JPH0581081B2 - - Google Patents

Info

Publication number
JPH0581081B2
JPH0581081B2 JP60233964A JP23396485A JPH0581081B2 JP H0581081 B2 JPH0581081 B2 JP H0581081B2 JP 60233964 A JP60233964 A JP 60233964A JP 23396485 A JP23396485 A JP 23396485A JP H0581081 B2 JPH0581081 B2 JP H0581081B2
Authority
JP
Japan
Prior art keywords
microstrip line
local oscillation
oscillation
frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60233964A
Other languages
Japanese (ja)
Other versions
JPS6294002A (en
Inventor
Yasuo Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23396485A priority Critical patent/JPS6294002A/en
Publication of JPS6294002A publication Critical patent/JPS6294002A/en
Publication of JPH0581081B2 publication Critical patent/JPH0581081B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Superheterodyne Receivers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、マイクロ波帯の複数の周波数の信号
を受信して同一の中間周波数信号に変換する混合
回路を備えたマイクロ波受信装置、例えば無線標
定業務用のマイクロ波受信装置に関する。 〔従来の技術〕 従来、この種マイクロ波受信装置の1例である
無線標定業務用のマイクロ波受信装置は、無線標
定業務に割り当てられているマイクロ波帯の2つ
の周波数10.525GHz、24.15GHzの信号をヘテロダ
イン受信するため、その中間周波数変換部が例え
ば第5図、第6図又は第7図に示すように構成さ
れる。 そして、第5図の中間周波数変換部は、
10.525GHzの受信信号(以下第1受信信号と称す
る)、24.15GHzの受信信号(以下第2受信信号と
称する)それぞれが入力される2個の混合回路
1,2に、2個の局部発振回路3,4の第1、第
2受信信号の局部発振周波数10.0GHz、23.625G
Hzそれぞれの発振信号を供給し、混合回路1,2
により第1、第2受信信号を同一周波数0.525G
Hzの中間周波数信号それぞれに変換し、両混合回
路1,2の中間周波数信号を中間周波数増幅器5
を介して後段回路部に出力する。 つぎに、第6図の中間周波数変換部は、第1、
第2受信信号が入力される混合回路6に、局部発
振回路7の局部発振周波数9.525GHzの発振信号
を供給し、混合回路6により第1、第2受信信号
を周波数1.0GHz、14.625GHzそれぞれの中間周波
数信号に変換する。 また、混合回路6に接続された混合回路8は局
部発振回路9の局部発振周波数13.625GHzの発振
信号が供給される。 そして、混合回路6の周波数1.0GHz、14.625G
Hzの中間周波数信号は二つに分岐して第1中間周
波数増幅器10、混合回路8に供給される。 このとき、第1中間周波数増幅器10は1.0G
Hzの中間周波数を1.0GHz用フイルタにより抽出
して増幅し、周波数1.0GHzの一方の1次増幅中
間周波数の信号を出力する。 この1次増幅中間周波数の信号が周波数
10.525GHzの第1受信信号の中間周波数信号であ
る。 また、混合回路8は局部発振回路9の13.625G
Hzの発振信号により、1.0GHz、14.625GHzの中間
周波数信号を12.625GHz、1.0GHzの1次増幅中間
周波数信号それぞれに変換する。 この両1次増幅中間周波数信号のうちの1.0G
Hzの信号が第2受信信号の中間周波数信号であ
る。 そして、第1中間周波数増幅器10、混合回路
8の出力信号は第2中間周波数増幅器11に供給
され、この増幅器11は1.0GHz用フイルタによ
り、第1中間周波数増幅器10、混合回路8の周
波数1.0GHzの両1次増幅中間周波数信号を抽出
して後段回路部に出力する。 つぎに、第7図の中間周波数変換部は、第1、
第2受信信号が入力される混合回路12に、逆並
列(アンチパラレル)接続されたミキサダイオー
ドD1,D2を設けるとともに、局部発振回路1
3から混合回路12に局部発振周波数5.766GHz
(=fp)の発振信号を供給し、混合回路12によ
り第1受信信号の周波数と発振信号の2逓倍周波
数2fpとの差から周波数1.007GHzの第1受信信号
の中間周波数信号を形成するとともに、第2受信
信号の周波数と発振信号の4逓倍周波数4fpとの
差から周波数1.086GHzの第2受信信号の中間周
波数信号を形成し、両中間周波数信号を中間周波
数増幅器14を介して後段回路部に出力する。 一方、例えば電子通信学会の信学技報MW78−
48(1978年発行)の75〜80頁「6〜12GHz通過形
誘電体共振器トランジスタ発振器」には、電界効
果トランジスタの負性抵抗特性に基づく誘電体共
振器の共振を利用し、電界効果トランジスタとマ
イクロストリツプ線路との組合せにより、小型、
軽量で良好な特性のマイクロ波帯の発振器を形成
することが記載されている。 なお、誘電体共振器には、前記信学技報に記載
されている通過型のもののほかに、帰還型、反射
型のものがある。 〔発明が解決しようとする課題〕 前記第5図、第6図の受信装置の場合は、マイ
クロ波帯の2周波数の信号を受信するために、2
個の混合回路1,2又は6,8と、2個の局部発
振回路3,4又は7,9を設ける必要があり、構
成が複雑化する問題点がある。 また、前記第7図の受信装置の場合は、混合回
路12と局部発振回路13とをそれぞれ1つだけ
設けて中間周波数変換部が形成されるが、この場
合、局部発振回路13の発振信号を2逓倍、4逓
倍して用いるのと等価であるため、第1、第2受
信信号に混合される発振信号のレベルが逓倍数に
比例して減少し、混合回路12の変換損失が大き
くなつて混合回路12から出力される両受信信号
の中間周波数信号のレベルが低下する問題点があ
る。 本発明は、混合回路、局部発振回路をそれぞれ
1つだけ設けた簡単な構成で混合回路の変換損失
を大きくすることなく、マイクロ波帯の複数の受
信信号を同一の中間周波数信号にレベル差なく変
換することを目的とする。 〔課題を解決するための手段〕 前記の目的を達成するために、本発明のマイク
ロ波受信装置においては、マイクロ波帯の複数の
周波数の受信信号を同一周波数の中間周波数信号
に変換して出力する混合回路と、 この混合回路に各受信信号の局部発振周波数の
発振信号を出力する局部発振回路とを備え、 この局部発振回路を、マイクロ波発振用の電界
効果トランジスタと、端部が電界効果トランジス
タのゲートに接続された結合用のマイクロストリ
ツプ線路と、端部が電界効果トランジスタのドレ
インに接続されたバイアス用のマイクロストリツ
プ線路と、端部が電界効果トランジスタのソース
に接続された出力用のマイクロストリツプ線路
と、結合用のマイクロストリツプ線路及びバイア
ス用のマイクロストリツプ線路に高周波結合さ
れ、電界効果トランジスタの負生抵抗特性により
周波数の異なる複数の共振モードの発振信号が出
力用のマイクロストリツプ線路に導出される誘電
体共振器と、出力用のマイクロストリツプ線路の
各発振信号のうちの各受信信号の局部発振周波数
の発振信号を混合回路に出力するフイルタとによ
り形成する。 〔作用〕 前記のように構成された本発明のマイクロ波受
信装置の場合、局部発振回路の電界効果トランジ
スタの負生抵抗特性に基づき、誘電体共振器が厚
み、幅などによつて設定される周波数の異なる複
数の共振モードで共振するとともに、この共振に
よつて発生するマイクロ波帯の各周波数の発振信
号がほぼ同一の大きなレベルになる。 そして、各受信信号の局部発振周波数の発振信
号が抽出されてフイルタから混合回路に出力さ
れ、このとき、抽出された各受信信号の局部発振
周波数の発振信号がほぼ同一の大きなレベルにな
り、局部発振回路、混合回路をそれぞれ1個だけ
設けた簡単な構成により、混合回路の変換損失を
大きくすることなく、各受信信号が同一の中間周
波数信号に変換される。 〔実施例〕 1実施例について、第1図ないし第4図を参照
して説明する。 第1図は無線標定業務用のマイクロ波受信装置
を示し、同図において、15はマイクロ波帯の
10.525GHz、24.15GHzの第1、第2受信信号が入
力される混合回路、16は混合回路15に接続さ
れた局部発振回路であり、第1、第2受信信号の
局部発振周波数13.625GHz、27.250GHzの発振信
号を混合回路15に同時に出力する。17は混合
回路15に接続された中間周波増幅器であり、第
1、第2受信信号とそれぞれの局部発振周波数の
発振信号とを混合して形成された同一周波数の中
間周波数信号、すなわち3.1GHzの中間周波数信
号を増幅して後段回路部に出力する。 そして、局部発振回路16は、第2図a,bに
示すように直径D、高さLの円柱状の誘電体共振
器18を用いた第3図の帰還形誘電体共振器と図
示省略された方向性結合器からなる広帯域フイル
タとにより形成される。 第3図において、19はマイクロ波発振用の電
界効果トランジスタ、20は誘電体共振器18の
外周に近接して設けられた結合用のマイクロスト
リツプ線路であり、一端がトランジスタ19のゲ
ートGに接続されるとともに他端がアースされて
いる。 21はバイアス用のマイクロストリツプ線路で
あり、結合用のマイクロストリツプ線路20に直
角に、かつ誘電体共振器18の外周に近接して設
けられ、一端がトランジスタ19のドレインDに
接続されるとともに他端がバイアス電源に接続さ
れている。 22は結合用のマイクロストリツプ線路20の
延長線上に誘電体共振器18から離して設けられ
た出力用のマイクロストリツプ線路であり、一端
がトランジスタ19のソースSに接続されるとと
もに他端が抵抗23を介してアースされている。 そして、トランジスタ19のドレインD、バイ
アス用のマイクロストリツプ線路21、誘電体共
振器18、結合用のマイクロストリツプ線路20
及びトランジスタ19のゲートGの経路により、
発振用の帰還回路が形成され、バイアス用のマイ
クロストリツプ線路21への直流バイアス電圧の
印加により、トランジスタ19のゲートG、ソー
スS間の負性抵抗特性に基づき、誘電体共振器1
8が直径D、高さL等で設定される複数の共振モ
ードで共振し、誘電体共振器18の各共振モード
の発振信号が出力用のマイクロストリツプ線路2
2に同時に導出される。 なお、第3図は帰還型誘電体共振器の各共振モ
ードの発振周波数frは、つぎのコーン(Cohn)
の論理式から求められ、式中のx(n)はベツセル関
数Jn(x)を示し、λ0=c/fr(cは光速)である。
[Industrial Application Field] The present invention is applicable to a microwave receiver equipped with a mixing circuit that receives signals of multiple frequencies in the microwave band and converts them into the same intermediate frequency signal, such as a microwave receiver for radio location work. This invention relates to a receiving device. [Prior Art] Conventionally, a microwave receiving device for radio location service, which is an example of this type of microwave receiving device, has been configured to operate at two frequencies of the microwave band, 10.525 GHz and 24.15 GHz, which are assigned to radio location service. In order to receive the signal heterodyne, the intermediate frequency converter is configured as shown in FIG. 5, FIG. 6, or FIG. 7, for example. The intermediate frequency conversion section in FIG.
Two local oscillation circuits are connected to two mixing circuits 1 and 2 into which a 10.525 GHz received signal (hereinafter referred to as the first received signal) and a 24.15 GHz received signal (hereinafter referred to as the second received signal) are respectively input. Local oscillation frequency of the first and second received signals of 3 and 4: 10.0GHz, 23.625G
Hz oscillation signals are supplied to mixer circuits 1 and 2.
The first and second received signals are the same frequency 0.525G.
The intermediate frequency signals of both mixing circuits 1 and 2 are converted into intermediate frequency signals of Hz, and the intermediate frequency signals of both mixing circuits 1 and 2 are sent to an intermediate frequency amplifier 5.
It is output to the subsequent circuit section via. Next, the intermediate frequency conversion section in FIG.
An oscillation signal with a local oscillation frequency of 9.525 GHz from the local oscillation circuit 7 is supplied to the mixing circuit 6 into which the second received signal is input, and the mixing circuit 6 receives the first and second received signals at frequencies of 1.0 GHz and 14.625 GHz, respectively. Convert to intermediate frequency signal. Further, the mixing circuit 8 connected to the mixing circuit 6 is supplied with an oscillation signal of a local oscillation frequency of 13.625 GHz from the local oscillation circuit 9. And the frequency of mixing circuit 6 is 1.0GHz, 14.625G
The Hz intermediate frequency signal is branched into two and supplied to a first intermediate frequency amplifier 10 and a mixing circuit 8. At this time, the first intermediate frequency amplifier 10 is 1.0G
The intermediate frequency of Hz is extracted and amplified by a 1.0 GHz filter, and one primary amplified intermediate frequency signal with a frequency of 1.0 GHz is output. This primary amplified intermediate frequency signal is the frequency
This is an intermediate frequency signal of the first received signal of 10.525 GHz. In addition, the mixing circuit 8 is 13.625G of the local oscillation circuit 9.
The Hz oscillation signal converts intermediate frequency signals of 1.0 GHz and 14.625 GHz into primary amplified intermediate frequency signals of 12.625 GHz and 1.0 GHz, respectively. 1.0G of both primary amplified intermediate frequency signals
The Hz signal is the intermediate frequency signal of the second received signal. Then, the output signals of the first intermediate frequency amplifier 10 and the mixing circuit 8 are supplied to the second intermediate frequency amplifier 11, and this amplifier 11 uses a 1.0 GHz filter to pass the output signals of the first intermediate frequency amplifier 10 and the mixing circuit 8 to a frequency of 1.0 GHz. Both primary amplified intermediate frequency signals are extracted and output to the subsequent circuit section. Next, the intermediate frequency conversion section in FIG.
The mixing circuit 12 to which the second received signal is input is provided with mixer diodes D1 and D2 connected in antiparallel, and the local oscillation circuit 1
Local oscillation frequency 5.766GHz from 3 to mixing circuit 12
(= fp), and the mixing circuit 12 forms an intermediate frequency signal of the first received signal with a frequency of 1.007 GHz from the difference between the frequency of the first received signal and the double frequency 2fp of the oscillation signal, An intermediate frequency signal of the second received signal with a frequency of 1.086 GHz is formed from the difference between the frequency of the second received signal and the quadruple frequency 4fp of the oscillation signal, and both intermediate frequency signals are sent to the subsequent circuit section via the intermediate frequency amplifier 14. Output. On the other hand, for example, IEICE technical report MW78-
48 (published in 1978), pages 75 to 80, "6 to 12 GHz pass-through dielectric resonator transistor oscillator," which utilizes the resonance of a dielectric resonator based on the negative resistance characteristics of field effect transistors. The combination of microstrip line and microstrip line makes it compact and
It is described that a lightweight microwave band oscillator with good characteristics can be formed. In addition to the pass-through type dielectric resonator described in the above-mentioned IEICE technical report, there are also feedback-type and reflection-type dielectric resonators. [Problems to be Solved by the Invention] In the case of the receiving apparatus shown in FIGS. 5 and 6, in order to receive signals of two frequencies in the microwave band,
Since it is necessary to provide two mixing circuits 1, 2 or 6, 8 and two local oscillation circuits 3, 4 or 7, 9, there is a problem that the configuration becomes complicated. Further, in the case of the receiver shown in FIG. 7, the intermediate frequency converter is formed by providing only one mixing circuit 12 and one local oscillation circuit 13, but in this case, the oscillation signal of the local oscillation circuit 13 is Since this is equivalent to using a signal multiplied by 2 or 4, the level of the oscillation signal mixed with the first and second received signals decreases in proportion to the multiplication number, and the conversion loss of the mixing circuit 12 increases. There is a problem in that the level of the intermediate frequency signal of both received signals outputted from the mixing circuit 12 decreases. The present invention has a simple configuration with only one mixing circuit and one local oscillation circuit, and without increasing the conversion loss of the mixing circuit, multiple reception signals in the microwave band can be converted into the same intermediate frequency signal without level differences. The purpose is to convert. [Means for Solving the Problems] In order to achieve the above object, the microwave receiving device of the present invention converts received signals of multiple frequencies in the microwave band into intermediate frequency signals of the same frequency and outputs the same. and a local oscillation circuit that outputs an oscillation signal at the local oscillation frequency of each received signal to this mixing circuit. A coupling microstrip line is connected to the gate of the transistor, a biasing microstrip line is connected to the drain of the field effect transistor at its end, and a microstrip line is connected to the source of the field effect transistor at its end. The microstrip line for output, the microstrip line for coupling, and the microstrip line for bias are high-frequency coupled, and multiple resonant modes with different frequencies are generated due to the negative resistance characteristics of the field effect transistor. A dielectric resonator from which an oscillation signal is led out to an output microstrip line, and an oscillation signal at the local oscillation frequency of each received signal of each oscillation signal of the output microstrip line to a mixing circuit. It is formed by an output filter. [Operation] In the microwave receiving device of the present invention configured as described above, the thickness and width of the dielectric resonator are set based on the negative resistance characteristics of the field effect transistor of the local oscillation circuit. It resonates in a plurality of resonance modes with different frequencies, and the oscillation signals of each frequency in the microwave band generated by this resonance have almost the same large level. Then, the oscillation signal at the local oscillation frequency of each received signal is extracted and output from the filter to the mixing circuit. At this time, the oscillation signal at the local oscillation frequency of each extracted received signal becomes almost the same large level, With a simple configuration in which only one oscillation circuit and one mixing circuit are provided, each received signal is converted into the same intermediate frequency signal without increasing the conversion loss of the mixing circuit. [Example] An example will be described with reference to FIGS. 1 to 4. Figure 1 shows a microwave receiver for radio location work. In the figure, 15 indicates the microwave band.
A mixing circuit into which the first and second received signals of 10.525 GHz and 24.15 GHz are input, 16 is a local oscillation circuit connected to the mixing circuit 15, and the local oscillation frequencies of the first and second received signals are 13.625 GHz and 27.250 GHz. GHz oscillation signals are simultaneously output to the mixing circuit 15. 17 is an intermediate frequency amplifier connected to the mixing circuit 15, which mixes the first and second received signals and the oscillation signals of the respective local oscillation frequencies to form intermediate frequency signals of the same frequency, that is, 3.1 GHz. The intermediate frequency signal is amplified and output to the subsequent circuit section. The local oscillation circuit 16 is a feedback type dielectric resonator (not shown) shown in FIG. 3 using a cylindrical dielectric resonator 18 having a diameter D and a height L as shown in FIGS. 2a and 2b. and a broadband filter consisting of a directional coupler. In FIG. 3, 19 is a field effect transistor for microwave oscillation, 20 is a coupling microstrip line provided close to the outer periphery of the dielectric resonator 18, and one end is connected to the gate G of the transistor 19. and the other end is grounded. A bias microstrip line 21 is provided at right angles to the coupling microstrip line 20 and close to the outer periphery of the dielectric resonator 18, and one end is connected to the drain D of the transistor 19. and the other end is connected to a bias power supply. Reference numeral 22 designates an output microstrip line provided on an extension of the coupling microstrip line 20 and away from the dielectric resonator 18, one end of which is connected to the source S of the transistor 19, and the other end connected to the source S of the transistor 19. The end is grounded via a resistor 23. The drain D of the transistor 19, the microstrip line 21 for bias, the dielectric resonator 18, and the microstrip line 20 for coupling.
and the path of the gate G of the transistor 19,
A feedback circuit for oscillation is formed, and by applying a DC bias voltage to the bias microstrip line 21, the dielectric resonator 1 is activated based on the negative resistance characteristic between the gate G and source S of the transistor 19.
8 resonates in multiple resonance modes set by the diameter D, height L, etc., and the oscillation signal of each resonance mode of the dielectric resonator 18 is output to the microstrip line 2.
2 are derived simultaneously. In addition, Fig. 3 shows that the oscillation frequency fr of each resonance mode of the feedback dielectric resonator is expressed by the following Cohn equation.
x(n) in the equation represents the Bessel function Jn(x), and λ 0 =c/fr (c is the speed of light).

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように構成されているた
め、以下に記載する効果を奏する。 局部発振回路16が誘電体共振器18、電界効
果トランジスタ19及び結合用、バイアス用、出
力用のマイクロストリツプ線路20,21,22
と、出力用のマイクロストリツプ線路22に導出
された周波数の異なる各共振モードの発振信号か
ら各受信信号の局部発振周波数の発振信号を抽出
するフイルタとにより形成され、このフイルタか
ら混合回路15に各受信信号の局部発振周波数の
ほぼ同一の大きなレベルの発振信号が出力されて
各受信信号が同一の中間周波数信号に変換される
ため、混合回路、局部発振回路をそれぞれ1個だ
け設けた簡単な構成で、混合回路の変換損失を大
きくすることなく、マイクロ波帯の周波数の異な
る各受信信号を同じレベルの同一周波数の中間周
波数信号に変換することができる。
Since the present invention is configured as described above, it produces the effects described below. The local oscillation circuit 16 includes a dielectric resonator 18, a field effect transistor 19, and microstrip lines 20, 21, 22 for coupling, bias, and output.
and a filter that extracts an oscillation signal at the local oscillation frequency of each received signal from the oscillation signal of each resonance mode with a different frequency derived to the output microstrip line 22. Since a high-level oscillation signal with almost the same local oscillation frequency as each received signal is output and each received signal is converted into the same intermediate frequency signal, it is simple to install only one mixing circuit and one local oscillation circuit. With this configuration, it is possible to convert received signals of different frequencies in the microwave band into intermediate frequency signals of the same frequency and the same level without increasing the conversion loss of the mixing circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明のマイクロ波受信
装置の1実施例を示し、第1図はブロツク図、第
2図a,bは局部発振回路に設けられた誘電体共
振器の平面図、正面図、第3図は局部発振回路の
一部の詳細な結線図、第4図は局部発振回路から
出力された発振信号の周波数特性図、第5図、第
6図、第7図はそれぞれ従来装置のブロツク図で
ある。 15……混合回路、16……局部発振回路、1
8……誘電体共振器、19……電界効果トランジ
スタ、20,21,22……結合用、バイアス
用、出力用のマイクロストリツプ線路。
1 to 4 show one embodiment of the microwave receiving device of the present invention, FIG. 1 is a block diagram, and FIGS. 2a and 2b are plan views of a dielectric resonator provided in a local oscillation circuit. , front view, Figure 3 is a detailed wiring diagram of a part of the local oscillation circuit, Figure 4 is a frequency characteristic diagram of the oscillation signal output from the local oscillation circuit, Figures 5, 6, and 7 are FIG. 3 is a block diagram of a conventional device. 15...Mixing circuit, 16...Local oscillation circuit, 1
8...Dielectric resonator, 19...Field effect transistor, 20, 21, 22...Microstrip line for coupling, bias, and output.

Claims (1)

【特許請求の範囲】 1 マイクロ波帯の複数の周波数の受信信号を同
一周波数の中間周波数信号に変換して出力する混
合回路と、 該混合回路に前記各受信信号の局部発振周波数
の発振信号を出力する局部発振回路とを備え、 前記局部発振回路を、 マイクロ波発振用の電界効果トランジスタと、
端部が前記電界効果トランジスタのゲートに接続
された結合用のマイクロストリツプ線路と、 端部が前記電界効果トランジスタのドレインに
接続されたバイアス用のマイクロストリツプ線路
と、 端部が前記電界効果トランジスタのソースに接
続された出力用のマイクロストリツプ線路と、 前記結合用のマイクロストリツプ線路及び前記
バイアス用のマイクロストリツプ線路に高周波結
合され、前記電界効果トランジスタの負性抵抗特
性により周波数の異なる複数の共振モードの発振
信号が前記出力用のマイクロストリツプ線路に導
出される誘電体共振器と、 前記出力用のマイクロストリツプ線路の各発振
信号のうちの前記各受信信号の局部発振周波数の
発振信号を前記混合回路に出力するフイルタとに
より形成したことを特徴とするマイクロ波受信装
置。
[Scope of Claims] 1. A mixing circuit that converts received signals of a plurality of frequencies in the microwave band into intermediate frequency signals of the same frequency and outputs the same, and an oscillation signal of a local oscillation frequency of each of the received signals to the mixing circuit. a local oscillation circuit for outputting the local oscillation circuit, the local oscillation circuit comprising a field effect transistor for microwave oscillation;
a coupling microstrip line having an end connected to the gate of the field effect transistor; a biasing microstrip line having an end connected to the drain of the field effect transistor; An output microstrip line connected to the source of the field effect transistor, and high frequency coupled to the coupling microstrip line and the bias microstrip line, and a negative polarity of the field effect transistor. a dielectric resonator in which oscillation signals in a plurality of resonant modes having different frequencies depending on resistance characteristics are guided to the output microstrip line; A microwave receiving device comprising a filter that outputs an oscillation signal at a local oscillation frequency of each received signal to the mixing circuit.
JP23396485A 1985-10-19 1985-10-19 Microwave receiver Granted JPS6294002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23396485A JPS6294002A (en) 1985-10-19 1985-10-19 Microwave receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23396485A JPS6294002A (en) 1985-10-19 1985-10-19 Microwave receiver

Publications (2)

Publication Number Publication Date
JPS6294002A JPS6294002A (en) 1987-04-30
JPH0581081B2 true JPH0581081B2 (en) 1993-11-11

Family

ID=16963391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23396485A Granted JPS6294002A (en) 1985-10-19 1985-10-19 Microwave receiver

Country Status (1)

Country Link
JP (1) JPS6294002A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770928B2 (en) * 1987-03-05 1995-07-31 日本放送協会 Frequency converter
JPH07118613B2 (en) * 1990-06-14 1995-12-18 島田理化工業株式会社 Low noise frequency converter for satellite broadcasting
JP4911613B2 (en) * 2007-06-12 2012-04-04 独立行政法人情報通信研究機構 Microwave / millimeter wave communication equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687756U (en) * 1979-12-11 1981-07-14
JPS5957007U (en) * 1982-10-06 1984-04-13 ソニー株式会社 Dielectric resonator frequency adjustment mechanism

Also Published As

Publication number Publication date
JPS6294002A (en) 1987-04-30

Similar Documents

Publication Publication Date Title
KR100196241B1 (en) Microwave mixing circuit
EP0911963A1 (en) Microwave mixing circuitry and down-converter
US4592095A (en) Microwave FET mixer arranged to receive RF input at gate electrode
US5799248A (en) Quasi-double balanced passive reflection FET mixer
US5826183A (en) Circuit for simultaneous frequency doubler and mixer
US5732345A (en) Quasi-double balanced dual-transformer dual FET mixer, which achieves better isolation by using a first and second diplexer, and a transmission line RF balun
US4677691A (en) Microwave receiver
JP2563338B2 (en) Low noise converter
JPH03188702A (en) Matrix structure mixer
JPH0581081B2 (en)
US5732344A (en) Additive HF mixer
US5748049A (en) Multi-frequency local oscillators
JP2910421B2 (en) Microwave oscillator
US20010055958A1 (en) Microwave oscillator an low-noise converter using the same
JPS6395707A (en) Frequency converter
KR920001545B1 (en) Dual band frequency converter for satellite communication
KR900001526B1 (en) Low noise frequency converter for c band and ku band of satellite
KR950005703Y1 (en) The high-output oscillator of satellite broadcasting receiver convertor
JP2848617B2 (en) Frequency doubler
JPH02128506A (en) Oscillation mixing circuit
JPH071854Y2 (en) Frequency converter
KR950010248B1 (en) Low noise frequency transitting circuit
WO1997023035A1 (en) Triple-balanced passive transmission fet mixer
KR880002861Y1 (en) Fixed local oscillator for block type frequency converter
KR900001527B1 (en) Low noise block converter for satellite broadcasting