JPH0582151B2 - - Google Patents

Info

Publication number
JPH0582151B2
JPH0582151B2 JP59000417A JP41784A JPH0582151B2 JP H0582151 B2 JPH0582151 B2 JP H0582151B2 JP 59000417 A JP59000417 A JP 59000417A JP 41784 A JP41784 A JP 41784A JP H0582151 B2 JPH0582151 B2 JP H0582151B2
Authority
JP
Japan
Prior art keywords
winding
detection
bobbin
secondary winding
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59000417A
Other languages
Japanese (ja)
Other versions
JPS60144774A (en
Inventor
Toshiaki Shimamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59000417A priority Critical patent/JPS60144774A/en
Publication of JPS60144774A publication Critical patent/JPS60144774A/en
Publication of JPH0582151B2 publication Critical patent/JPH0582151B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/65Apparatus which relate to the handling of copy material
    • G03G15/6532Removing a copy sheet form a xerographic drum, band or plate
    • G03G15/6535Removing a copy sheet form a xerographic drum, band or plate using electrostatic means, e.g. a separating corona

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • Dc-Dc Converters (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は複写機の紙分離用高圧電源装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high-voltage power supply device for separating paper in a copying machine.

従来例の構成とその問題点 複写機の紙分離は従来から交流の高圧電源が用
いられている。これは直流高電圧により感光体表
面が又はに帯電され露光、トナー現像を経て
転写プロセスで紙が感光体に密着して転写され次
の紙分離プロセスに移るが、感光体表面の帯電電
荷により紙が感光体表面に吸着しており直流バイ
アスの加わつた交流高電圧で感光体、紙、トナー
の電荷を消去し静電吸引力を抑止するためであ
る。
Conventional configuration and its problems Conventionally, an AC high-voltage power source has been used to separate paper in copying machines. This is because the surface of the photoreceptor is charged by DC high voltage, exposed to light, developed with toner, and transferred to the photoreceptor in the transfer process, where it is transferred to the next paper separation process. is adsorbed on the surface of the photoreceptor, and the electric charge on the photoreceptor, paper, and toner is erased by a high AC voltage with a DC bias, thereby suppressing electrostatic attraction force.

この紙分離用高圧電源装置としては第1図のよ
うな回路方式のスイツチングレギユレータが用い
られている。この第1図に示す紙分離用高圧電源
装置の構成とその動作の概要を説明する。
As this high-voltage power supply for paper separation, a switching regulator of a circuit type as shown in FIG. 1 is used. An overview of the configuration and operation of the high-voltage power supply device for paper separation shown in FIG. 1 will be explained.

直流電源から入力端子13とアース端子14
の間に直流入力が印加されると発振・パルス幅制
御回路1から、AとA′のパルスがトランジスタ
Q1,Q2に供給される。なおパルスAの周波数は
パルスA′の1/2となつている。トランジスタQ1
パルスA′がHighでパルスAがLowのタイミング
の時、導通状態となつてトランジスタQ3をONす
る。又、トランジスタQ2はパルスA,A′ともに
HighのタイミングでトランジスタQ4をONする。
すなわちパルスAによつてトランジスタQ3,Q4
は交互にONし、しかもそのON時間はパルス
A′のHighの時だけとなる。トランジスタQ3,Q4
が交互にON,OFFを繰り返すことにより、トラ
ンジスタQ1,Q2,Q3,Q4とで構成されるスイツ
チング手段により、トランスTの1次巻線Wには
矩形波交流入力が印加され、2次巻線Hには交流
高電圧・検出巻線Bに検出用の交流電圧が発生す
る。この例では2次巻線Hのリーケージインダク
タンスをシヤント鉄心7によつて発生させコンデ
ンサC1とで共振回路を作り、1次巻線Wと2次
巻線Hの巻数比で決まる2次巻線電圧よりもはる
かに高い2次巻線電圧を得ることにより、2次巻
線Hの巻数を減らしている。交流出力端子5は複
写機の紙分離用コロトロンに電気的に接続され
る。又直流出力端子5′は複写機の帯電コロトロ
ン又は転写コロトロンに接続される。なお、第1
図の回路例では直流出力のある回路としたが、直
流出力すなわちダイオードD、コンデンサC2
抵抗Rがなく、交流だけの出力の高圧電源装置も
あるし、逆に複数の直流出力、あるいは除電用を
含めた複数の交流出力を併せ持つものもある。検
出巻線Bの電圧は調整回路15で整流され、OP
アンプ2において基準電圧電源4の電圧と比較さ
れて増幅され、発振・パルス幅制御回路1にフイ
ードバツクされてパルスA′のHighの幅をコント
ロールすることにより、入力条件、負荷条件が変
動しても、検出電圧16は常に一定に維持される
ことになり、トランスTにおいて2次巻線Hと検
出巻線Bに鎖交する磁束密度は一定となり、出力
電圧を安定化している。
Input terminal 13 and ground terminal 14 from DC power supply
When a DC input is applied between the oscillation and pulse width control circuit 1, the pulses A and A'
Supplied to Q 1 and Q 2 . Note that the frequency of pulse A is 1/2 that of pulse A'. When the pulse A ' is high and the pulse A is low, the transistor Q1 becomes conductive and turns on the transistor Q3 . Also, transistor Q 2 receives both pulses A and A'.
Turn on transistor Q4 at the high timing.
That is, by pulse A, transistors Q 3 and Q 4
are turned ON alternately, and their ON time is a pulse.
This occurs only when A' is High. Transistors Q 3 , Q 4
By alternately repeating ON and OFF, a rectangular wave AC input is applied to the primary winding W of the transformer T by the switching means composed of transistors Q 1 , Q 2 , Q 3 , and Q 4 . An AC high voltage is generated in the secondary winding H, and an AC voltage for detection is generated in the detection winding B. In this example, the leakage inductance of the secondary winding H is generated by the shunt core 7, a resonant circuit is created with the capacitor C1 , and the secondary winding is determined by the turns ratio of the primary winding W and the secondary winding H. By obtaining a secondary winding voltage much higher than the voltage, the number of turns of the secondary winding H is reduced. The AC output terminal 5 is electrically connected to a paper separating corotron of the copying machine. Further, the DC output terminal 5' is connected to a charging corotron or a transfer corotron of a copying machine. In addition, the first
In the circuit example shown in the figure, the circuit has a DC output, but the DC output is diode D, capacitor C 2 ,
There are high-voltage power supplies that do not have a resistor R and output only AC, and conversely, there are also high-voltage power supplies that have multiple DC outputs or multiple AC outputs including one for static elimination. The voltage of the detection winding B is rectified by the adjustment circuit 15 and OP
In the amplifier 2, it is compared with the voltage of the reference voltage power supply 4, amplified, and fed back to the oscillation/pulse width control circuit 1 to control the high width of the pulse A', even if the input conditions and load conditions change. , the detection voltage 16 is always maintained constant, and the magnetic flux density interlinking with the secondary winding H and the detection winding B in the transformer T is constant, thereby stabilizing the output voltage.

このような紙分離用高圧電源装置において、紙
分離性のニーズおよび負荷容量損失を考慮してで
きる限り小型化することから発振周波数は一般的
に400〜1000Hzの間で選択される。このため、ト
ランスTの鉄心6はこの周波数領域で、比較的、
鉄損が低い状態で高い磁束密度をとることが可能
な抵損失の方向性ケイ素鋼板が用いられている。
この鉄心6に1次巻線W、2次巻線H、検出巻線
Bおよびシヤント鉄心7を組み込んで第3図又は
第7図のようにトランスとして組み立てられる。
なお、17は2次巻線Hと鉄心6の間を電気的に
絶縁する絶縁板である。2次巻線Hと検出巻線B
は同一ボビン(巻枠)に巻かれ従来、第2図のよ
うにボビン10の上に銅線8と層間絶縁紙9を交
互にあるいは数層毎に重ねて巻く重ね巻きが主で
あつたが、近年、巻線技術と巻線設備の発達によ
り、自動巻線および配線、高速巻線の可能な第4
図に示されるように分割巻きが主流を占めるよう
になつてきた。これは第4図、第5図のようにボ
ビン11を鍔12によつて縦に複数の巻線溝に分
割し、ここに第6図の2次巻線Hと検出巻線Bを
巻くものである。なお、検出巻線Bは第5図にお
いて最も左側の巻線溝に巻かれ、2次巻線Hは1
l〜8lの巻線溝に巻かれている。ここで2次巻
線Hと検出巻線Bを別の巻線溝に巻き、鍔12で
絶縁している理由は検出巻線Bの電圧は通常
20Vr.m.s程度に対し、2次巻線Hには最も低電位
となるH1の部分でも第1図に示す直流バイアス
回路3による直流バイアスが印加され、通常
100V〜500VDCの電位となることが多いことによ
る。第1図の回路の動作概要は上記した通りであ
るが、紙分離部に交流高電圧を供給する交流出力
はその直流バイアスが紙分離性能に重要な影響を
与え、複写機のセツト仕様に合わせてこの直流バ
イアスの電圧値を決定する。ところがこのために
分割巻きのボビン11は検出巻線Bのための特別
な巻線溝を設けなければならず、巻数の極めて少
ない検出巻線部の層は空間が多く、そのための鍔
12も含め、スペース的なロスが大きく、結果的
にトランスの小型化を防げるという欠点を有して
いた。
In such a high-voltage power supply device for paper separation, the oscillation frequency is generally selected between 400 and 1000 Hz in order to minimize the size of the device in consideration of paper separation needs and load capacity loss. For this reason, the iron core 6 of the transformer T is relatively weak in this frequency range.
A grain-oriented silicon steel plate with low iron loss is used, which allows high magnetic flux density with low iron loss.
A primary winding W, a secondary winding H, a detection winding B, and a shunt core 7 are assembled into this core 6 to form a transformer as shown in FIG. 3 or FIG. 7.
Note that 17 is an insulating plate that electrically insulates between the secondary winding H and the iron core 6. Secondary winding H and detection winding B
is wound on the same bobbin (winding frame), and conventionally, the main method was lap winding, in which copper wire 8 and interlayer insulating paper 9 were wound alternately or in several layers on top of the bobbin 10, as shown in Fig. 2. In recent years, with the development of winding technology and winding equipment, automatic winding and wiring, and high-speed winding are possible.
As shown in the figure, split winding has become the mainstream. As shown in Figs. 4 and 5, the bobbin 11 is vertically divided into a plurality of winding grooves by a collar 12, and the secondary winding H and the detection winding B shown in Fig. 6 are wound therein. It is. The detection winding B is wound in the leftmost winding groove in FIG. 5, and the secondary winding H is wound in the leftmost winding groove.
It is wound in a winding groove of l~8l. The reason why the secondary winding H and the detection winding B are wound in separate winding grooves and insulated by the collar 12 is that the voltage of the detection winding B is normally
20V rms , DC bias is applied to the secondary winding H even at the lowest potential H1 part by the DC bias circuit 3 shown in Figure 1, and normally
This is because the potential is often between 100V and 500V DC . The outline of the operation of the circuit shown in Figure 1 is as described above, but the DC bias of the AC output that supplies AC high voltage to the paper separation unit has an important effect on paper separation performance, and it is necessary to adjust the AC output to the paper separation unit according to the set specifications of the copying machine. Determine the voltage value of the DC bias of the lever. However, for this reason, the split-winding bobbin 11 must be provided with a special winding groove for the detection winding B, and the layer of the detection winding section with an extremely small number of turns has a lot of space, including the collar 12 for this purpose. However, this method has the disadvantage that there is a large space loss, and as a result, it is difficult to downsize the transformer.

発明の目的 本発明は上述したような欠点すなわち検出巻線
のための特別な巻線溝を設けなければならず、巻
線の極めて少ない検出巻線部の空間が多く、その
ための鍔も含め、スペース的なロスが大きく、結
果的にトランスの小型化を防げているということ
に鑑みてなされたもので検出巻線のための特別な
溝を省くことを可能として小型化の図れる複写機
の紙分離用高圧電源装置を提供するものである。
Purpose of the Invention The present invention has the drawbacks mentioned above, namely, that a special winding groove must be provided for the detection winding, and there is a large amount of space in the detection winding section with very few windings, including the collar for this purpose. This was done in view of the fact that the space loss was large and as a result, the transformer could not be downsized.This paper was developed for copying machines that could be downsized by making it possible to omit the special groove for the detection winding. The present invention provides a high-voltage power supply device for separation.

発明の構成 この目的を達成するために本発明の複写機の紙
分離用高圧電源装置は、トランスにおいてボビン
の一つの巻線溝内に第1の巻線となる検出巻線を
巻き、この第1の巻線の上に第2の巻線を巻いて
両端を電気的接続のない状態でボビンの鍔の一部
に固定し、第2の巻線の上に2次巻線となる第3
の巻線を行い、第2の巻線によつて検出巻線と2
次巻線を絶縁し、ボビンを鉄心に組み込むととも
に検出巻線と2次巻線を他の回路部品と電気的に
接続して構成されている。
Structure of the Invention In order to achieve this object, the high-voltage power supply device for paper separation in a copying machine of the present invention winds a detection winding serving as a first winding in one winding groove of a bobbin in a transformer. A second winding is wound on top of the first winding, and both ends are fixed to a part of the collar of the bobbin without electrical connection, and a third winding, which becomes a secondary winding, is wound on top of the second winding.
The second winding connects the detection winding and the second winding.
It is constructed by insulating the secondary winding, incorporating the bobbin into the iron core, and electrically connecting the detection winding and the secondary winding to other circuit components.

この構成とすることによつて検出巻線と2次巻
線は絶縁用のボビン鍔がなくても第2の巻線によ
つて完全に絶縁され、検出巻線のための特別なボ
ビンの巻線溝と鍔は不要となる。
With this configuration, the detection winding and the secondary winding are completely insulated by the second winding without the need for an insulating bobbin collar, and a special bobbin winding for the detection winding is used. Line grooves and collars are no longer necessary.

実施例の説明 以本発明の一実施例について図面を参照しなが
ら説明する。第8図と第9図は本発明の一実施例
を示すボビン構造、巻線状態を示す図面である。
図面の便且上、検出巻線B、捨て巻線D、2次巻
線Hの1層目(1l)を巻線する巻線溝の幅を広
く描いているが実際は、検出巻線Bと捨て巻線D
の体積比率は2次巻線Hに比べて極めて小さく無
視するに等しく、2次巻線Hで所定分割数に従が
い1層当りの巻数を決めれば良く、検出巻線B、
捨て巻線D、2次巻線Hの1層目(1l)を巻線
する巻線溝の幅は通常、他の巻線溝の幅と同じで
さしつかえない。D1とD2は捨て巻線Dの巻始め
および巻終りを巻き付けて固定する突起で、ボビ
ン11と同一材質でボビン11の成形時に成形さ
れる。従つて捨て巻線Dは電気的接続のない状態
になつており、検出巻線Bの端子B1,B2、2次
巻線Hの端子H1,H2,H3のように外部との電気
的接続を行う金属端子とは異なるものである。第
9図のように同一の巻線溝内で、最初に第1の巻
線である検出巻線Bをまいて端子B1,B2に巻き
付ける。次に第2の巻線である捨て巻線Dを検出
巻線Bが穏れるまで巻いて(通常2〜3層重ね。)
絶縁突起D1,D2に巻き付ける。その上に第3の
巻線である2次巻線Hの巻始めを端子H1に巻付
けてから巻き、順に第2の巻線溝2l〜第7の巻
線溝7lまで巻く。中間タツプは端子H2に,巻
終りは端子H3に巻き付ける。なお、検出巻線B、
捨て巻線D、2次巻線Hは同一線径で構わない。
電流的には、いずれの巻線もφ0.04以下でもさし
つかえないが一般的に巻線工法的能力により
φ0.05〜φ0.07が多く使われる。なお、捨て巻線D
には電流は流れないので端子B1,B2、絶縁突起
D1,D2、端子H1,H2,H3にタツプを巻き付け
ながら連続的に各検出巻線B、捨て巻線D、2次
巻線Hを巻き続けることが可能である。第10図
はこのときの線輪図である。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIGS. 8 and 9 are drawings showing a bobbin structure and winding state according to an embodiment of the present invention.
For convenience of drawing, the width of the winding groove for winding the first layer (1l) of the detection winding B, the waste winding D, and the secondary winding H is drawn wide, but in reality, the width of the winding groove for winding the first layer (1l) of the detection winding B, the waste winding D, and the secondary winding H is drawn wide. Discarded winding D
The volume ratio of the secondary winding H is extremely small and can be ignored, and the number of turns per layer can be determined according to the predetermined number of divisions of the secondary winding H.
The width of the winding groove in which the first layer (1l) of the disposable winding D and the secondary winding H is wound is usually the same as the width of the other winding grooves. D 1 and D 2 are protrusions around which the winding start and winding end of the disposable winding D are wound and fixed, and are made of the same material as the bobbin 11 and are formed when the bobbin 11 is formed. Therefore, the disposable winding D is in a state where there is no electrical connection, and it is not connected to the outside like the terminals B 1 and B 2 of the detection winding B and the terminals H 1 , H 2 , and H 3 of the secondary winding H. They are different from metal terminals that make electrical connections. As shown in FIG. 9, the first winding, which is the detection winding B, is first wound around the terminals B 1 and B 2 in the same winding groove. Next, wind the second winding D, which is a waste winding, until the detection winding B becomes calm (usually 2 to 3 layers are stacked).
Wrap it around the insulating protrusions D 1 and D 2 . Thereon, the winding start of the secondary winding H, which is the third winding, is wound around the terminal H1 , and then wound in order from the second winding groove 2l to the seventh winding groove 7l. Wrap the middle tap around terminal H2 and the end of the winding around terminal H3 . In addition, the detection winding B,
The waste winding D and the secondary winding H may have the same wire diameter.
In terms of current, any winding wire with a diameter of φ0.04 or less is acceptable, but in general, φ0.05 to φ0.07 are often used depending on the winding method. In addition, the discarded winding D
Since no current flows through the terminals B 1 , B 2 and the insulating protrusion,
It is possible to continuously wind each detection winding B, waste winding D , and secondary winding H while winding the taps around D 1 , D 2 , terminals H 1 , H 2 , and H 3 . FIG. 10 is a line diagram at this time.

さて第11図は上記検出巻線B、捨て巻線D、
2次巻線Hを巻いている巻線溝の拡大断面図であ
る。本実施例では2次巻線Hに直流バイアス電圧
としてDC500Vが印加されている場合について説
明する。2次巻線Hが捨て巻線Dと接する部分は
交流的にはほぼ0Vであり、DC500Vのみが印加
されていると考えてよい。また、検出巻線Bは
AC20Vr.m.s程度、また、直流バイアスは0Vなの
で便宜上、AC,DCともに0Vと考える。捨て巻
線Dは電気的にはどこにでも接続されず、検出巻
線B、捨て巻線D、2次巻線Hの銅線の絶縁皮膜
が同じ厚さの場合はDC250Vとなる。従つて2次
巻線H−捨て巻線D間、捨て巻線D−検出巻線B
間ともに電位差はDC250Vとなる。一方、第12
図は捨て巻線Dがない場合であり、2次巻線H−
検出巻線B間の銅線が接する部分はDC500Vの電
位差が生ずる。
Now, FIG. 11 shows the detection winding B, the discarded winding D,
FIG. 3 is an enlarged sectional view of a winding groove around which a secondary winding H is wound. In this embodiment, a case will be described in which 500 V DC is applied to the secondary winding H as a DC bias voltage. The part where the secondary winding H contacts the sacrificial winding D is approximately 0V in terms of AC, and it can be considered that only 500V DC is applied thereto. Also, the detection winding B is
AC is about 20V rms , and the DC bias is 0V, so for convenience, consider both AC and DC to be 0V. The sacrificial winding D is not electrically connected anywhere, and if the insulation coatings of the copper wires of the detection winding B, the sacrificial winding D, and the secondary winding H have the same thickness, the voltage will be DC250V. Therefore, between the secondary winding H and the discarded winding D, and between the discarded winding D and the detection winding B
The potential difference between both is 250V DC. On the other hand, the 12th
The figure shows the case where there is no disposable winding D, and the secondary winding H-
A potential difference of 500V DC occurs at the part where the copper wires between the detection windings B are in contact.

ところで第13図は電子機器に一般的に用いら
れているポリウレタン銅線1種の銅線径φ0.05の
ものaとポリウレタン銅線2種の銅線径φ0.05の
ものbのV−T特性と呼ばれる印加電圧に対する
銅線皮膜の絶縁破壊までの時間をプロツトし、カ
ーブにしたものでトランスの温度上昇を考慮し、
80℃で試験したものである。なお、銅線の1種、
2種は絶縁皮膜厚の種別を表すもので1種の方が
絶縁皮膜厚が大きい。試験片は適当な長さの銅線
を2つに折り合わせ、3gの張力を加えながら約
12cmの長さの部分を50のより数により合わせた
後、張力を取り去り、折り目部分を切つてこの2
本の線間に50Hzの各レベルの印加電圧を加えて絶
縁破壊までの時間を求めたものである。このグラ
フにおいて隣合う銅線どうし半永久的に絶縁が確
保できるので1種の銅線で350Vr.m.s(495Vピー
ク)2種の銅線では300Vr.m.s(425Vピーク)であ
ることがわかる。これを1mm当たりに換算すると
1種の銅線では絶縁皮膜厚が0.009mmであるから
495Vピーク/0.018mm=27.5KVピーク/mmであ
る。第14は第11の拡大および電界分布図であ
る。2次巻線H〜捨て巻線D間および捨て巻線D
〜検出巻線B間の電界強度は13.9KVDC/mmとな
り、1種の銅線の半永久使用限界値の27.5KVピ
ーク/mmに対して十分な余裕を確保できる。とこ
ろが捨て巻線Dがない場合は第12図の拡大およ
び電解分布図である第15図のように電界強度は
27.8KVピーク/mmとなり限界値をオーバーし、
使用不可である。すなわち捨て巻線Dによつて隣
り合う絶縁皮膜銅線間の電界強度を低減するので
従来のように検出巻線Bのための特別な巻線溝お
よび鍔を設けて検出巻線B〜2次巻線H間を絶縁
していたことが不要となる。なお、第14図と第
15図のCは絶縁皮膜を表す。
By the way, Figure 13 shows the V-T of polyurethane copper wire (a) with a copper wire diameter of 0.05 and two types of polyurethane copper wire (b) with a copper wire diameter of 0.05 which are commonly used in electronic equipment. The time required for dielectric breakdown of the copper wire film against the applied voltage, which is called a characteristic, is plotted and made into a curve, taking into account the temperature rise of the transformer.
Tested at 80℃. In addition, one type of copper wire,
The two types represent the types of insulation film thickness, and the first type has a larger insulation film thickness. The test piece was made by folding an appropriate length of copper wire in half and applying a tension of 3g to the
After aligning the 12 cm long pieces with 50 twists, remove the tension, cut the folded part and make these 2 pieces.
The time required for dielectric breakdown was determined by applying voltages of 50 Hz at various levels between the wires. In this graph, it can be seen that since semi-permanent insulation can be ensured between adjacent copper wires, the voltage is 350V rms (495V peak) for one type of copper wire, and 300V rms (425V peak) for two types of copper wire. Converting this to 1 mm, the insulation film thickness for one type of copper wire is 0.009 mm.
495V peak/0.018mm=27.5KV peak/mm. The 14th is an enlarged and electric field distribution diagram of the 11th. Between the secondary winding H and the waste winding D and the waste winding D
The electric field strength between the detection winding B and the detection winding B is 13.9 KV DC /mm, which is sufficient for the semi-permanent use limit of 27.5 KV peak/mm for one type of copper wire. However, if there is no waste winding D, the electric field strength will be
27.8KV peak/mm, exceeding the limit value,
Unusable. That is, since the electric field strength between adjacent insulating coated copper wires is reduced by the discarded winding D, a special winding groove and collar are provided for the detection winding B as in the conventional case, and the detection winding B to the secondary It becomes unnecessary to insulate the windings H. Note that C in FIGS. 14 and 15 represents an insulating film.

発明の効果 以上のように本発明は1つの巻線溝内における
第2の巻線によつて同一巻線溝内の第1と第3の
巻線を電気的に絶縁することにより、第1の巻線
の絶縁のためにボビンに特別な巻線溝および鍔を
設ける必要がなくなり、スペースロスを防ぎ、結
果的にトランスの小型化、低コスト化が可能とな
り実用的価値の大なるものである。
Effects of the Invention As described above, the present invention electrically insulates the first and third windings in the same winding groove by the second winding in one winding groove. It is no longer necessary to provide special winding grooves and flanges on the bobbin to insulate the windings of the transformer, which prevents space loss and allows transformers to be made smaller and lower in cost, which is of great practical value. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は複写機の紙分離用高圧電源装置の一例
の回路図、第2〜第7図は従来の紙分離用高圧電
源装置を示す図であり、第2図A〜Cは検出巻
線、2次巻線の線輪の正面図、右側面図と断面
図、第3図A〜Cは第2図の巻線を使つたトラン
スの正面図、平面図と側面図、第4図は検出巻
線、2次巻線用のボビンで第2図、第3図とは異
なる構造の斜視図、第5図はその線輪断面図、第
6図はその線輪回路図、第7図はA〜Cはそのト
ランス組立状態を示す正面図、平面図と側面図、
第8図〜第15図は本発明の一実施例およびその
補足説明に使う図で、第8図はボビンの斜視図、
第9図は線輪断面図、第10図はその線輪回路
図、第11図は検出巻線、捨て巻線、2次巻線の
断面図、第12図は第11図から捨て巻線を除い
た状態の断面図、第13はポリウレタン銅線1種
のおよび2種の線経φ0.05のV−T特性図、第1
4図は第11図の拡大および電界分布図、第15
図は第12図の拡大および電界分布図である。 1……発振・パルス幅制御回路、2……OPア
ンプ、3……直流バイアス回路、4基準電圧電
源、5……交流出力端子、5′……直流出力端子、
6……鉄心、7……シヤント鉄心、8……銅線、
9……層間絶縁紙、10……ボビン、11……ボ
ビン、12……ボビンの鍔、13……入力端
子、14……アース端子、15……整流回路、1
6……検出電圧、17……絶縁板、A……パルス
出力、A′……パルス出力、Q1,Q2,Q3,Q4……
トランジスタ、T……トランス、W……1次巻
線、B……検出巻線、B1……検出巻線の巻始め
端子、B2……検出巻線の巻終り端子、H……2
次巻線、H1……2次巻線の巻始め端子、H2……
2次巻線の中間タツプ端子、H3……2次巻線の
巻終り端子、1l〜8l……2次巻線の巻線溝、
D……捨て巻線、D1……捨て巻線の巻始め、D2
……捨て巻線の巻終り、ST……巻始め、FIN…
…巻終り、D……ダイオード、C1,C2……コン
デンサ、R……ダイオード、C……銅線の絶縁皮
膜。
FIG. 1 is a circuit diagram of an example of a high-voltage power supply device for paper separation in a copying machine, FIGS. 2 to 7 are diagrams showing conventional high-voltage power supply devices for paper separation, and FIGS. 2A to C show detection windings. , a front view, a right side view and a sectional view of the wire ring of the secondary winding, Figures 3A to C are a front view, a top view and a side view of a transformer using the winding shown in Figure 2, and Figure 4 is a A perspective view of the bobbin for the detection winding and secondary winding, which is different in structure from Figures 2 and 3, Figure 5 is a cross-sectional view of the coil, Figure 6 is a circuit diagram of the coil, and Figure 7. A to C are a front view, a plan view and a side view showing the assembled state of the transformer,
Figures 8 to 15 are diagrams used for an embodiment of the present invention and its supplementary explanation; Figure 8 is a perspective view of the bobbin;
Figure 9 is a cross-sectional view of the wire, Figure 10 is a circuit diagram of the wire, Figure 11 is a cross-sectional view of the detection winding, sacrificial winding, and secondary winding, and Figure 12 is the sacrificial winding from Figure 11. 13th is a V-T characteristic diagram of 1 type and 2 types of polyurethane copper wire wire diameter φ0.05, 1st
Figure 4 is an enlarged view of Figure 11 and the electric field distribution diagram, Figure 15.
The figure is an enlarged view of FIG. 12 and an electric field distribution diagram. 1...Oscillation/pulse width control circuit, 2...OP amplifier, 3...DC bias circuit, 4 reference voltage power supply, 5...AC output terminal, 5'...DC output terminal,
6... Iron core, 7... Shunt iron core, 8... Copper wire,
9... Interlayer insulating paper, 10... Bobbin, 11... Bobbin, 12... Bobbin collar, 13... Input terminal, 14... Earth terminal, 15... Rectifier circuit, 1
6...Detection voltage, 17...Insulating plate, A...Pulse output, A'...Pulse output, Q1 , Q2 , Q3 , Q4 ...
Transistor, T...transformer, W...primary winding, B...detection winding, B1 ...detection winding start terminal, B2 ...detection winding end terminal, H...2
Secondary winding, H 1 ... Secondary winding start terminal, H 2 ...
Intermediate tap terminal of secondary winding, H 3 ... winding end terminal of secondary winding, 1l to 8l ... winding groove of secondary winding,
D...Discarded winding, D 1 ...Start of discarded winding, D 2
... End of discarded winding, ST ... Start of winding, FIN...
... End of winding, D ... Diode, C 1 , C 2 ... Capacitor, R ... Diode, C ... Insulating film of copper wire.

Claims (1)

【特許請求の範囲】[Claims] 1 直流入力を印加してパルスを発生する発振・
パルス幅制御回路と、前記発振・パルス幅制御回
路の出力を入力して交流出力に変換するスイツチ
ング手段と、前記スイツチング手段から出力され
た交流出力を入力して高圧を発生するトランスと
からなる複写機の紙分離用高圧電源装置におい
て、前記トランスのボビンの一つの層内に第1の
巻線を巻き、第1の巻線の上に第2の巻線を巻い
て両端を電気的接続のない状態でボビンの鍔の一
部に固定し、第2の巻線の上に第3巻線を行な
い、第2の巻線によつて第1と第3の巻線を電気
的に絶縁し、ボビンを鉄心に組み込むとともに第
1と第3の巻線を他の回路部品と電気的に接続し
て成る複写機の紙分離用高圧電源装置。
1 Oscillation that generates pulses by applying DC input
A copy consisting of a pulse width control circuit, switching means for inputting the output of the oscillation/pulse width control circuit and converting it into AC output, and a transformer for inputting the AC output output from the switching means and generating high voltage. In the high voltage power supply for paper separation of the machine, a first winding is wound in one layer of the bobbin of the transformer, a second winding is wound on top of the first winding, and both ends are electrically connected. The third winding is placed on top of the second winding, and the second winding electrically insulates the first and third windings. , a high-voltage power supply device for paper separation in a copying machine, which includes a bobbin assembled into an iron core and first and third windings electrically connected to other circuit components.
JP59000417A 1984-01-05 1984-01-05 High voltage power supply device for separating paper in copying machine Granted JPS60144774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59000417A JPS60144774A (en) 1984-01-05 1984-01-05 High voltage power supply device for separating paper in copying machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59000417A JPS60144774A (en) 1984-01-05 1984-01-05 High voltage power supply device for separating paper in copying machine

Publications (2)

Publication Number Publication Date
JPS60144774A JPS60144774A (en) 1985-07-31
JPH0582151B2 true JPH0582151B2 (en) 1993-11-17

Family

ID=11473220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59000417A Granted JPS60144774A (en) 1984-01-05 1984-01-05 High voltage power supply device for separating paper in copying machine

Country Status (1)

Country Link
JP (1) JPS60144774A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110138722A (en) * 2010-06-21 2011-12-28 삼성모바일디스플레이주식회사 Organic light emitting display and power supply for the same

Also Published As

Publication number Publication date
JPS60144774A (en) 1985-07-31

Similar Documents

Publication Publication Date Title
EP1782441B1 (en) Planar high voltage transformer device
EP0055903A1 (en) An electrical power supply
US5631815A (en) High voltage power supply
EP0410526B1 (en) Generator for generating an electric voltage
US3522475A (en) Discharge lamp starting device
GB2045012A (en) High voltage transformer rectifier
US20120007706A1 (en) High Voltage Transformer
JPH0582151B2 (en)
JP2001052940A (en) High breakdown voltage transformer and electronic apparatus using the same
US2244386A (en) Transformer
JPH1055898A (en) X-ray apparatus
JPH0311534B2 (en)
US1723000A (en) Means for diverting energy from conductors
JPH0327356Y2 (en)
JPH04352304A (en) Pulse transformer and high voltage pulse generator
SU900326A1 (en) Electroinduction device
SU1742872A1 (en) Isolation transformer
US4214199A (en) Current transformer
US1940863A (en) Electrical apparatus
JPH11135335A (en) Insulating transformer
JP2552112Y2 (en) Booster
HU189388B (en) Stabilized supply unit for tv receivers
SU955232A2 (en) Electric induction device
JPH0831588A (en) Cathode discharging tube lighting apparatus
JP2672050B2 (en) Ultra low frequency high voltage generator