JPH0580828B2 - - Google Patents

Info

Publication number
JPH0580828B2
JPH0580828B2 JP59040544A JP4054484A JPH0580828B2 JP H0580828 B2 JPH0580828 B2 JP H0580828B2 JP 59040544 A JP59040544 A JP 59040544A JP 4054484 A JP4054484 A JP 4054484A JP H0580828 B2 JPH0580828 B2 JP H0580828B2
Authority
JP
Japan
Prior art keywords
substrate
insulating film
semiconductor
polycrystalline
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59040544A
Other languages
Japanese (ja)
Other versions
JPS60186036A (en
Inventor
Tetsutada Sakurai
Katsutoshi Izumi
Mamoru Obara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4054484A priority Critical patent/JPS60186036A/en
Publication of JPS60186036A publication Critical patent/JPS60186036A/en
Publication of JPH0580828B2 publication Critical patent/JPH0580828B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体集積回路装置に用いる誘電体分
離形の半導体基板の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a dielectrically isolated type semiconductor substrate used in a semiconductor integrated circuit device.

〔従来技術〕[Prior art]

半導体集積回路装置の中の各回路素子を絶縁分
離する最も安価で容易な方法はPN接合分離法で
あるが、高耐圧特性、低漏れ電流特性、低雑音特
性、高速特性等を必要とする場合は、各半導体島
の間を絶縁膜で分離した誘電体分離構造を採用す
ることが得策である。この構造は、例えば特開昭
41−16707(昭和39年8月19日出願)公報に明記さ
れたように集積回路素子を製作した複数の半導体
島が多結晶シリコン(Si)からなる支持基板に収
容されていることを特徴とする。なお、この支持
基板は、いわゆる気相成長法を用いて絶縁膜上に
堆積されるために、多結晶とならざるを得ないも
のである。また、このような支持基板の強化等を
目的として、例えば特開昭52−97686(昭和51年2
月12日出願)公報に明記されたように多結晶Siと
絶縁膜とからなる構成とすることもある。
The cheapest and easiest method for insulating and isolating each circuit element in a semiconductor integrated circuit device is the PN junction isolation method, but when high withstand voltage characteristics, low leakage current characteristics, low noise characteristics, high speed characteristics, etc. are required. In this case, it is advisable to adopt a dielectric isolation structure in which each semiconductor island is separated by an insulating film. This structure, for example,
41-16707 (filed on August 19, 1960), the invention is characterized in that a plurality of semiconductor islands on which integrated circuit elements are fabricated are accommodated in a supporting substrate made of polycrystalline silicon (Si). do. Note that since this support substrate is deposited on an insulating film using a so-called vapor phase growth method, it must be polycrystalline. In addition, for the purpose of strengthening such support substrates, for example, Japanese Patent Application Laid-Open No. 52-97686 (February 1978)
(filed on May 12) As specified in the publication, it may have a structure consisting of polycrystalline Si and an insulating film.

第1図に、このような半導体基板の断面構造を
示す。図において、1は多結晶Siからなる支持基
板であり、この支持基板中に絶縁膜2で絶縁分離
された複数の半導体島3が設けられ、これら島の
中に半導体素子が形成されている。例えば、エミ
ツタ4、ベース5、コレクタ6からなるバイポー
ラトランジスタ7、あるいはソース8、ゲート
9、ドレイン10からなるいわゆるMOS形トラ
ンジスタ11などであり、もちろん、コンタクト
窓12、電極13、表面保護膜14、埋込層15
なども必要に応じ併せて設けられる。また、前述
したように支持基板1中に変形防止を目的として
絶縁膜21が挟み込まれている。なお、半導体島
3中、PN接合は実線で、同一不純物同志のHL
接合は破線で示してある。したがつて、例えば島
3がN-形であればベース5はP形、これに対し
コレクタ6および埋込層15はN+形である。も
ちろん、これらの導電形は全く逆の場合もあり得
る。また、ソース8の一部が破線であるのは、チ
ヤネル電位をとるために、P形の領域の一部を
N+形とし、ソースとともにコンタクトをとれる
ようにしてあることを示す。
FIG. 1 shows a cross-sectional structure of such a semiconductor substrate. In the figure, reference numeral 1 denotes a support substrate made of polycrystalline Si, in which a plurality of semiconductor islands 3 isolated by insulating films 2 are provided, and semiconductor elements are formed in these islands. For example, it is a bipolar transistor 7 consisting of an emitter 4, a base 5, and a collector 6, or a so-called MOS transistor 11 consisting of a source 8, a gate 9, and a drain 10.Of course, a contact window 12, an electrode 13, a surface protective film 14, Embedded layer 15
etc. may also be provided as necessary. Further, as described above, the insulating film 21 is sandwiched in the support substrate 1 for the purpose of preventing deformation. In addition, in the semiconductor island 3, the PN junction is indicated by a solid line, and the HL of the same impurity is
Junctions are indicated by dashed lines. Therefore, for example, if the island 3 is of the N - type, the base 5 is of the P type, whereas the collector 6 and the buried layer 15 are of the N + type. Of course, these conductivity types may be completely opposite. Also, part of the source 8 is indicated by a broken line because part of the P-type region is drawn in order to obtain a channel potential.
It is N + type, indicating that it can be contacted with the source.

しかしながら、このような従来の基板構造は以
下に指摘するような問題を有する。
However, such a conventional substrate structure has the following problems.

まず、第1の熱伝導性の悪さである。バイポー
ラトランジスタ7およびMOS形トランジスタ1
1の素子が動作する場合、(印加電圧×流れる電
流)で決まる熱が発生する。しかるに、従来構造
はこの点に関し注意を払わず、その熱伝導性をさ
らに悪くする絶縁膜21をさえ設けていた。誘電
体分離された島3の中で発生した熱は、素子の表
面を覆う表面保護膜14に伝わり、次に大気中
(または半導体素子を実装するケース中の封入ガ
ス)に伝わるか、素子の底面および側面を覆う絶
縁膜2に伝わり、次いで支持基板1に伝わるもの
であるが、気体は熱の伝導性が悪いことは明らか
であり、また支持基板1も多結晶Siであるためか
なり熱の伝導性が悪く、素子の温度上昇の原因と
なつていた。それに加えて、Siに比べて約2桁熱
伝導率の悪い絶縁膜21等を設けることは、この
温度上昇を加速するものであつた。このため、誘
電体分離構造が持つ高耐圧特性を活用しようとす
る場合は、印加電圧をN倍にすれば、流れる電流
は1/Nに抑えて発熱による素子の破壊を防ぐ必要 があつた。
First, there is the first problem of poor thermal conductivity. Bipolar transistor 7 and MOS transistor 1
When element 1 operates, heat determined by (applied voltage x flowing current) is generated. However, the conventional structure did not pay attention to this point and even provided an insulating film 21 which further deteriorates its thermal conductivity. The heat generated in the dielectrically isolated island 3 is transferred to the surface protection film 14 that covers the surface of the device, and then to the atmosphere (or to the gas enclosed in the case in which the semiconductor device is mounted) or to the device. The heat is transmitted to the insulating film 2 covering the bottom and side surfaces, and then to the support substrate 1. However, it is clear that gas has poor thermal conductivity, and since the support substrate 1 is also made of polycrystalline Si, the heat is quite low. It had poor conductivity and caused an increase in the temperature of the device. In addition, the provision of the insulating film 21, etc., which has a thermal conductivity about two orders of magnitude lower than that of Si, accelerates this temperature rise. Therefore, in order to take advantage of the high breakdown voltage characteristics of the dielectric isolation structure, it was necessary to increase the applied voltage by N times and suppress the flowing current to 1/N to prevent the element from being destroyed due to heat generation.

また、別の問題として支持基板1の抵抗率の高
さによる交流電位の不安定性がある。誘電体分離
構造は、素子間が絶縁膜2で分離されているため
直流電流が流れることはないものの、島3を構成
する半導体〜絶縁膜〜多結晶Si支持基板1(絶縁
膜21が存在する場合、さらに多結晶Si層101
〜絶縁膜21〜多結晶Si層102等が加わる)の
各層の組合せが容量として機能し、交流電流が流
れることとなる。これは、絶縁膜21を前記特開
昭52−97686公報にも示されたような絶縁膜と半
絶縁膜との組合わされた複合膜とした場合でも、
その程度が軽減されるだけであり本質的な解決に
はなり得なかつた。この交流電流の変化は、上述
した組合せで決まる容量値(C0とする)と多結
晶Siの抵抗値(R0とする)からなる時定数C0
R0を持つ。しかるに、R0は多結晶Si(通常、素子
製作時のオートドーピングを恐れて不純物の添加
は行なわない)であるため、極めて高い値(〜数
MΩ)を有し、これにつれて時定数も大となるも
のであつた。このような島の電位変動は動作信号
に重なり、直流電流成分のゆつくりとした変動を
もたらすため、微小でかつ高速の信号を扱う場合
は一種の雑音として本来の機能を損うばかりでな
く、設定動作点の微小なずれの原因となつてい
た。
Another problem is the instability of the AC potential due to the high resistivity of the support substrate 1. In the dielectric isolation structure, since the elements are separated by the insulating film 2, no direct current flows, but the semiconductor forming the island 3, the insulating film, and the polycrystalline Si support substrate 1 (where the insulating film 21 is present) In this case, further polycrystalline Si layer 101
~Insulating film 21~Polycrystalline Si layer 102, etc. are added)The combination of each layer functions as a capacitor, and an alternating current flows. This is true even when the insulating film 21 is a composite film that is a combination of an insulating film and a semi-insulating film as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 52-97686.
This would only reduce the severity of the problem and would not provide a fundamental solution. This change in alternating current is caused by a time constant C 0 .
has R 0 . However, since R 0 is polycrystalline Si (usually no impurities are added for fear of autodoping during device fabrication), R 0 is an extremely high value (~ several
MΩ), and the time constant also increased accordingly. These island potential fluctuations overlap with the operating signal and cause slow fluctuations in the DC current component, so when handling minute and high-speed signals, they not only act as a type of noise and impair the original function, but also cause This caused a slight deviation in the set operating point.

〔発明の目的および構成〕[Object and structure of the invention]

本発明はこのような事情に鑑みてなされたもの
で、その目的は、高耐圧にしてしかも大電流ある
いは極めて高速の信号を処理することが可能な半
導体素子搭載用の半導体基板の製造方法を提供す
ることにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a method for manufacturing a semiconductor substrate for mounting semiconductor elements, which has a high breakdown voltage and is capable of processing large currents or extremely high-speed signals. It's about doing.

このような目的を達成するために、本発明の半
導体基板の製造方法は、半導体島を支持搭載する
支持基板の材質を多結晶シリコンと金属との混合
物または化合物またはこれらの組合せとすること
により熱伝導性および抵抗率の問題を解決したも
のである。以下、実施例を用いて本発明を詳細に
説明する。
In order to achieve such an object, the method for manufacturing a semiconductor substrate of the present invention uses a material of a support substrate supporting and mounting a semiconductor island as a mixture or compound of polycrystalline silicon and metal, or a combination thereof. This solves the problems of conductivity and resistivity. Hereinafter, the present invention will be explained in detail using Examples.

〔実施例〕〔Example〕

第2図は本発明による半導体基板の製造方法に
より形成される半導体基板を示し、後述する構成
を有する支持基板16中に、絶縁膜2で絶縁分離
された複数の半導体島3が設けられている。絶縁
膜2は、半絶縁膜または絶縁膜と半絶縁膜との組
合せとしてもよい。島3の中には、従来と同様に
バイポーラトランジスタ7やMOS形トランジス
タ11などの半導体素子が形成され、必要に応じ
コンタクト窓12、電極13、表面保護膜14、
埋込層15なども併せて形成される。
FIG. 2 shows a semiconductor substrate formed by the method for manufacturing a semiconductor substrate according to the present invention, in which a plurality of semiconductor islands 3 isolated by an insulating film 2 are provided in a support substrate 16 having a configuration to be described later. . The insulating film 2 may be a semi-insulating film or a combination of an insulating film and a semi-insulating film. In the island 3, semiconductor elements such as a bipolar transistor 7 and a MOS transistor 11 are formed as in the conventional case, and a contact window 12, an electrode 13, a surface protective film 14,
A buried layer 15 and the like are also formed.

ここで、本発明による基板構造の特徴は、支持
基板16を多結晶Siと金属との混合物または化合
物(通常シリサイドと呼称される)またはこれら
の組合せで構成したことにある。良く知られてい
るように、金属は熱の良導体であり、また低い抵
抗率を有するために、前述したような従来構造に
おける問題を完全に解決することができる。この
場合、発明者らの実験によれば、支持基板16を
構成するSiが多結晶Siであることは後述するよう
に極めて重用な意義を有する。
Here, the feature of the substrate structure according to the present invention is that the supporting substrate 16 is made of a mixture or compound of polycrystalline Si and metal (usually referred to as silicide), or a combination thereof. As is well known, metals are good conductors of heat and have low resistivity, which can completely solve the problems of conventional structures as described above. In this case, according to experiments conducted by the inventors, the fact that the Si constituting the support substrate 16 is polycrystalline Si has extremely important significance as will be described later.

そこで、次に、図示のようなバイポーラトラン
ジスタ7およびMOS形トランジスタ11を含む
半導体基板からなる半導体装置の製造方法を説明
する。
Next, a method for manufacturing a semiconductor device including a semiconductor substrate including a bipolar transistor 7 and a MOS transistor 11 as shown in the figure will be described.

はじめに、Siの(100)基板の第1の主面側に
対し、形成すべき島3の形状に応じた異方性エツ
チングを施した後、埋込層15を形成し、さらに
その上に絶縁膜2を形成した後、その上に支持基
板16となる多結晶Siの堆積を行なう。この多結
晶Siの成長にはSiH2Cl2ガスを原料とする気相成
長法を用い、温度1050℃から1150℃の範囲で行な
うことが得策であつた。この温度で成長した多結
晶Siは結晶粒径が数μmから数十μmの柱状構造
を持ち、後の金属添加処理に必要な結晶粒界を充
分含んだ構造となつている。この時、必要に応じ
てSi中に不純物を添加することも、後述するよう
に極めて有効である。ただし、この段階で、本発
明の重要な構成要件である金属の添加を行なうこ
とは必ずしも得策でない。その理由は、この後に
続く島3中に半導体素子を形成する高温処理で金
属が遊離し汚染の原因となるためである。したが
つて、このような添加を行なつた場合は、その後
の高温熱処理をレーザアニール法などを用いた局
所的な熱処理に置換することが望ましく、その意
味で特別なプロセスの追加となることから通常は
素子形成後に金属の添加を行なう。また、従来例
について説明たように支持基板中に絶縁膜21を
設けた場合は、当該絶縁膜21に局所的な穴をあ
けておくか、素子形成後に絶縁膜21を含む層を
研摩等で除去する必要がある。この理由について
は後述する。
First, anisotropic etching is performed on the first main surface side of a Si (100) substrate according to the shape of the island 3 to be formed, and then a buried layer 15 is formed, and an insulating layer is further formed on the buried layer 15. After forming the film 2, polycrystalline Si, which will become the supporting substrate 16, is deposited thereon. It was advisable to grow this polycrystalline Si using a vapor phase growth method using SiH 2 Cl 2 gas as a raw material at a temperature in the range of 1050°C to 1150°C. Polycrystalline Si grown at this temperature has a columnar structure with crystal grain sizes ranging from several μm to several tens of μm, and has a structure that includes sufficient grain boundaries necessary for subsequent metal addition processing. At this time, it is also extremely effective to add impurities to the Si as will be described later. However, it is not necessarily advisable to add metal, which is an important component of the present invention, at this stage. The reason for this is that metals are liberated during the subsequent high-temperature treatment to form semiconductor elements in the islands 3, causing contamination. Therefore, when such an addition is made, it is desirable to replace the subsequent high-temperature heat treatment with local heat treatment using a laser annealing method, etc., as this will require the addition of a special process. Usually, metal is added after the element is formed. In addition, when the insulating film 21 is provided in the support substrate as described in the conventional example, holes may be made locally in the insulating film 21, or the layer including the insulating film 21 may be polished, etc. after the element is formed. Needs to be removed. The reason for this will be explained later.

さて、多結晶Siの堆積後、第1の主面と対向す
る第2の主面側から不要となつた単結晶Si基板を
研摩またはエツチング等により絶縁膜21が露出
するまで除去し、相互に絶縁分離された島3を形
成する。これらの島の中に不純物を添加し、コン
タクト窓あけ、電極の加工等を経てバイポーラト
ランジスタ7およびMOS形トランジスタ11な
どの半導体素子が完成する。前述したように素子
形成前の段階で多結晶Siへの金属の添加を行わな
い場合には、これらの処理はすべて通常の半導体
素子製造プロセスにより行なうことができる。
Now, after the polycrystalline Si is deposited, the unnecessary single crystal Si substrate is removed from the second main surface side opposite to the first main surface by polishing or etching until the insulating film 21 is exposed. An insulated island 3 is formed. Impurities are added into these islands, and semiconductor devices such as bipolar transistor 7 and MOS transistor 11 are completed through contact window opening, electrode processing, etc. As described above, if metal is not added to polycrystalline Si at a stage before device formation, all of these treatments can be performed by normal semiconductor device manufacturing processes.

次に、Au,Ag,Cu,Pt等の金属を支持基板
の多結晶Siと反応させて、本発明の重要な特徴で
ある金属を含んだ支持基板16を形成する。この
時の金属の選定は、熱伝導率の大きいもの、抵抗
率の小さいもの、Siと低温で反応しやすいものと
の基準で行なうこととなる。ただし、先に述べた
ようにSiが多結晶をなしていることから、必ずし
も金属学的に一般に定まつている反応温度でなく
てもより低い温度で支持基板16に金属を添加す
ることができるという利点を有する。例えば、島
3のSiと電極のAl合金は約580℃で共晶反応を生
ずるため、これが、金属添加時に許容される熱処
理温度の上限となる。金属学的に知られた金属と
Siの反応温度がこの580℃を下まわる例はAu,
Cu,In,Sn等であるが、発明者らの実験によれ
ば、Pt,Moなどの高融点金属も含めてほとんど
がこれ以下の温度で添加可能であつた。この理由
の詳細は必ずしも明らかでないものの、X線マイ
クロアナライザー等による測定では添加した金属
がSiの結晶粒界に存在することから、多結晶Siの
界面エネルギーがこの低温反応を促進したものと
考えている。また、侵入した金属は絶縁膜2によ
つて島3中に入ることを阻止されるため、素子特
性に影響を及ぼすことはなかつた。
Next, a metal such as Au, Ag, Cu, or Pt is reacted with the polycrystalline Si of the support substrate to form the metal-containing support substrate 16, which is an important feature of the present invention. The selection of metals at this time is based on criteria such as those with high thermal conductivity, low resistivity, and those that easily react with Si at low temperatures. However, as mentioned above, since Si is polycrystalline, the metal can be added to the support substrate 16 at a lower temperature than the reaction temperature generally determined in metallurgy. It has the advantage of For example, since the Si of the island 3 and the Al alloy of the electrode undergo a eutectic reaction at about 580° C., this is the upper limit of the heat treatment temperature allowed when adding metal. Metallurgically known metals
Examples where the reaction temperature of Si is below 580℃ are Au,
Cu, In, Sn, etc., but according to the inventors' experiments, most of them, including high melting point metals such as Pt and Mo, could be added at temperatures below this temperature. Although the details of this reason are not necessarily clear, measurements using an X-ray microanalyzer etc. show that the added metal exists at the grain boundaries of Si, so it is thought that the interfacial energy of polycrystalline Si promotes this low-temperature reaction. There is. Furthermore, since the intruding metal was prevented from entering the island 3 by the insulating film 2, it did not affect the device characteristics.

実験によれば、添加による抵抗率の低下、熱伝
導率の向上を可能とした金属の内、処理の容易な
ものは、Ag,Au,Cu,Ptおよびこれらの組合
せであつた。これらの金属は、支持基板全体に添
加されねばその効果が薄いため、先に述べたよう
に基板中に絶縁膜21が存在する場合は、素子形
成時の高温処理が終了してその変形防止用として
の役目を終えた後にこれを除去するか、金属侵入
用の穴をあけておくことが得策である。また、金
属と多結晶Siとの反応は、一般に最初Siの柱状晶
のすきまに沿つて金属が侵入する第1段階と、次
いで侵入した金属の一部がSiと化合してシリコン
サイド、例えばPtXSi1-Xを形成する第2段階から
なる。ただし、Al,Auなどシリサイドを形成し
ない金属の場合はSiと任意の割合で混じり合つた
固溶体の形で存在することとなる。
According to experiments, among the metals that can reduce resistivity and improve thermal conductivity by addition, Ag, Au, Cu, Pt, and combinations thereof are easily processed. These metals have little effect unless they are added to the entire supporting substrate, so if the insulating film 21 is present in the substrate as described above, it is necessary to prevent the deformation of the metal after the high temperature treatment during element formation is completed. It is a good idea to remove it after it has served its purpose, or to drill a hole for metal entry. In addition, the reaction between metal and polycrystalline Si generally involves a first stage in which the metal first penetrates along the gaps between the columnar crystals of Si, and then a part of the penetrated metal combines with Si and forms the silicon side, such as Pt. The second step consists of forming X Si 1-X . However, in the case of metals that do not form silicides, such as Al and Au, they exist in the form of a solid solution mixed with Si in any proportion.

上記第1段階に比べ、第2段階の反応を行なわ
せるためにはさらに一段高い温度での処理が必要
であつた。しかし、前述したようにSi中に予め不
純物を添加しておいた場合は、はじめの処理のみ
で低抵抗状態となり、後の処理による抵抗率の低
下は顕著でなかつた。これは、上記不純物は一定
割合で多結晶Si中に取込まれ残りが粒界に偏析す
ることとなるが、粒界に侵入した金属と多結晶Si
とが接触して形成されるシヨツトキー接合が、こ
の不純物によつてリーク気味となるために、多結
晶部のSiと金属との化合が生じなくても、基板全
体が電流の経路となつた結果と推定される。
Compared to the first stage, treatment at a much higher temperature was required to carry out the second stage reaction. However, when impurities were added to Si in advance as described above, a low resistance state was achieved with only the first treatment, and the decrease in resistivity with subsequent treatments was not significant. This is because a certain proportion of the above impurities are incorporated into the polycrystalline Si and the rest segregates at the grain boundaries, but the metal that has entered the grain boundaries and the polycrystalline Si
The Schottky junction that is formed when the two contact with each other tends to leak due to this impurity, so even if the Si in the polycrystalline part and the metal do not combine, the entire substrate becomes a current path. It is estimated to be.

さて、このように金属の添加により低抵抗率お
よび高熱伝導率の特性を備えた支持基板16は、
図示のようにいわゆるヒートシンクまたは基板の
バイアスを与える端子またはこれらの機能を併せ
持つ部材としての端子17に接続される。このよ
うな構成とすれば、島3中で発生した熱は絶縁膜
2を経て支持基板16に伝わり、速やかに排出さ
れるためより大きな電力を島3中で消費すること
が可能となる。すなわち、同じ電流を処理すると
しても、熱伝導性の向上した分だけ高電圧を印加
することが可能となる。また、添加量に依存はす
るものの、金属の添加により基板の抵抗は従来の
数MΩから数KΩ以下と著しく低下し、安定した
電位を端子17に与えることにより、直流レベル
のゆるやかな変動に起因する素子の不安定性や雑
音を解消することができた。
Now, the supporting substrate 16, which has the characteristics of low resistivity and high thermal conductivity due to the addition of metal,
As shown in the figure, it is connected to a terminal 17 that is a so-called heat sink, a terminal that provides bias for the substrate, or a member that has both of these functions. With such a configuration, the heat generated in the island 3 is transmitted to the support substrate 16 via the insulating film 2 and is quickly discharged, so that a larger amount of power can be consumed in the island 3. That is, even if the same current is processed, a higher voltage can be applied due to the improved thermal conductivity. Also, although it depends on the amount of addition, the resistance of the substrate is significantly lowered from several MΩ to several KΩ or less by adding metal, and by applying a stable potential to terminal 17, it is possible to reduce the resistance caused by gradual fluctuations in the DC level. We were able to eliminate the instability and noise of the device.

次に、第3図は本発明の他の実施例を示す断面
図である。本実施例の場合は、第2図の実施例の
場合の異方性エツチングを省略し、多結晶Si堆積
後、研摩によつて元の基板のSiを数μm以下の薄
層とし、さらに、このSi薄層を選択酸化法等で絶
縁膜2に達するまで形成した絶縁分離領域18を
用いて複数の島3に分離した例である。もちろ
ん、これらの島3の中には図上省略したが先の例
と同様に所望の素子を形成し、その後、多結晶Si
に金属の添加を行なつて支持基板16を形成す
る。この場合も、埋込層15は必要に応じて設け
ればよく、その他、絶縁膜21を用いた場合の処
理など先の例と同様である。前述したような注意
を払えば、金属の添加後に素子形成を行なうこと
も可能である。
Next, FIG. 3 is a sectional view showing another embodiment of the present invention. In the case of this embodiment, the anisotropic etching in the embodiment shown in FIG. 2 is omitted, and after depositing polycrystalline Si, the Si on the original substrate is polished to a thin layer of several μm or less. This is an example in which this Si thin layer is separated into a plurality of islands 3 using an insulating isolation region 18 formed up to the insulating film 2 by a selective oxidation method or the like. Of course, although not shown in the figure, desired elements are formed in these islands 3 as in the previous example, and then polycrystalline Si is formed.
A supporting substrate 16 is formed by adding metal to the substrate. In this case as well, the buried layer 15 may be provided as necessary, and other processes such as the process when using the insulating film 21 are the same as in the previous example. If the above-mentioned precautions are taken, it is also possible to form the element after adding the metal.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、支持基
板の多結晶シリコンに金属を添加したことによ
り、高熱伝導性及び低抵抗性の基板とすることが
できるため、高耐圧にしてしかも大電流の信号あ
るいは極めて高速の信号を処理することが可能な
半導体素子を実現することができる。
As explained above, according to the present invention, by adding metal to the polycrystalline silicon of the support substrate, it is possible to obtain a substrate with high thermal conductivity and low resistance. A semiconductor device capable of processing signals or extremely high-speed signals can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体基板の構成例を示す断面
図、第2図は本発明の一実施例を示す断面図、第
3図は本発明の他の実施例を示す断面図である。 2……絶縁膜、3……半導体島、16……金属
を添加した多結晶シリコンからなる支持基板、1
8……絶縁分離領域。
FIG. 1 is a sectional view showing an example of the structure of a conventional semiconductor substrate, FIG. 2 is a sectional view showing one embodiment of the present invention, and FIG. 3 is a sectional view showing another embodiment of the present invention. 2...Insulating film, 3...Semiconductor island, 16...Supporting substrate made of polycrystalline silicon added with metal, 1
8...Insulating isolation area.

Claims (1)

【特許請求の範囲】 1 半導体からなる基板の第1の主面に対して選
択的な異方性エツチングを施す行程と、この第1
の主面側に絶縁膜または半絶縁膜またはこれらの
組合せからなる分離膜を形成する工程と、この分
離膜上に多結晶シリコンを堆積する工程と、上記
基板の第2の主面側から当該基板を上記分離膜が
露出するまで除去する工程と、上記多結晶シリコ
ン中に金属を添加する工程とを少なくとも含むこ
とを特徴とする半導体基板の製造方法。 2 半導体からなる基板の第1の主面上に絶縁膜
または半絶縁膜またはこれらの組合せからなる分
離膜を形成する工程と、この分離膜上に多結晶シ
リコンを堆積する工程と、上記基板の第2の主面
側から当該基板の一部を除去して薄層化する工程
と、この薄層化した基板に上記分離膜まで達する
絶縁分離領域を選択的に形成する工程と、上記多
結晶シリコン中に金属を添加する工程とを少なく
とも含むことを特徴とする半導体基板の製造方
法。
[Claims] 1. A step of selectively anisotropically etching a first principal surface of a substrate made of a semiconductor;
forming an isolation film made of an insulating film, a semi-insulating film, or a combination thereof on the main surface side of the substrate; depositing polycrystalline silicon on the isolation film; and depositing polycrystalline silicon on the second main surface side of the substrate. A method for manufacturing a semiconductor substrate, comprising at least the steps of removing the substrate until the separation film is exposed, and adding metal to the polycrystalline silicon. 2. A step of forming an isolation film made of an insulating film, a semi-insulating film, or a combination thereof on the first main surface of a substrate made of a semiconductor, a step of depositing polycrystalline silicon on this isolation film, and a step of depositing polycrystalline silicon on the above-mentioned isolation film. a step of removing a part of the substrate from the second main surface side to make the substrate thin; a step of selectively forming an insulating isolation region reaching the separation film on the thinned substrate; A method for manufacturing a semiconductor substrate, the method comprising at least the step of adding metal to silicon.
JP4054484A 1984-03-05 1984-03-05 Semiconductor substrate and manufacture thereof Granted JPS60186036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4054484A JPS60186036A (en) 1984-03-05 1984-03-05 Semiconductor substrate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4054484A JPS60186036A (en) 1984-03-05 1984-03-05 Semiconductor substrate and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS60186036A JPS60186036A (en) 1985-09-21
JPH0580828B2 true JPH0580828B2 (en) 1993-11-10

Family

ID=12583388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4054484A Granted JPS60186036A (en) 1984-03-05 1984-03-05 Semiconductor substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60186036A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2757872B2 (en) * 1989-01-31 1998-05-25 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP2775848B2 (en) * 1989-05-18 1998-07-16 富士通株式会社 Method for manufacturing semiconductor device
JP2662684B2 (en) * 1993-06-21 1997-10-15 住友金属鉱山株式会社 Anode transport device for electrolysis
EP1695387A4 (en) * 2003-12-10 2009-07-29 Univ California Office Of The Low crosstalk substrate for mixed-signal integrated circuits

Also Published As

Publication number Publication date
JPS60186036A (en) 1985-09-21

Similar Documents

Publication Publication Date Title
US4378628A (en) Cobalt silicide metallization for semiconductor integrated circuits
US6344663B1 (en) Silicon carbide CMOS devices
US4870475A (en) Semiconductor device and method of manufacturing the same
US4577396A (en) Method of forming electrical contact to a semiconductor substrate via a metallic silicide or silicon alloy layer formed in the substrate
JPH0456325A (en) Manufacture of semiconductor device
JPH06302542A (en) Low-resistance contact structure for semiconductor device and forming method therefor
JP3108447B2 (en) Semiconductor device and manufacturing method thereof
JPH0888153A (en) Laminated structure wafer and formation thereof
US3956527A (en) Dielectrically isolated Schottky Barrier structure and method of forming the same
JPH06196703A (en) Thin film transistor and manufacture thereof
JPH0661177A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0580828B2 (en)
US4476157A (en) Method for manufacturing schottky barrier diode
JPH0562456B2 (en)
JP2003023099A (en) Field effect transistor
JPH0311666A (en) Semiconductor integrated circuit device
JPS609159A (en) Semiconductor device
KR900004265B1 (en) Semiconductor device
JPH08340122A (en) Thin film semiconductor device
JP3310127B2 (en) Semiconductor device and manufacturing method thereof
JPH06204167A (en) Manufacture of semiconductor device
JP3253438B2 (en) Semiconductor device
US4635089A (en) MIS-integrated semiconductor device
US5635752A (en) Semiconductor device having source and drain regions which include horizontally extending secondary defect layers
JP3131491B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term