JPH0581516B2 - - Google Patents

Info

Publication number
JPH0581516B2
JPH0581516B2 JP59085033A JP8503384A JPH0581516B2 JP H0581516 B2 JPH0581516 B2 JP H0581516B2 JP 59085033 A JP59085033 A JP 59085033A JP 8503384 A JP8503384 A JP 8503384A JP H0581516 B2 JPH0581516 B2 JP H0581516B2
Authority
JP
Japan
Prior art keywords
elevator
slip
speed
signal
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59085033A
Other languages
Japanese (ja)
Other versions
JPS60229689A (en
Inventor
Shunsuke Kobashi
Kazuo Maruyama
Noboru Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Tetsuku Kk
Original Assignee
Fuji Tetsuku Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Tetsuku Kk filed Critical Fuji Tetsuku Kk
Priority to JP59085033A priority Critical patent/JPS60229689A/en
Publication of JPS60229689A publication Critical patent/JPS60229689A/en
Publication of JPH0581516B2 publication Critical patent/JPH0581516B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、交流電動機により駆動されるエレ
ベータの制御装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a control device for an elevator driven by an AC motor.

〔従来の技術〕[Conventional technology]

エレベータのかごを駆動する電動機として誘導
電動機を用い、これに可変電圧・可変周波数の交
流電力を供給して電動機の速度制御を行なうもの
があるが、この方式は電動機に印加される電圧・
電流が高調波を含むため、特に低速時(低周波数
時)において電動機や乗かごにトルクリツプルに
起因する大きな振動・騒音が発生し、エレベータ
の乗心地に大きな影響を与える。エレベータにお
いては非常に乗心地を重視しているため、こうし
た振動・騒音は極力防止する必要があり、従来は
高調波成分を取り除くためにパワーフイルタを採
用したり、或いはPWM制御方式の採用に頼つて
いた。
There is a method that uses an induction motor as the motor that drives the elevator car, and controls the speed of the motor by supplying alternating current power with variable voltage and frequency.
Since the current contains harmonics, large vibrations and noise caused by torque ripple occur in the electric motor and the car, especially at low speeds (low frequencies), which greatly affects the ride comfort of the elevator. Since elevators place great emphasis on ride comfort, it is necessary to prevent such vibrations and noise as much as possible. Conventionally, elevators have relied on power filters or PWM control methods to remove harmonic components. It was on.

また、広い速度範囲で良好な運転特性を得るた
め、従来は良好な効率や力率が得られる所定のす
べり周波数の範囲内にすべりを固定した制御を行
なつていた。
Furthermore, in order to obtain good operating characteristics over a wide speed range, conventional control has been performed to fix the slip within a predetermined slip frequency range that provides good efficiency and power factor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、エレベータの乗心地に影響を与えな
いところまで、パワーフイルタにより電動機のト
ルクリツプルを低減させるためには、大容量のコ
ンデンサやリアクトルを必要とし、またPWM制
御方式により行なう場合にはキヤリア周波数を相
当高くする必要があるなど、何れにしても装置が
複雑・高価となる問題点があつた。
However, in order to use a power filter to reduce the torque ripple of the motor to the point where it does not affect the ride quality of the elevator, a large capacity capacitor or reactor is required, and when the PWM control method is used, the carrier frequency must be increased considerably. In either case, there was a problem that the device was complicated and expensive, such as the need to increase the height.

また、他の方法としてすべりを大きくし電動機
の磁束を下げることによつてトルクリツプルを低
減させることも考えられるが、単にすべりを大き
くするのみでは、加速時・減速時の電流値が増大
し、電源設備容量、電圧.周波数変換装置容量、
過電流しや断器容量の増大を招くという問題点が
ある。
Another method is to reduce torque ripple by increasing the slip and lowering the magnetic flux of the motor, but simply increasing the slip will increase the current value during acceleration and deceleration, and the power supply Equipment capacity, voltage. frequency converter capacity,
There are problems with overcurrent and an increase in disconnection capacity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、まず、エレベータにおいては乗心地
重視のため、加速開始時(低速時)は加速度を低
くしており、エレベータの走行ロスも小さいので
電流値が小さく、従つてすべりを大きくして電流
値が多少増加しても、加減速時の最大電流によつ
てほぼ決定される電源容量等には大きな影響を与
えない点に注目し、上記問題点を解決するため
に、電動機のすべりをエレベータの速度又は周波
数によつて変化させる手段を備えたことを特徴と
する。すなわち、エレベータの加速開始時、停止
直前等特に電動機の振動・騒音の大きくなる低速
時にのみ、電動機への一次周波数指令にすべり補
償信号を加算してすべりが大きくなるようにして
いる。
First, the present invention focuses on ride comfort in elevators, so the acceleration is low at the start of acceleration (at low speed), and the running loss of the elevator is also small, so the current value is small. We focused on the fact that even if the value increases slightly, it does not have a large effect on the power supply capacity, etc., which is almost determined by the maximum current during acceleration and deceleration. The invention is characterized in that it includes means for changing the speed or frequency of. That is, the slip compensation signal is added to the primary frequency command to the electric motor to increase the slip only when the elevator starts accelerating, immediately before stopping, and especially at low speeds when the vibration and noise of the electric motor become large.

〔実施例〕〔Example〕

第1図はこの発明による交流エレベータの制御
装置の一実施例を示す構成図である。
FIG. 1 is a block diagram showing an embodiment of an AC elevator control device according to the present invention.

図中、R.S.Tは三相交流電源、1は電源R.S.T
からの入力電流を検出する変流器、2は三相交流
電力を直流に変換するコンバータ、3はコンバー
タ2の出力電流を平滑にする直流リアクトル、4
は直流を可変電圧・可変周波数の交流に変換する
インバータ、5はコンデンサで構成され高調波成
分を吸収するためのパワーフイルタ、6はエレベ
ータを駆動する誘導電動機、7は誘導電動機6の
回転数(エレベータの速度)を検出し速度信号7
aを出力する速度発電機、8は所定の速度指令信
号8aを発生する速度指令発生器、9は速度指令
信号8aと速度信号7aとの偏差信号9aを出力
する加算器、10は偏差信号9aを増巾する速度
調節器、11は速度調節器10の出力をすべり周
波数信号11aとして出力するすべり設定器、1
2はすべり周波数信号11aの極性を判別する極
性判別器、13はエレベータの速度に応じてすべ
り補償信号13aを出力するすべり補償器、14
は速度信号7aとすべり周波数信号11aに更に
すべり補償信号13aを加えたものを一次周波数
指令14aとして出力する加算器、15は電圧信
号を周波数信号に変換するV/F変換器、16は
周波数信号に応じてインバータ4の点弧制御を行
なうパルス分配器、17は整流装置、18は加算
器、19はコンバータ2の出力電流を制御する電
流調節器、20はコンバータ2の位相制御を行な
う位相制御器である。
In the diagram, RST is a three-phase AC power supply, and 1 is the power supply RST.
2 is a converter that converts three-phase AC power into DC; 3 is a DC reactor that smoothes the output current of converter 2; 4
is an inverter that converts direct current into alternating current with variable voltage and variable frequency; 5 is a power filter composed of a capacitor to absorb harmonic components; 6 is an induction motor that drives the elevator; 7 is the rotational speed of induction motor 6 ( Detects the elevator speed) and outputs the speed signal 7.
8 is a speed command generator that generates a predetermined speed command signal 8a; 9 is an adder that outputs a deviation signal 9a between the speed command signal 8a and the speed signal 7a; 10 is a deviation signal 9a 11 is a slip setting device that outputs the output of the speed regulator 10 as a slip frequency signal 11a;
2 is a polarity discriminator that determines the polarity of the slip frequency signal 11a; 13 is a slip compensator that outputs a slip compensation signal 13a according to the speed of the elevator; 14;
1 is an adder that outputs the speed signal 7a and the slip frequency signal 11a plus a slip compensation signal 13a as a primary frequency command 14a; 15 is a V/F converter that converts a voltage signal into a frequency signal; 16 is a frequency signal 17 is a rectifier, 18 is an adder, 19 is a current regulator that controls the output current of converter 2, and 20 is a phase controller that controls the phase of converter 2. It is a vessel.

第2図は、すべり補償器の特性の一実施施例を
示す図で、速度信号7aと一次周波数指令14a
との関係を共に示している。図から明らかなよう
に、すべり補償信号13aは加速開始時、或いは
停止直前の低速時に最大であり、電流値が最大と
なる加速終了付近や減速開始付近、或いは電動機
の振動やトルクリツプルが乗心地にほとんど影響
のない等速時には零となるようにしている。な
お、減速時には、エレベータの負荷状態によつ
て、信号11aの極性が変わるため、それに応じ
て極性判別器により極性を切り替えるようにして
いる。
FIG. 2 is a diagram showing an embodiment of the characteristics of the slip compensator, in which the speed signal 7a and the primary frequency command 14a
It also shows the relationship between As is clear from the figure, the slip compensation signal 13a is at its maximum at the start of acceleration or at low speed just before stopping, and the current value is at its maximum near the end of acceleration or the start of deceleration, or when motor vibration and torque ripple affect ride comfort. It is set to zero at constant velocity, where there is almost no effect. Note that during deceleration, the polarity of the signal 11a changes depending on the load condition of the elevator, so the polarity is switched by a polarity discriminator accordingly.

以上の構成から明らかなように、コンバータ2
の出力電流は速度指令と実際速度との偏差信号9
aの値に応じて制御されるが、インバータ4へ与
えられる一次周波数指令14aには、更に第2図
に示すようなすべり補償信号が加えられるので、
エレベータの低速時にはその分だけすべりが大き
くなるように電動機の制御が行なわれる。
As is clear from the above configuration, converter 2
The output current is the deviation signal 9 between the speed command and the actual speed.
Although it is controlled according to the value of a, a slip compensation signal as shown in FIG. 2 is further added to the primary frequency command 14a given to the inverter 4.
When the elevator speed is low, the electric motor is controlled so that the slip increases accordingly.

第3図は、すべりが大きくなるとトルクリツプ
ルが小さくなることを説明するための図で、(a)は
すべりが小さい場合を、(b)はすべりが大きい場合
をそれぞれ示している。電流形インバータにおい
ては一次電流は方形波となるが、磁束は電動機の
磁気回路・電気回路の遅れのためほぼ正弦波とな
る。このため、転流時には第3図に示すように、
一次電流ベクトルI〓は瞬時に実線から位相差60゜の
一点鎖線へと変化するが、磁束ベクトルΦ〓はほぼ
一定速度で回転する。この結果、転流時のトルク
は電動機定数をKとするKΦ〓IsinθからKΦ〓Isin(θ
+60゜)へと変化し、これがトルクリツプルとな
つて表われる。ここでK及びΦは一定であるの
で、一次電流のトルクに寄与する成分のIsinθか
らIsin(θ+60゜)への変化の度合がすなわちトル
クリツプルの大小に対応することになる。
FIG. 3 is a diagram for explaining that as the slip increases, the torque ripple decreases. (a) shows the case where the slip is small, and (b) shows the case where the slip is large. In a current source inverter, the primary current is a square wave, but the magnetic flux is almost a sine wave due to delays in the magnetic and electric circuits of the motor. Therefore, during commutation, as shown in Figure 3,
The primary current vector I〓 instantly changes from a solid line to a dashed-dotted line with a phase difference of 60°, but the magnetic flux vector Φ〓 rotates at a nearly constant speed. As a result, the torque during commutation is calculated from KΦ〓Isinθ, where K is the motor constant, to KΦ〓Isin(θ
+60°), and this appears as torque ripple. Since K and Φ are constant here, the degree of change in the component contributing to the torque of the primary current from Isin θ to Isin (θ+60°) corresponds to the magnitude of the torque ripple.

一方、すべりが大きくなると一次電流Iは増加
するが、第3図bに示すように一次電流ベクトル
I〓と磁束ベクトルΦ〓の位相差θも大きくなり、そ
の結果、第3図aの場合と比較して明らかなよう
にトルクに寄与する電流成分の変化、すなわち
IsinθからIsin(θ+60゜)への変化の度合は小さく
なり、それに対応してトルクリツプルも小さくな
る(ただしθ≦60゜)。
On the other hand, as the slip increases, the primary current I increases, but as shown in Figure 3b, the primary current vector
The phase difference θ between I〓 and the magnetic flux vector Φ〓 also increases, and as a result, as is clear from the case of Fig. 3a, the change in the current component contributing to the torque, i.e.
The degree of change from Isin θ to Isin (θ + 60°) becomes smaller, and the torque ripple also becomes correspondingly smaller (however, θ≦60°).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、エレベータの低速時にのみす
べりを大きくすることができるので、特に低速時
に大となる電動機のトルクリツプルに起因する振
動・騒音が低減されてエレベータの乗心地を改善
でき、しかも電流値が最大となる時点ではすべり
は従来と同様小さくなるので、電源容量を大きく
する必要がない。また、パワーフイルタを採用す
る場合にも、トルクリツプルが小さくなるのでコ
ンデンサやリアクトルは容量の小さなもので済
む。
According to the present invention, since the slip can be increased only when the elevator is at low speed, the vibration and noise caused by the torque ripple of the electric motor, which becomes large especially at low speed, can be reduced, and the ride comfort of the elevator can be improved.Moreover, the current value At the point when is at its maximum, the slip is as small as before, so there is no need to increase the power supply capacity. Furthermore, even when a power filter is used, the torque ripple is reduced, so a capacitor or reactor with a small capacity can be used.

また、更に電動機の振動・騒音・トルクリツプ
ルの低減が要求される場合には、上記の実施例に
加えて、エレベータの低速時にPWM制御方式を
採用することも容易に実現できる。この場合に
も、PWM制御装置は従来に比べてトルクリツプ
ルが小さいのでキヤリア周波数は低くてよく、従
つて高速スイツチングサイリスタによらなくても
通常の位相制御用サイリスタで構成できる等、従
来のPWM制御装置より簡素で安価な構成とする
ことができる。
Further, if further reduction in vibration, noise, and torque ripple of the electric motor is required, in addition to the above embodiment, it is also possible to easily implement a PWM control method when the elevator is running at low speed. In this case as well, the PWM control device has a smaller torque ripple than the conventional one, so the carrier frequency can be lower, and therefore it can be configured with a normal phase control thyristor instead of a high-speed switching thyristor. The structure can be simpler and cheaper than the device.

なお、以上は電流形インバータを例にとつて説
明を行なつたが、電圧形インバータを用いた場合
にも同様の効果を得ることができる。
Although the above explanation has been made using a current source inverter as an example, similar effects can be obtained when a voltage source inverter is used.

また、微速で再床合せ動作を行なう自動レベリ
ング運転にも本発明を適用できることは言うまで
もなく、その他任意の速度(例えばかごやロープ
系が共振する速度)においてすべりを大きくし、
共振による振動を低減させることもできる。
It goes without saying that the present invention can also be applied to automatic leveling operation in which re-leveling is performed at a very low speed, and the slippage can be increased at any other speed (for example, the speed at which the car or rope system resonates).
It is also possible to reduce vibrations due to resonance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による交流エレベータの制御装
置の一実施例を示す構成図、第2図はすべり補償
器の特性の一実施例を示す図、第3図はすべりと
トルクリツプルの関係を説明するための図であ
る。 2……コンバータ、3……直流リアクトル、4
……インバータ、5……パワーフイルタ、6……
誘導電動機、7……速度発電機、8……速度指令
発生器、10……速度調節器、11……すべり設
定器、12……極性判別器、13……すべり補償
器、15……V/F変換器、16……パルス分配
器。
Fig. 1 is a block diagram showing an embodiment of an AC elevator control device according to the present invention, Fig. 2 is a diagram showing an embodiment of the characteristics of a slip compensator, and Fig. 3 explains the relationship between slip and torque ripple. This is a diagram for 2...Converter, 3...DC reactor, 4
...Inverter, 5...Power filter, 6...
Induction motor, 7... Speed generator, 8... Speed command generator, 10... Speed regulator, 11... Slip setter, 12... Polarity discriminator, 13... Slip compensator, 15... V /F converter, 16...Pulse distributor.

Claims (1)

【特許請求の範囲】[Claims] 1 商用交流電源をコンバータによつて直流に変
換し、これをインバータで可変周波数の交流電力
に変換し、この変換された交流電力によつて誘導
電動機を駆動し、設定されたすべり周波数とエレ
ベータの帰還速度とを加算した一次周波数指令に
従つてエレベータの速度制御を行うようにしたも
のにおいて、エレベータの加速開始及び停止直前
の低速時にのみすべり補償信号を出力するすべり
補償器を備え、該すべり補償信号を前記一次周波
数指令に加算することによりエレベータの前記低
速時のみすべりが大きくなるように構成したこと
を特徴とする交流エレベータの制御装置。
1 Convert commercial AC power to DC using a converter, convert this to variable frequency AC power using an inverter, drive an induction motor with this converted AC power, and adjust the set slip frequency and elevator The elevator speed control is performed according to the primary frequency command obtained by adding the feedback speed, and the elevator is equipped with a slip compensator that outputs a slip compensation signal only at low speeds just before the start of acceleration and stop of the elevator, and the slip compensation A control device for an AC elevator, characterized in that the control device for an AC elevator is configured to increase slip only at the low speed of the elevator by adding a signal to the primary frequency command.
JP59085033A 1984-04-25 1984-04-25 Controller of ac elevator Granted JPS60229689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59085033A JPS60229689A (en) 1984-04-25 1984-04-25 Controller of ac elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59085033A JPS60229689A (en) 1984-04-25 1984-04-25 Controller of ac elevator

Publications (2)

Publication Number Publication Date
JPS60229689A JPS60229689A (en) 1985-11-15
JPH0581516B2 true JPH0581516B2 (en) 1993-11-15

Family

ID=13847384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59085033A Granted JPS60229689A (en) 1984-04-25 1984-04-25 Controller of ac elevator

Country Status (1)

Country Link
JP (1) JPS60229689A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113910A (en) * 1975-03-31 1976-10-07 Toshiba Corp Control device for electric car

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113910A (en) * 1975-03-31 1976-10-07 Toshiba Corp Control device for electric car

Also Published As

Publication number Publication date
JPS60229689A (en) 1985-11-15

Similar Documents

Publication Publication Date Title
EP0022267B1 (en) Control system for induction motor-driven car
JPS63287397A (en) Induction motor controller
JPH03169291A (en) Controller of induction motor
JPH10164883A (en) Inverter control apparatus
JPH0581516B2 (en)
JP3554798B2 (en) Electric car control device
JPS60139186A (en) Controller for motor
JP3494677B2 (en) Voltage type inverter device
Chung et al. A new configuration of drive system for high speed gearless elevator
JPH0613392B2 (en) AC elevator control device
JPH027241B2 (en)
JPH06135653A (en) Controller for ac elevator
JPH05262469A (en) Control device for elevator
JPH0585470B2 (en)
JPS6013490A (en) Speed controller of elevator
JP2527149B2 (en) Voltage source inverter control circuit
JPH0739010A (en) Control device of ac electric rolling stock
JP2732619B2 (en) Electric car control device
JP2689601B2 (en) Power converter with regenerative function
WO2023113726A1 (en) Half-closed-loop scalar control method for torque/speed control of squirrel-cage induction machines
JPS59188301A (en) Controller of electric railcar
JPH0467408B2 (en)
JPS6077607A (en) Controlling method of induction motor
JPS63314193A (en) Method of controlling flux of motor
JPH0337363B2 (en)