン+酸化チタ
ン)/水のモル比は1/500以下であることが必
須であり、この値を超えると多孔質薄膜の形成時
にピンホール、クラツクが発生し易い。上記モル
比の好ましい範囲は1/800〜1/2000であり、
かかる範囲の濃度では1〜2回の担持作業で膜厚
2μm以下の均一な薄膜が得られる。濃度がこれよ
り低い場合には1回の担持作業で形成される膜厚
が薄く、所定厚みの均一な薄膜を形成するには担
持作業を繰返し行う必要がある。かかる担持ゾル
液は希釈前のハイドロゾル液の性質をそのまま備
え、多孔質支持体に対する優れた密着性、均一な
製膜性を有しかつピンホール、クラツクを発生さ
せない。 なお、チタニウム塩を前駆体として用いる場合
には、これを一旦アルカリ中和して不純物の塩を
除去した後酸の存在下で上記した加水分解と同様
の工程でハイドロゾル液を得、かつこれを水で希
釈して担持ゾル液を得る。また、微粉チタニアを
前駆体として用いる場合には比表面積が50m2/g
以上のアナターゼ型を用いるとよく、これにより
容易に加水分解できてハイドロゾル液が得られ
る。 多孔質支持体の少なくとも一側面に担持ゾル液
を担持させ、乾燥後焼成することにより多孔質薄
膜が得られる。乾燥は室温で少なくとも2時間行
つた後100℃程度で行い、その後300℃〜700℃で
焼成する。これにより、平均細孔径が800Å以下
でピンホール、クラツクが実質的に存在しない耐
食性にも優れた薄膜が得られる。焼成温度が300
℃未満の場合には支持体に対する薄膜の密着性が
不足するため耐食性に劣り、また焼成温度が700
℃を超えると薄膜の平均細孔径が800Åより大き
くなり、目的としている薄膜が得られない。 (実施例) (1) 多孔質支持体 多孔質支持体としてパイプ状の主体層と薄層の
中間層かならる複層構造の支持体、支持体を
採用した。なお、主体層は混練坏土を押出成形し
て得た外径10mm、内径7mm、長さ150mmのパイプ
を乾燥後1500℃で3時間焼成したもの、中間層は
主体層の外周に解膠したスラリーを塗布して乾燥
後1300℃で焼成した厚さ30μmのもので、かつ主
体層は純度99.92%、中間層は純度99.99%以上の
α−アルミナからなる。 支持体:主体層の平均細孔径3μm、中間層の
平均細孔径800Å 支持体:主体層の平均細孔径3μm、中間層の
平均細孔径0.2μm (2) 希釈前ハイドロゾル液の調製 前駆体としてチタニウムイソプロポキシド、四
塩化チタンを用い、塩酸の存在下(添加量
0.1mol/1)80℃で2時間加水分解し、第1表
に示す希釈前のハイドロゾル液を調製した。な
お、四塩チタンについては先づこれをアンモニア
水で加水分解して白色沈殿物となし、これを塩素
イオンが検出されなくなるまで水洗し、その後上
記した加水分解を施した。 (3) 担持ゾル液の調製 調製された各種のハイドロゾル液を希釈し、第
2表に示す担持ゾルを調製した。 (4) 多孔質薄膜の形成 多孔質支持体の外周に担持ゾル液を担持して室
温で2時間、次いで100℃で2時間乾燥後種々の
温度で3時間焼成した。薄膜の平均細孔径は焼成
温度によつて調製した。 (5) 多孔質膜評価法 多孔質膜についてクロスフロー濾過、耐食性、
薄膜の剥離の各試験、ピンホール、クラツクの測
定を行い、第3表の結果を得た。 クロスフロー濾過試験:100ppmのマーカーを含
む水溶液を2.5m/secの速度、入口圧3Kg/cm2
にて多孔質膜の内孔を循環させるクロスフロー
濾過を行い、透過液の分析を行つてマーカーの
阻止率を算出する。なお、マーカーとしては薄
膜の平均細孔径が35Å、50Åの場合には牛血清
アルブミン(平均分子量65000)、平均細孔径が
680Å、850Åの場合にはユニホームテラツクス
(粒径0.8μm)を使用した。 耐食性試験:多孔質膜を90℃のHCl水溶液(PH=
0)、NaOH水溶液(PH=14)に168時間浸漬
し、その後上記クロスフロー濾過実験を行つて
マーカー阻止率を測定する。 薄膜の剥離試験:耐食性試験後の多孔質膜を超音
波洗浄機に入れ、超音波による薄膜の剥離状態
を観察した。 ピンホール、クラツクの測定:耐食性試験前、後
の多孔質膜におけるピンホール、クラツクの有
無を走査型電子顕微鏡にて観察した。
(Industrial Application Field) The present invention relates to an inorganic porous membrane used for filtration, gas separation, etc., and a method for producing the same. (Prior art) As a type of inorganic porous membrane, a porous thin film having one or more layers of a porous support made of a corrosion-resistant inorganic material and having an average pore diameter smaller than the average pore diameter of the support on at least one side thereof. There is an inorganic porous membrane comprising: This type of porous membrane is used for various filtration and gas separation membranes, and is required to have heat resistance, corrosion resistance, high filtration accuracy, and separation accuracy depending on each application. In this case, it is necessary to give corrosion resistance to the composition of the porous thin film that functions as a filtration membrane or separation membrane, and care must be taken to ensure that there are no pinholes, cracks, etc. in the thin film. . For example, in the field of ultrafiltration and precision filtration, which separate microparticles such as organic colloids, acid or alkaline cleaning is used as a means of regenerating decreased membrane performance due to clogging, etc., and steam cleaning is used as a sterilization means. However, in this case, high corrosion resistance is required. In addition, if pinholes, cracks, etc. exist in the thin film, filtration accuracy and separation accuracy will of course decrease, but the acid, alkali, and steam cleaning described above will increase pinholes, cracks, etc., resulting in poor corrosion resistance and filtration. The accuracy and separation accuracy will further deteriorate. By the way, many technologies related to the above-mentioned multilayered inorganic porous membranes have already been disclosed, and an example of a publication disclosing such technologies is Japanese Patent Application Laid-Open No. 1989-1999.
Publication No. 156510 can be mentioned. The publication describes a method for manufacturing an inorganic semi-permeable membrane that does not cause cracks, specifically, coating a porous support made of sintered inorganic oxide with a suspension (sol solution) of an inorganic membrane-forming coating material and heating it. A method of manufacturing is disclosed. By this manufacturing method, an ultrafiltration membrane in which a porous thin film made of γ-alumina is coated on a porous support is obtained. However, the same publication states that the suitability of a porous support is determined by the pore size (average pore diameter) of the support, and the preferred average pore diameter is 0.10 μm.
~0.50μm is listed. For porous thin films, the film thickness is 20μm or less, and for coating sol solutions, the concentration of the dispersed phase in the medium is 0.01wt%.
It is stated that it is ~25wt%. (Problems to be Solved by the Invention) By the way, pinholes and cracks in a porous thin film in an inorganic porous film having a multilayer structure occur when the thin film is formed. Generally, a porous thin film is formed by supporting a sol solution of microparticles on one side of a porous support, drying, and baking. In this case, the supported sol penetrates into the pores of the porous support and is concentrated and developed on the surface to form a thin film, but if the particles in the sol are locally sucked into the support, Holes are generated, and when the film thickness locally increases, cracks occur due to heat shrinkage during subsequent drying and firing. The present inventor focused on the porous support, the average pore diameter of the porous thin film, the thickness of the thin film, and the composition as factors in the occurrence of pinholes and cracks, and by specifying these, pinholes, cracks, etc. do not exist. It was found that a porous membrane with extremely excellent corrosion resistance in terms of structure and composition and excellent filtration and separation efficiency can be obtained. Therefore, in order to obtain such a porous membrane, it is necessary to specify each of the above-mentioned factors. Regarding this point, when referring to the description in the above-mentioned publication, it is found that the publication only stipulates the average pore diameter of the porous support and the thickness of the porous thin film within a wide range of values; The occurrence of pinholes and cracks is unavoidable. Therefore, a porous membrane with high filtration and separation accuracy and filtration and separation efficiency and excellent corrosion resistance cannot be expected. Furthermore, corrosion resistance cannot be expected from the composition of the thin film. Accordingly, an object of the present invention is to provide a porous membrane that is free from pinholes and cracks, has high filtration and separation accuracy, high filtration and separation efficiency, and has excellent corrosion resistance, and a method for producing the same. (Means for Solving the Problems) A first aspect of the present invention is to provide a porous support of one or more layers made of a corrosion-resistant inorganic material with an average pore diameter smaller than the average pore diameter of the support on at least one side thereof. An inorganic porous membrane comprising a porous thin film having a purity of 99.5% or more, the porous thin film having an average pore diameter of 800 Å or less,
The film thickness is 2 μm or less, and the average pore diameter of the layer of the porous support to which the porous thin film is attached is
It is characterized by being 0.1 μm or less. Further, a second invention of the present invention is based on the first invention, wherein the porous thin film is formed by supporting a hydrosol solution containing titanium hydroxide or titanium oxide on at least one side of the porous support. This is a method for producing such an inorganic porous membrane, in which a precursor forming the hydrosol is hydrolyzed in the presence of an acid at a molar ratio of precursor/water of 1/200 or more, and titanium in the obtained sol is The hydrosol solution is prepared by diluting the compound/water molar ratio to 1/500 or less, and this hydrosol solution is coated on at least one side of the porous support, dried, and then baked at 300°C to 700°C. It is characterized by this. In the present invention, the porous support is made of ceramics such as alumina, zirconia, and titania, glass such as borosilicate glass, and metals such as nickel, and has an appropriate shape such as a pipe shape, a flat plate shape, and a honeycomb shape. In addition, the porous support has an average pore diameter of
A single-layer structure consisting of only one layer of 0.1 μm or less, or a multi-layer structure consisting of the same layer and a layer with a larger average pore diameter, and in the case of a porous support with a multi-layer structure, the average pore diameter layer with a thickness of 0.1 μm or less (intermediate layer)
A porous thin film is carried on the side. Precursors for forming the hydrosol liquid include organic titanate compounds such as alkoxides, acylates, and chelates, titanium salts such as titanium tetrachloride and titanyl sulfate, meta- and orthotitanic acid, and titania. In addition, one side of the porous support means either the inside or the outside in the case of a pipe-shaped support, either the front side or the back side in the case of a flat support, and one side of the honeycomb-shaped support. In the case of a body, it means the entire inner periphery of a certain through hole, the inner periphery of all the through holes, or the outer periphery of the support. (Operations and Effects of the Invention) In the porous film according to the first aspect of the present invention, there are substantially no pinholes or cracks in the porous thin film, and the composition has extremely high corrosion resistance. It has high filtration accuracy and separation accuracy, high corrosion resistance, and does not generate or increase pinholes or cracks due to acid, alkali, steam cleaning, etc., so each of the above characteristics is maintained for a long period of time. Therefore, regarding the porous support constituting the porous membrane, the average pore diameter of the porous support, and the average pore diameter of the intermediate layer in the case of a porous support with a multilayer structure.
The essential requirement is that the pore size is 0.1 μm or less, and as a result, a porous thin film with an average pore diameter of 800 Å or less without pinholes or cracks can be supported, and such a thin film can be made into an extremely thin and uniform film with a thickness of 2 μm or less. It can be done. By specifying the maximum pore diameter of the support, it is possible to support a uniform and extremely thin film free of pinholes and cracks, and the maximum pore diameter is 1% of the average pore diameter of the porous thin film.
~100 times, preferably 0.1 μm or less. In a support with a multilayer structure, a thin film is supported on the intermediate layer side with a small average pore diameter, so
This is preferable because it can reduce the influence of fluid diffusion resistance. In this case, the main layer of the support excluding the intermediate layer may have an average pore diameter of 0.5 μm to 30 μm.
The thickness of the main layer and the average pore diameter are determined by fluid diffusion resistance, mechanical strength, etc. Regarding porous supports, in order to improve corrosion resistance and prevent minute elution of support components, it is necessary to contain alkali metal compounds, alkaline earths, metal compounds, yttrium, lanthanide element compounds, and group element compounds in the support components. It is preferable that the amount of a compound in which the radius of the cations constituting the compound is less than 0.6 Å or more than 0.9 Å and the specific surface area of the compound is 10 m 2 /g or more is less than 0.5 wt% in terms of oxide. . Specifically, high-purity α-alumina and titania are used as main raw materials, and an inorganic binder, an organic binder, and a surfactant are added so that the total weight of each of the above compounds is less than 0.5 wt%. The porous thin film is made of titanium oxide with a purity of 99.5% or higher, has excellent film formability and corrosion resistance, and substantially prevents minute elution of thin film components. In the present invention, when forming a porous thin film on at least one side of a porous support, a hydrosol solution containing titanium hydroxide or titanium oxide is first prepared. The hydrosol liquid is obtained by hydrolyzing titanium hydroxide, a precursor for forming titanium oxide, in the presence of an acid. Examples of precursors include organic titanate compounds such as alkoxides, acylates, and chelates; titanium salts such as titanium tetrachloride;
Examples include meta- and orthotitanic acids, fine titania, etc., but organic titanate compounds are preferred from the viewpoint of purity and ease of handling. Examples of acids to be added include nitric acid, hydrochloric acid, acetic acid, lower fatty acids, etc.
The amount added is 0.01 to 0.5 mol/l. Preferably, the acid is nitric acid or hydrochloric acid, and the amount added is 0.05~
It is 0.15 mol/l, and the pH of the liquid is in the range of 0.5 to 2. If the amount of acid added is out of the appropriate range, the sol particles will coagulate and precipitate, but the particle size of the sol particles will become too small to be suitable as a supporting liquid. The first important point is to keep the precursor/water molar ratio at least 1/200, preferably between 1/200 and 1/40, so that the precursor can be properly hydrolyzed in the presence of acid. arise. When the molar ratio is 1/40 or more, the resulting sol tends to gel, which impedes workability. The second important point is to control the conditions of the above-mentioned hydrolysis, first adding the precursor in hot water above 50 °C and aging for at least 10 minutes, then adding acid and aging at 70 °C Aged for at least 30 minutes. As a result, what was a white suspension at the time the precursor was added eventually becomes a transparent, milky-white hydrosol liquid. The sol particles of the obtained hydrosol liquid have a particle size of 30 Å to 1000 Å, and this particle size is adjusted by the hydrolysis temperature, time, etc. By diluting this sol with water, a hydrosol suitable for supporting (hereinafter referred to as a supported sol) can be obtained. It is essential that the concentration (titanium hydroxide + titanium oxide)/water molar ratio of the supported sol solution is 1/500 or less; if this value is exceeded, pinholes and cracks are likely to occur when forming a porous thin film. . The preferred range of the above molar ratio is 1/800 to 1/2000,
At concentrations in this range, the film thickness can be increased by one or two loading operations.
A uniform thin film of 2 μm or less can be obtained. If the concentration is lower than this, the film formed by one carrying operation will be thin, and it will be necessary to repeat the carrying operation to form a uniform thin film of a predetermined thickness. Such a supported sol liquid has the same properties as the hydrosol liquid before dilution, has excellent adhesion to a porous support, uniform film forming properties, and does not generate pinholes or cracks. In addition, when using a titanium salt as a precursor, it is first neutralized with an alkali to remove impurity salts, and then a hydrosol solution is obtained by the same process as the hydrolysis described above in the presence of an acid. Dilute with water to obtain a supported sol solution. In addition, when fine powder titania is used as a precursor, the specific surface area is 50 m 2 /g.
It is preferable to use the above-mentioned anatase type, which can be easily hydrolyzed and a hydrosol solution can be obtained. A porous thin film can be obtained by supporting a supported sol on at least one side of a porous support, drying and then firing. Drying is carried out at room temperature for at least 2 hours and then at about 100°C, followed by firing at 300°C to 700°C. As a result, a thin film with an average pore diameter of 800 Å or less and virtually no pinholes or cracks and excellent corrosion resistance can be obtained. Firing temperature is 300
If the temperature is below ℃, the adhesion of the thin film to the support will be insufficient, resulting in poor corrosion resistance.
If the temperature exceeds ℃, the average pore diameter of the thin film becomes larger than 800 Å, and the desired thin film cannot be obtained. (Example) (1) Porous support A support with a multilayer structure consisting of a pipe-shaped main layer and a thin intermediate layer was used as the porous support. The main layer was obtained by extruding a kneaded clay pipe with an outer diameter of 10 mm, an inner diameter of 7 mm, and a length of 150 mm, which was dried and then fired at 1500°C for 3 hours, and the middle layer was made by peptizing the outer periphery of the main layer. It has a thickness of 30 μm and is made by coating a slurry, drying it, and firing it at 1300°C.The main layer is made of α-alumina with a purity of 99.92% and the intermediate layer is made of α-alumina with a purity of 99.99% or more. Support: Average pore diameter of main layer 3 μm, average pore diameter of intermediate layer 800 Å Support: Average pore diameter of main layer 3 μm, average pore diameter of intermediate layer 0.2 μm (2) Preparation of hydrosol solution before dilution Titanium as precursor Using isopropoxide and titanium tetrachloride, in the presence of hydrochloric acid (added amount
0.1 mol/1) was hydrolyzed at 80°C for 2 hours to prepare the hydrosol solution before dilution shown in Table 1. As for titanium tetrasalt, it was first hydrolyzed with aqueous ammonia to form a white precipitate, which was washed with water until no chlorine ions were detected, and then subjected to the above-described hydrolysis. (3) Preparation of supported sol solution The various hydrosol solutions prepared were diluted to prepare supported sols shown in Table 2. (4) Formation of porous thin film The supported sol solution was supported on the outer periphery of a porous support, dried at room temperature for 2 hours, then at 100°C for 2 hours, and then baked at various temperatures for 3 hours. The average pore diameter of the thin film was adjusted by changing the firing temperature. (5) Porous membrane evaluation method Cross-flow filtration, corrosion resistance,
Various tests for thin film peeling, pinhole and crack measurements were conducted, and the results shown in Table 3 were obtained. Cross-flow filtration test: Aqueous solution containing 100 ppm marker at a speed of 2.5 m/sec, inlet pressure 3 Kg/cm 2
Cross-flow filtration is performed by circulating the inner pores of the porous membrane, and the permeate is analyzed to calculate the marker rejection rate. In addition, as a marker, if the average pore diameter of the thin film is 35 Å, if the average pore diameter is 50 Å, bovine serum albumin (average molecular weight 65,000),
In the case of 680 Å and 850 Å, Uniform Terrax (particle size 0.8 μm) was used. Corrosion resistance test: Porous membrane was exposed to HCl aqueous solution (PH=
0), immersed in NaOH aqueous solution (PH = 14) for 168 hours, and then conducted the above cross-flow filtration experiment to measure marker rejection. Peeling test of thin film: The porous membrane after the corrosion resistance test was placed in an ultrasonic cleaner, and the state of peeling of the thin film by ultrasonic waves was observed. Measurement of pinholes and cracks: The presence or absence of pinholes and cracks in the porous membrane before and after the corrosion resistance test was observed using a scanning electron microscope.

【表】【table】

【表】【table】

【表】【table】

【表】 (6) 考察 第3表を参照すると明らかなように、多孔質膜
において薄膜の平均細孔径が800Åを超えるもの
(多孔質膜No.9)、薄膜の膜厚が2μmを超えるもの
(多孔質膜No.3,No.12)、多孔質支持体の薄膜が付
着する層の平均細孔径が0.1μmを超えるもの
((多孔質膜No.14)については所定の性能が得られ
ない。その他の多孔質膜については、薄膜の焼成
温度が極めて低い多孔質膜No.7を除き膜厚、阻止
率、透過液量、耐食性、クラツクおよびピンホー
ルの有無等全て所定の性能が得られている。な
お、所定の性能を有するこれらの多孔質膜につい
て膜成分の透過液への溶出量を測定したが、溶出
量は検出限界以下であつて極微量であることを確
認している。 次に製造面から考察すると、ハイドロゾル液お
よび担持ゾル液については、前駆体/水のモル比
が1/200未満の場合(多孔質膜No.12)、希釈後の
前駆体/水のモル比が1/500を超える場合(多
孔質膜No.13)には所定の性能の多孔質膜は得られ
ない。これに対して、前駆体/水のモル比が1/
200以上でかつ希釈後の前駆体/水のモル比が
1/500以下の場合には、多孔質膜No.7を除き膜
厚、阻止率、透過液量、耐食性、クラツクおよび
ピンホールの有無等全て所定の性能を備えた多孔
質膜が得られる。より好ましい前駆体/水のモル
比は1/200〜1/40、希釈後の前駆体/水のモ
ル比は1/800〜1/2000である。前駆体/水の
モル比が1/30の例(多孔質膜No.1)では所定の
性能を備えた多孔質膜が得られるが、ハイドロゾ
ル液のゲル化が速くその取扱いに注意を要する。
一方、希釈後の前駆体/水のモル比が/3000の例
(多孔質膜No.11)でも所定の性能を備えた多孔質
膜が得られるが、担持ゾル液を担持させる回数を
多くしなければならないという不都合がある。 また、薄膜の焼成温度については300℃〜700℃
であり、担持ゾル液が適正であつても焼成温度が
低い場合(多孔質膜No.7)には多孔質膜は耐食性
が低いものとなり、これとは逆に焼成温度が高い
場合(多孔質膜No.9)には阻止率が低いものとな
る。
[Table] (6) Discussion As is clear from Table 3, among porous membranes, the average pore diameter of the thin film exceeds 800 Å (porous membrane No. 9), and the thin film thickness exceeds 2 μm. (Porous membranes No. 3 and No. 12), and those with an average pore diameter of more than 0.1 μm in the layer to which the thin film of the porous support is attached ((Porous membrane No. 14), the specified performance cannot be obtained. No. Regarding other porous membranes, except for Porous Membrane No. 7 whose thin film firing temperature is extremely low, all of the specified performances such as membrane thickness, rejection rate, amount of permeated liquid, corrosion resistance, presence or absence of cracks and pinholes were achieved. Furthermore, we measured the elution amount of membrane components into the permeate for these porous membranes that have the specified performance, and it was confirmed that the elution amount was below the detection limit and was extremely small. Next, considering from the manufacturing point of view, for hydrosol liquids and supported sol liquids, when the molar ratio of precursor/water is less than 1/200 (porous membrane No. 12), the molar ratio of precursor/water after dilution is When the ratio exceeds 1/500 (porous membrane No. 13), a porous membrane with the desired performance cannot be obtained.On the other hand, when the molar ratio of precursor/water is 1/
200 or more and the molar ratio of precursor/water after dilution is 1/500 or less, except for porous membrane No. 7, the film thickness, rejection rate, amount of permeated liquid, corrosion resistance, presence or absence of cracks and pinholes. A porous membrane having all the predetermined properties can be obtained. A more preferable molar ratio of precursor/water is 1/200 to 1/40, and a more preferable molar ratio of precursor/water after dilution is 1/800 to 1/2000. In an example where the molar ratio of precursor/water is 1/30 (porous membrane No. 1), a porous membrane with the desired performance can be obtained, but the hydrosol solution gels quickly and must be handled with care.
On the other hand, a porous membrane with the desired performance can be obtained even in an example where the molar ratio of precursor/water after dilution is /3000 (porous membrane No. 11), but the number of times the supported sol solution is applied is increased. There is an inconvenience in having to do so. In addition, the firing temperature of the thin film is 300℃ to 700℃.
Even if the supported sol liquid is appropriate, if the firing temperature is low (porous membrane No. 7), the porous membrane will have low corrosion resistance; on the other hand, if the firing temperature is high (porous membrane No. Film No. 9) has a low rejection rate.

Claims (1)

【特許請求の範囲】 1 耐食性無機質材料からなる1または複数層の
多孔質支持体の少なくとも一側面に、同支持体の
平均細孔径より小さい平均細孔径を有する多孔質
薄膜を備えてなる無機多孔質膜において、前記多
孔質薄膜は純度99.5%以上の酸化チタンからなり
その平均細孔径が800Å以下、膜厚が2μm以下で
あり、かつ前記多孔質支持体の前記多孔質薄膜が
付着する層の平均細孔径が0.1μm以下であること
を特徴とする無機多孔質膜。 2 前記多孔質支持体の少なくとも一側面に水酸
化チタンまたは酸化チタンを含むハイドロゾル液
を担持させて前記多孔質薄膜を形成することから
なる第1項に記載の無機多孔質膜の製造法であ
り、前記ハイドロゾル液を形成する前駆体を酸の
存在下で前駆体/水のモル比を1/200以上で加
水分解するとともに、得られたゾル液のチタン化
合物/水のモル比を1/500以下に希釈して前記
ハイドロゾル液を調製し、このハイドロゾル液を
前記多孔質支持体の少なくとも一側面にコーテイ
ングして乾燥後300℃〜700℃にて焼成することを
特徴とする無機多孔質膜の製造法。
[Scope of Claims] 1. An inorganic porous support comprising one or more layers of a porous support made of a corrosion-resistant inorganic material, and on at least one side thereof, a porous thin film having an average pore diameter smaller than the average pore diameter of the support. In the porous thin film, the porous thin film is made of titanium oxide with a purity of 99.5% or more, has an average pore diameter of 800 Å or less, a film thickness of 2 μm or less, and has a layer of the porous support to which the porous thin film is attached. An inorganic porous membrane characterized by an average pore diameter of 0.1 μm or less. 2. The method for producing an inorganic porous membrane according to item 1, which comprises forming the porous thin film by supporting a hydrosol solution containing titanium hydroxide or titanium oxide on at least one side of the porous support. , the precursor forming the hydrosol liquid is hydrolyzed in the presence of an acid at a precursor/water molar ratio of 1/200 or more, and the titanium compound/water molar ratio of the obtained sol liquid is reduced to 1/500. The inorganic porous membrane is characterized in that the hydrosol solution is prepared by diluting the hydrosol solution as follows, the hydrosol solution is coated on at least one side of the porous support, and after drying, it is fired at 300°C to 700°C. Manufacturing method.
JP13377188A 1988-05-27 1988-05-31 Inorganic porous membrane and preparation thereof Granted JPH01304006A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP13377188A JPH01304006A (en) 1988-05-31 1988-05-31 Inorganic porous membrane and preparation thereof
EP95115691A EP0692303B1 (en) 1988-05-27 1989-05-26 Process for the production of an inorganic porous composite membrane
US07/357,268 US4929406A (en) 1988-05-27 1989-05-26 Process for producing an inorganic porous membrane
EP89305361A EP0344011A1 (en) 1988-05-27 1989-05-26 Inorganic porous membrane
DE68928924T DE68928924T2 (en) 1988-05-27 1989-05-26 Process for the production of a porous inorganic composite membrane
US07/452,241 US4971696A (en) 1988-05-27 1989-12-18 Inorganic porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13377188A JPH01304006A (en) 1988-05-31 1988-05-31 Inorganic porous membrane and preparation thereof

Publications (2)

Publication Number Publication Date
JPH01304006A JPH01304006A (en) 1989-12-07
JPH0582249B2 true JPH0582249B2 (en) 1993-11-18

Family

ID=15112588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13377188A Granted JPH01304006A (en) 1988-05-27 1988-05-31 Inorganic porous membrane and preparation thereof

Country Status (1)

Country Link
JP (1) JPH01304006A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4094771B2 (en) * 1999-06-08 2008-06-04 日本碍子株式会社 Ceramic filter substrate and method for producing the same
DE10102295A1 (en) * 2001-01-19 2002-08-08 Gkn Sinter Metals Gmbh Graduated filters and processes for their manufacture
KR100534013B1 (en) * 2003-09-04 2005-12-07 한국화학연구원 Titania composite membrane for water/alcohol separation, and Preparation thereof
JP2005177693A (en) * 2003-12-22 2005-07-07 Kyocera Corp Filter and its production method
JP5036211B2 (en) * 2006-04-17 2012-09-26 株式会社ニッカトー Ceramic filter and manufacturing method thereof
JP5274320B2 (en) * 2009-03-18 2013-08-28 日本碍子株式会社 Nanofiltration membrane manufacturing method
JP6368424B2 (en) 2015-03-19 2018-08-01 日本碍子株式会社 Silica membrane filter
JP6368425B2 (en) * 2015-03-19 2018-08-01 日本碍子株式会社 Silica membrane and separation membrane filter

Also Published As

Publication number Publication date
JPH01304006A (en) 1989-12-07

Similar Documents

Publication Publication Date Title
EP0692303B1 (en) Process for the production of an inorganic porous composite membrane
US5605628A (en) Composite membranes
US5376442A (en) Composite membranes
JP5990186B2 (en) Alumina ceramic membrane
Kim et al. Sol-gel synthesis and characterization of yttria stabilized zirconia membranes
JPH03143535A (en) Asymmetric ceramic film and production thereof
JP5231304B2 (en) Alumina porous body and method for producing the same
US5186833A (en) Composite metal-ceramic membranes and their fabrication
JPH0299126A (en) Composite film and its production
EP1070533A1 (en) Method for manufacturing filter having ceramic porous film as separating film
JP2012501286A (en) Preparation method of inorganic membrane
JP5253261B2 (en) Alumina porous material and method for producing the same
JPH0582249B2 (en)
JPH05238845A (en) Microporous alumina ceramic membrane
JP2007254222A (en) Porous ceramic film, ceramic filter and its manufacturing method
JPH0243928A (en) Inorganic porous membrane
JPH03284329A (en) Ceramic membraneous filter and production thereof
JPH03267129A (en) Ceramic membrane filter
JPH0457373B2 (en)
KR0139817B1 (en) Composite membranes
JPH0571548B2 (en)
JP4155650B2 (en) Manufacturing method of ceramic filter
JPH06198148A (en) Production of inorganic porous membrane
JPH07163848A (en) Production of inorganic porous membrane
JP2002274967A (en) Gamma alumina porous body, method for manufacturing the same and fluid separation filter by using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20081118

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 15