JPH0581858B2 - - Google Patents
Info
- Publication number
- JPH0581858B2 JPH0581858B2 JP63334365A JP33436588A JPH0581858B2 JP H0581858 B2 JPH0581858 B2 JP H0581858B2 JP 63334365 A JP63334365 A JP 63334365A JP 33436588 A JP33436588 A JP 33436588A JP H0581858 B2 JPH0581858 B2 JP H0581858B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- adsorbed
- vacuum
- impurity gas
- ionization means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012535 impurity Substances 0.000 claims description 32
- 150000002500 ions Chemical class 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- 238000001179 sorption measurement Methods 0.000 claims description 4
- 238000010894 electron beam technology Methods 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 55
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000009172 bursting Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Description
【発明の詳細な説明】
<産業上の利用分野>
本発明は半導体プロセスにおいて用いられる、
スパツタリング装置、LPCVD装置、光CVD装
置、プラズマCVD装置等の真空装置内に吸着し
た微量不純物ガスを定性、定量分析できる装置に
関する。[Detailed description of the invention] <Industrial application field> The present invention is used in a semiconductor process,
The present invention relates to a device that can qualitatively and quantitatively analyze trace impurity gases adsorbed in vacuum devices such as sputtering devices, LPCVD devices, optical CVD devices, and plasma CVD devices.
<従来の技術>
半導体プロセスにおいて真空装置の反応槽や配
管に吸着した不純物ガスは成膜やエツチングの過
程で解離し膜に混入し膜質を劣化させる。このた
め従来装置では、
成膜やエツチング前に反応槽及び配管を焼出
(300〜400℃に加熱)し吸着不純物ガスを装置
から脱気する。<Prior Art> In a semiconductor process, impurity gases adsorbed in a reaction tank or piping of a vacuum device are dissociated during film formation or etching processes and mixed into the film, degrading the film quality. For this reason, in conventional equipment, the reaction tank and piping are baked out (heated to 300 to 400°C) to remove adsorbed impurity gas from the equipment before film formation or etching.
不純物ガス濃度の低いキヤリアガス(N2、
O2、Ar、H等)を使用し装置への不純物ガス
の吸着を防ぐ。 Carrier gas with low impurity gas concentration (N 2 ,
(O 2 , Ar, H, etc.) to prevent adsorption of impurity gases into the equipment.
等の方法がとられて来た。Such methods have been adopted.
しかしながら、これまで真空装置に吸着した不
純物ガスを測定する手段はなく、前処理でクリー
ニングしたとしても吸着不純物ガスがどれだけ脱
気されたのか分らなかつた。尚、大気圧イオン化
質量分析計(APIMS)を使用すればpptレベルま
で不純物ガス濃度を測定することは出来るが、装
置が大掛かりとなり真空装置の一つ一つにこれを
取付けて使用することは出来ない。 However, until now there has been no means for measuring impurity gas adsorbed in a vacuum device, and even if cleaning is performed in a pretreatment, it is not possible to determine how much adsorbed impurity gas has been degassed. Although it is possible to measure impurity gas concentrations down to the ppt level by using an atmospheric pressure ionization mass spectrometer (APIMS), the equipment is large-scale and cannot be used by installing it in each vacuum device. do not have.
<発明が解決しようとする課題>
本発明の解決しようとする技術的課題は、
CVD装置等、半導体プロセスにおいて成膜装置
として使用される真空装置内に吸着した微量不純
物ガスを定性、定量分析できる測定装置を実現す
ることにある。<Problems to be solved by the invention> The technical problems to be solved by the present invention are as follows:
The object of this invention is to realize a measuring device that can qualitatively and quantitatively analyze trace impurity gases adsorbed in vacuum devices used as film forming devices in semiconductor processes, such as CVD devices.
<課題を解決するための手段>
本発明の構成は、
A 前記真空装置内から、後出のイオン化手段と
の間の圧力差に基づき、サンプルガスを導出す
るキヤピラリチユーブ
B 前記キヤピラリチユーブからサンプルガスを
真空室内に導き電子線を照射して前記サンプル
ガスをイオン化するイオン化手段
C 前記イオン化手段からの原子イオンをアパー
チヤーレンズで加速、収束して電極部に与え、
電極による偏向によつて質量選択を行い、この
電極部分を通過したイオンを検出する四重極質
量分析計
D この四重極質量分析計からの検出信号が与え
られ、前記真空装置内において吸着不純物ガス
が解離するときに発生する検出信号の間欠的ピ
ークに基づき、ピークの位置より吸着不純物ガ
スの成分を同定し、ピークの高さ並びにピーク
の頻度より吸着不純物ガスの吸着量を演算する
信号処理部
とより構成される。<Means for Solving the Problems> The present invention has the following configurations: A. A capillary tube that extracts a sample gas from the inside of the vacuum apparatus based on a pressure difference between the ionization means, which will be described later. B. From the capillary tube. Ionization means C for introducing a sample gas into a vacuum chamber and irradiating the sample gas with an electron beam to ionize the sample gas; atomic ions from the ionization means are accelerated and focused by an aperture lens and applied to an electrode portion;
A quadrupole mass spectrometer D that performs mass selection by deflection by electrodes and detects ions that have passed through this electrode section.A detection signal from this quadrupole mass spectrometer is given, and the adsorbed impurities are detected in the vacuum device. Signal processing that identifies the component of the adsorbed impurity gas from the peak position based on the intermittent peaks of the detection signal that occur when gas dissociates, and calculates the adsorption amount of the adsorbed impurity gas from the peak height and peak frequency. It consists of a division and a division.
<作用>
吸着不純物ガスの測定は前記真空装置でシリコ
ンウエハに成膜又はエツチングが開始される前に
行われる。この状態では装置が数百度に加熱さ
れ、排気ポンプで内部ガスが排気され、前記真空
装置内の各部に吸着した吸着不純物ガスが除去さ
れて行く。前記キヤピラリチユーブは、例えばそ
の先端位置が前記真空装置内で動かせるようにな
つており、槽内の任意の位置の雰囲気ガスをサン
プリングできる。前記イオン化手段及び四重極質
量分析計側の真空度は前記真空装置側より高く、
サンプルガスは圧力差により前記イオン化手段に
導入される。前記真空装置内において吸着不純物
ガスが解離するときシヤープで間欠的なピークと
して検出される。このピークの質量数から吸着不
純物ガスの成分を検出し、ピークの高さ並びにピ
ークの現れる頻度から吸着不純物ガスの吸着量が
検出される。<Operation> The adsorbed impurity gas is measured before film formation or etching is started on the silicon wafer in the vacuum apparatus. In this state, the device is heated to several hundred degrees, internal gas is exhausted by an exhaust pump, and adsorbed impurity gases adsorbed in various parts within the vacuum device are removed. The capillary tube is configured so that its tip can be moved within the vacuum apparatus, for example, so that atmospheric gas can be sampled at any position within the tank. The degree of vacuum on the ionization means and quadrupole mass spectrometer side is higher than on the vacuum device side,
Sample gas is introduced into the ionization means by means of a pressure difference. When the adsorbed impurity gas dissociates in the vacuum apparatus, it is detected as sharp and intermittent peaks. The component of the adsorbed impurity gas is detected from the mass number of this peak, and the adsorbed amount of the adsorbed impurity gas is detected from the height of the peak and the frequency of appearance of the peak.
<実施例>
以下図面に従い本発明実施例装置を説明する。
第1図は本発明実施例装置の構成図である。一点
鎖線で囲んだ部分(1)が真空装置としてのCVD装
置である。部分(2)は不純物ガス測定装置部分であ
る。部分(1)において、CVD装置1は、側壁10
1、石英の窓102、加熱手段としてのランプ1
03、反応層A内に水平に設置され上面にシリコ
ンウエハSが載置されたサセプタ104、SiH4
ガス及びNH3ガスをシリコンウエハS上に導く
反応ガス供給ライン105、真空ポンプ106と
より構成される。<Example> An apparatus according to an embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention. The part (1) surrounded by the one-dot chain line is the CVD device as a vacuum device. Part (2) is the impurity gas measuring device part. In part (1), the CVD apparatus 1 has a side wall 10
1. Quartz window 102, lamp 1 as heating means
03. Susceptor 104 installed horizontally in reaction layer A and with silicon wafer S placed on the top surface, SiH 4
It is composed of a reaction gas supply line 105 that guides gas and NH 3 gas onto the silicon wafer S, and a vacuum pump 106.
部分(2)において、不純物ガス測定装置2は、
CVD装置1からサンプルガスSGを導くキヤピラ
リチユーブ201、イオン化手段202、四重極
質量分析計203、信号処理部204とより構成
される。イオン化手段202はサンプルガスSG
が導かれる真空室202a、サンプルガスSGに電
子線EBを照射する電子銃202bを含む。四重極
質量分析計203は原子イオンを加速、収束する
アパーチヤーレンズ203a、このアパーチヤー
レンズを通過したイオンビームが導入され、電極
による偏向によつてイオンの質量選択を行う四重
極静電レンズ203b、この四重極静電レンズの
アパーチヤーを通過したイオンを検出する検出器
203c、真空ポンプ203d等より構成される。
信号処理部204は四重極質量分析計203から
の検出信号からシヤープなピークを分離するデイ
スクリミネータ、ピークをカウンとするカウン
タ、ピークの波高値等のアナログ情報をデイジタ
ル変換するA/D変換器、マイクロプロセツサ、
メモリを内部に含み、周辺機器として演算処理さ
れた信号が通信で送られるワークステーシヨン2
04a、プリンタ204bを含む。 In part (2), the impurity gas measuring device 2
It is comprised of a capillary tube 201 that guides sample gas SG from the CVD apparatus 1, ionization means 202, a quadrupole mass spectrometer 203, and a signal processing section 204. The ionization means 202 is a sample gas SG.
It includes a vacuum chamber 202 a to which the sample gas SG is guided, and an electron gun 202 b that irradiates the sample gas SG with an electron beam EB. The quadrupole mass spectrometer 203 includes an aperture lens 203 a that accelerates and focuses atomic ions, and a quadrupole static analyzer that selects the mass of the ions by introducing the ion beam that has passed through the aperture lens and deflecting the ions with electrodes. It is comprised of an electrostatic lens 203b , a detector 203c for detecting ions passing through the aperture of this quadrupole electrostatic lens, a vacuum pump 203d , and the like.
The signal processing unit 204 includes a discriminator that separates sharp peaks from the detection signal from the quadrupole mass spectrometer 203, a counter that counts peaks, and an A/D converter that converts analog information such as the peak value into digital. equipment, microprocessor,
Workstation 2 includes memory internally and is used as a peripheral device to send processed signals via communication.
04 a and printer 204 b .
次に、本発明実施例装置の動作を実験データを
参照しながら説明する。吸着不純物ガスの測定は
シリコンウエハSへ成膜処理が施される前に行わ
れる。即ち、SiH4ガス及びNH3ガスを止めた状
態で、加熱ランプ103でシリコンウエハSを数
百度に加熱し、真空ポンプ106で10-2〜
10-3Torrまで真空に引く。一方、イオン化手段
202及び四重極質量分析計203側は真空ポン
プ203dによつて10-6Torrに引かれ、サンプル
ガスSGは圧力差によつてキヤピラリチユーブ2
01を通つてイオン化手段202内に導かれる。
サンプルガスSGはここでイオン化され、原子イ
オンは四重極質量分析計203のアパーチヤーレ
ンズ203aで加速、収束され、四重極静電レン
ズ203bに導入される。四重極静電レンズ20
3bには数メガの駆動周波数で傾斜電場が形成さ
れ、質量に応じて原子イオンを選択的に通過させ
る。四重極静電レンズ203bのアパーチヤーを
通過したイオンは二次電子増倍管を用いた検出器
203cで検出される。 Next, the operation of the apparatus according to the embodiment of the present invention will be explained with reference to experimental data. The measurement of the adsorbed impurity gas is performed before the silicon wafer S is subjected to the film formation process. That is, with the SiH 4 gas and NH 3 gas turned off, the silicon wafer S is heated to several hundred degrees using the heat lamp 103, and heated to 10 -2 to 10 -2 degrees using the vacuum pump 106.
Vacuum to 10 -3 Torr. On the other hand, the ionization means 202 and quadrupole mass spectrometer 203 side are pulled to 10 -6 Torr by the vacuum pump 203 d , and the sample gas SG is pumped into the capillary tube 2 due to the pressure difference.
01 into the ionization means 202.
The sample gas SG is ionized here, and the atomic ions are accelerated and focused by the aperture lens 203 a of the quadrupole mass spectrometer 203 and introduced into the quadrupole electrostatic lens 203 b . Quadrupole electrostatic lens 20
A gradient electric field is formed in 3b at a driving frequency of several megawatts, allowing atomic ions to pass selectively depending on their mass. Ions that have passed through the aperture of the quadrupole electrostatic lens 203b are detected by a detector 203c using a secondary electron multiplier.
第2図は反応槽Aに吸着した空気(N2、O2)
及びArガスを経過時間を変えて測定した測定結
果である。このうち図a〜cはSiH4ガス及び
NH3ガスを止めた状態で、加熱ランプ103で
シリコンウエハSを数百度に加熱し、真空ポンプ
106で引き始めた直後のデータ、図d〜gはこ
の状態で数日間経過した後のデータを表わす。図
a,dはN2ガスのデータを、図b,eはO2ガス
のデータを、図c,fはArガスのデータを夫々
表わす。横軸は測定時間(min)を表わし、縦軸
(Abundance)は検出器203cで検出されるカウ
ント値を表わす。 Figure 2 shows air (N 2 , O 2 ) adsorbed in reaction tank A.
These are the measurement results obtained by measuring and Ar gas at different elapsed times. Of these, figures a to c show SiH 4 gas and
With the NH 3 gas turned off, the silicon wafer S was heated to several hundred degrees with the heating lamp 103, and the data was immediately taken after the vacuum pump 106 started pulling it. Figures d to g show the data after several days had passed in this state. represent Figures a and d represent data for N 2 gas, Figures b and e represent data for O 2 gas, and Figures c and f represent data for Ar gas. The horizontal axis represents the measurement time (min), and the vertical axis (Abundance) represents the count value detected by the detector 203c .
吸着不純物ガスがシリコンウエハSの表面等か
ら解離するとき風船玉が破裂するようにして解離
する。この解離現象は間欠的に起こり、脱気ガス
をイオン化手段202でイオン化し四重極質量分
析計203に導くと検出信号中にシヤープなピー
クとなつて現れる。本発明実施例装置ではこのピ
ークから吸着不純物ガスの残量を検知する。先
ず、デイスクリミネータで一定レベル以上のピー
クを選び、決つた測定時間内における夫々のピー
クの波高値、ピークの数を記憶する。波高値は吸
着ガスの大きさに対応し、ピークの数は吸着ガス
の場合(量)に対応し、これらの値から反応槽A
内がどの程度洗浄されたかが分る。 When the adsorbed impurity gas dissociates from the surface of the silicon wafer S, it dissociates like a balloon bursting. This dissociation phenomenon occurs intermittently, and when the degassed gas is ionized by the ionization means 202 and guided to the quadrupole mass spectrometer 203, it appears as a sharp peak in the detection signal. In the apparatus of the present invention, the remaining amount of adsorbed impurity gas is detected from this peak. First, peaks above a certain level are selected using a discriminator, and the peak value and number of peaks of each peak within a determined measurement time are memorized. The wave height value corresponds to the size of adsorbed gas, and the number of peaks corresponds to the case (amount) of adsorbed gas. From these values, reaction tank A
You can see how much the inside has been cleaned.
<発明の効果> 本発明は以下のような効果を有する。<Effects of the invention> The present invention has the following effects.
これまで、半導体プロセスで用いられる真空
装置内に吸着した不純物ガスを測定するための
適当な方法がなかつたが、本発明によつて始め
てそれが可能となり、半導体の歩留りの大幅な
向上が期待できる。 Until now, there has been no suitable method for measuring impurity gases adsorbed in vacuum equipment used in semiconductor processes, but this invention has made it possible for the first time, and is expected to significantly improve the yield of semiconductors. .
従来の残留ガス分析計を用いて測定を行つた
場合、バツクグランドを見ているだけとなり、
本発明における吸着不純物ガスの解離現象に基
づく間欠的なピークは測定できない。従つてこ
のような従来装置では吸着不純物ガスの測定は
行えない。 When measuring with a conventional residual gas analyzer, you are only looking at the background.
In the present invention, intermittent peaks due to the dissociation phenomenon of adsorbed impurity gas cannot be measured. Therefore, such conventional devices cannot measure adsorbed impurity gases.
不純物ガス測定装置のセンサ部に四重極質量
分析計を用いたため小型化でき個々の真空装置
に取付けて使用することができる。 Since a quadrupole mass spectrometer is used in the sensor section of the impurity gas measuring device, it can be miniaturized and used by being attached to an individual vacuum device.
第1図は本発明実施例装置の構成図、第2図は
第1図の本発明実施例装置を用いて真空装置内に
吸着した空気(N2、O2)及びArガスを経過時間
を変えて測定した測定結果である。
1……CVD装置、102……石英の窓、10
3……ランプ、104……サセプタ、105……
反応ガス供給ライン、106……真空ポンプ、2
……吸着不純物ガス測定装置、201……キヤピ
ラリチユーブ、202……イオン化手段、203
……四重極質量分析計、203d……真空ポンプ、
204……信号処理部、S……シリコンウエハ、
SG……サンプルガス。
Figure 1 is a block diagram of the apparatus according to the present invention, and Figure 2 is a diagram showing the configuration of the apparatus according to the present invention as shown in Figure 1 . These are the measurement results obtained by changing the conditions. 1...CVD equipment, 102...Quartz window, 10
3... Lamp, 104... Susceptor, 105...
Reaction gas supply line, 106...vacuum pump, 2
... Adsorption impurity gas measuring device, 201 ... Capillary tube, 202 ... Ionization means, 203
...quadrupole mass spectrometer, 203 d ...vacuum pump,
204...Signal processing unit, S...Silicon wafer,
SG...Sample gas.
Claims (1)
される真空装置内に吸着した不純物ガスを測定す
る装置で、下記A乃至Dを構成要素とすることを
特徴とする不純物ガス測定装置。 A 前記真空装置内から、後出のイオン化手段と
の間の圧力差に基づき、サンプルガスを導出す
るキヤピラリチユーブ B 前記キヤピラリチユーブからサンプルガスを
真空室内に導き電子線を照射して前記サンプル
ガスをイオン化するイオン化手段 C 前記イオン化手段からの原子イオンをアパー
チヤーレンズで加速、収束して電極部に与え、
電極による偏向によつて質量選択を行い、この
電極部分を通過したイオンを検出する四重極質
量分析計 D この四重極質量分析計からの検出信号が与え
られ、前記真空装置内において吸着不純物ガス
が解離するときに発生する検出信号の間欠的ピ
ークに基づき、ピークの位置より吸着不純物ガ
スの成分を同定し、ピークの高さ並びにピーク
の頻度より吸着不純物ガスの吸着量を演算する
信号処理部。[Scope of Claims] 1. An impurity gas measuring device for measuring impurity gas adsorbed in a vacuum device used as a film forming device in a semiconductor process, characterized by comprising the following components A to D. A: A capillary tube that extracts the sample gas from the vacuum apparatus based on the pressure difference between the ionization means described later; B: The sample gas is introduced from the capillary tube into the vacuum chamber and irradiated with an electron beam to extract the sample gas Ionization means C for ionizing gas; atomic ions from the ionization means are accelerated and focused by an aperture lens and applied to the electrode part;
A quadrupole mass spectrometer D that performs mass selection by deflection by electrodes and detects ions that have passed through this electrode section.A detection signal from this quadrupole mass spectrometer is given, and the adsorbed impurities are detected in the vacuum device. Signal processing that identifies the component of the adsorbed impurity gas from the peak position based on the intermittent peaks of the detection signal that occur when gas dissociates, and calculates the adsorption amount of the adsorbed impurity gas from the peak height and peak frequency. Department.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63334365A JPH02179469A (en) | 1988-12-29 | 1988-12-29 | Impurity-gas measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63334365A JPH02179469A (en) | 1988-12-29 | 1988-12-29 | Impurity-gas measuring apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02179469A JPH02179469A (en) | 1990-07-12 |
JPH0581858B2 true JPH0581858B2 (en) | 1993-11-16 |
Family
ID=18276560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63334365A Granted JPH02179469A (en) | 1988-12-29 | 1988-12-29 | Impurity-gas measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02179469A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0955185A (en) * | 1995-08-11 | 1997-02-25 | Furontetsuku:Kk | Mass filter type gas analyzer with calibration gas system and its operating method |
US7094614B2 (en) * | 2001-01-16 | 2006-08-22 | International Business Machines Corporation | In-situ monitoring of chemical vapor deposition process by mass spectrometry |
CN108917967B (en) * | 2018-07-12 | 2020-12-08 | 辽宁工程技术大学 | Goaf bundle pipe monitoring device and installation method |
-
1988
- 1988-12-29 JP JP63334365A patent/JPH02179469A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH02179469A (en) | 1990-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI579888B (en) | Mass spectrometer, the use thereof, and methods for mass spectrometric analysis of gas mixtures | |
EP0103586B1 (en) | Sputter initiated resonance ionization spectrometry | |
JP7504085B2 (en) | Mass spectrometer and method for analyzing gases by mass spectrometry - Patents.com | |
US6864982B2 (en) | Gas analyzing method and gas analyzer for semiconductor treater | |
JPH031435A (en) | Ionizing method for mass spectrogram | |
KR100690144B1 (en) | Gas analyzer using plasma | |
JP3240857B2 (en) | Plasma ion mass spectrometer and plasma ion mass spectrometry method | |
JP4028723B2 (en) | Thermal desorption gas analyzer using electron attachment mass spectrometry and analysis method | |
JPH0581858B2 (en) | ||
JP2008026225A (en) | Mass analyzer and mass analyzing method | |
JPS6215747A (en) | Mass spectrometer | |
WO2023002712A1 (en) | Mass spectrometry device and mass spectrometry method | |
JP3284278B2 (en) | Plasma processing equipment | |
US11908671B2 (en) | Ion analyzer | |
JPH11329328A (en) | Electron beam inspection device | |
JP2555010B2 (en) | Mass spectrometer | |
US4889814A (en) | Method and apparatus for detection of trace impurities in an impure inert gas | |
JPH0837175A (en) | Contamination measuring method | |
Callahan et al. | High-pressure fast-atom bombardment mass spectrometry: Collisional stabilization and reactions of alkali halide cluster ions | |
JPS582616B2 (en) | Ion generator | |
JPH04262253A (en) | Glow-discharge mass spectrometry | |
JPH09236582A (en) | Method and device for mass spectrometry | |
WO2023209552A1 (en) | Detection saturation correction and de-coalescence by ion beam modulation | |
Donnelly | In Situ Surface Diagnostics during Plasma-Material Interactions | |
JPH11273615A (en) | Atmospheric ionization mass spectrometry and device |