JPH0580554B2 - - Google Patents

Info

Publication number
JPH0580554B2
JPH0580554B2 JP61134029A JP13402986A JPH0580554B2 JP H0580554 B2 JPH0580554 B2 JP H0580554B2 JP 61134029 A JP61134029 A JP 61134029A JP 13402986 A JP13402986 A JP 13402986A JP H0580554 B2 JPH0580554 B2 JP H0580554B2
Authority
JP
Japan
Prior art keywords
melt
heating
evaporation
boat
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61134029A
Other languages
Japanese (ja)
Other versions
JPS62290863A (en
Inventor
Masahiro Sone
Masahiro Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP13402986A priority Critical patent/JPS62290863A/en
Publication of JPS62290863A publication Critical patent/JPS62290863A/en
Publication of JPH0580554B2 publication Critical patent/JPH0580554B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material

Description

【発明の詳細な説明】 産業上の利用分野 本発明は真空蒸着用蒸発方法に関し、詳しくは
蒸着用物質の溶融体の沸騰、突沸による飛沫を防
止した真空蒸着用蒸発方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an evaporation method for vacuum deposition, and more particularly to an evaporation method for vacuum deposition that prevents splashing due to boiling or bumping of a melt of a deposition material.

従来の技術 従来、半導体ICやハイブリツトIC等の電極形
成、或いは複写機、プリンター等に使用される感
光体の作製に、真空蒸着法が利用されている。真
空蒸着法としては、エレクトロンビームを用いる
方式、ボート、コイル及びるつぼ等を用いる抵抗
加熱方式、及びスパツタリング蒸着法等がある。
これらの中で抵抗加熱方式による蒸着膜の形成は
加熱機構が簡単であるために広く用いられてい
る。特に薄膜サーマルヘツドや電子写真感光体等
の広面積基板上への蒸着膜形成には抵抗加熱方式
が有効である。
BACKGROUND ART Conventionally, vacuum evaporation methods have been used to form electrodes of semiconductor ICs, hybrid ICs, etc., or to produce photoreceptors used in copying machines, printers, etc. Examples of the vacuum deposition method include a method using an electron beam, a resistance heating method using a boat, a coil, a crucible, etc., and a sputtering deposition method.
Among these, the formation of a vapor deposited film by a resistance heating method is widely used because the heating mechanism is simple. In particular, the resistance heating method is effective for forming a vapor deposited film on a wide area substrate such as a thin film thermal head or an electrophotographic photoreceptor.

ところで、サーマルヘツド及び電子写真感光体
の膜形成には、広い基板面積上に均一でしかも蒸
発源からの飛沫物が無い良好な膜が要求される。
即ち、サーマルヘツドの場合、フオトエツチング
によるパターン形成時に、この飛沫物が短絡或い
は断線の原因になる。電子写真感光体の場合には
この飛沫物が帯電工程時の均一な帯電を妨げ、現
像、転写時の画像ムラ、及びクリーニング時のク
リーニング不良を引き起す原因となる。
By the way, film formation for thermal heads and electrophotographic photoreceptors requires a good film that is uniform over a wide substrate area and free from splashes from the evaporation source.
That is, in the case of a thermal head, these droplets can cause short circuits or disconnections during pattern formation by photoetching. In the case of an electrophotographic photoreceptor, these droplets interfere with uniform charging during the charging process, causing image unevenness during development and transfer, and poor cleaning during cleaning.

第4Aおよび4B図に、従来一般に使用されて
いる真空蒸着用蒸発源としてのボート10を示
す。ボート10は、W、Mo、Ta、ステンレス鋼
(SUS)等から成る平板11の中央部に溶融溜め
12を形成して蒸着用物質が溶融時にボートから
流出しないように構成されており、平板11の両
端13,13′に通電してボートを加熱すること
により、蒸発を行う。この様なボートでは溶融物
(例えばCr、Pd、Au、Ni、Cr、Al、Se、Te等)
の沸騰、突沸による飛沫の発生が起り易い欠点が
ある。
4A and 4B show a boat 10 as a commonly used evaporation source for vacuum deposition. The boat 10 is configured such that a melt reservoir 12 is formed in the center of a flat plate 11 made of W, Mo, Ta, stainless steel (SUS), etc., so that the deposition material does not flow out of the boat when melted. Evaporation is carried out by heating the boat by applying electricity to both ends 13, 13' of the boat. In such boats, melts (e.g. Cr, Pd, Au, Ni, Cr, Al, Se, Te, etc.)
The drawback is that splashes are easily generated due to boiling and bumping.

一方、上述した沸騰及び突沸は、溶融した試料
の対流が悪く、ボート表面付近に存在する溶融物
が過熱状態となる事が原因で起る現象であること
から、ボート表面をぬれ性を良くすること(特公
昭57−22990)、ボート表面を粗面化すること(特
開昭57−137468号、特開昭56−156868号)或いは
ボート表面を研磨すること(特開昭57−194253
号)により、かかる現象を防ごうとする試みがな
された。また、ボートの形状を工夫すること(実
開昭57−192957号、特開昭57−123973号)によつ
てボートからの飛沫物を回避する試みもなされて
いる。
On the other hand, the boiling and bumping mentioned above is a phenomenon caused by poor convection of the molten sample and the molten material existing near the boat surface becoming overheated, so it is necessary to improve the wettability of the boat surface. (Japanese Patent Publication No. 57-22990), roughening the surface of a boat (Japanese Patent Publication No. 57-137468, Japanese Patent Application Publication No. 56-156868), or polishing the surface of a boat (Japanese Patent Publication No. 57-194253)
An attempt was made to prevent this phenomenon. Attempts have also been made to avoid splashes from the boat by modifying the shape of the boat (Utility Model Application No. 57-192957, Japanese Patent Application Publication No. 57-123973).

発明の解決しようとする問題点 上述したようなボート表面を加工する方法、或
いはボートの形状を工夫する方法によつても、十
分に飛沫を回避し得なかつた。即ち、ボート表面
を加工しても、連続的なボートの使用によりボー
ト表面が変化する。一方従来のボートの形状では
飛沫物が蒸着基板へ到達するのを防止し得ない。
これらの従来のボートを使用して比較的短時間で
蒸着膜を形成しようとしても、ボート表面付近で
の溶融物の過熱状態は避けられず、従つて沸騰、
突沸による飛沫の発生を防止し得ず、また発生し
た飛沫が蒸着基板に到達するのを防止できなかつ
た。
Problems to be Solved by the Invention Even with the method of processing the surface of the boat or the method of devising the shape of the boat as described above, splashes could not be sufficiently avoided. That is, even if the boat surface is processed, the boat surface changes due to continuous use of the boat. On the other hand, the conventional boat shape cannot prevent droplets from reaching the deposition substrate.
Even when attempting to form a deposited film in a relatively short time using these conventional boats, overheating of the melt near the boat surface is unavoidable, resulting in boiling,
The generation of droplets due to bumping could not be prevented, and the generated droplets could not be prevented from reaching the deposition substrate.

従つて本発明の目的は、沸騰や突沸による飛沫
のない蒸着膜を比較的短時間で形成し得る、真空
蒸着用蒸着方法およびその装置を提供することに
ある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a vacuum deposition method and an apparatus therefor, which can form a deposited film in a relatively short time without splashing due to boiling or bumping.

問題点を解決するための手段 本発明者等は、従来の抵抗加熱方式による蒸着
法の欠点が主に蒸着用物質の溶融体の対流の悪さ
から生じること、従つて該溶融体を液膜化させた
後に蒸発させれば溶融体の対流が改善されて、溶
融体の沸騰や突沸を回避し得ることを見出し、本
発明に至つ。
Means for Solving the Problems The present inventors have discovered that the drawbacks of the conventional resistance heating vapor deposition method mainly arise from poor convection of the melt of the vapor deposition material, and that it is possible to convert the melt into a liquid film. It has been discovered that if the melt is evaporated after the melting, the convection of the melt can be improved and boiling and bumping of the melt can be avoided, leading to the present invention.

即ち、本発明の真空蒸着用蒸発方法は、溶融し
た有機物と比較して高融点の蒸着用無機物質を移
動する搬送手段上に注出・塗布して該搬送手段上
に該蒸着用物質の液膜を形成させ、次いで該液膜
を移動する該搬送手段上で加熱することにより
徐々に蒸発せしめることを特徴とする。
That is, in the evaporation method for vacuum evaporation of the present invention, an inorganic substance for evaporation having a higher melting point than a molten organic substance is poured and applied onto a transporting means for transferring, and a liquid of the material for evaporation is deposited on the transporting means. The method is characterized in that a film is formed and then the liquid film is gradually evaporated by heating on the moving transport means.

上記の方法は、(イ)蒸着用物質の溶融体を注出す
るための注出孔5を有する溶融体供給ホツパー2
と、(ロ)注出された該溶融体を受けて該溶融体を液
膜状の形体で搬送する搬送手段6と、(ハ)該搬送手
段6上の液膜状の溶融体を加熱蒸発させる加熱手
段7,7′,8とを有する装置を用いて実施する
ことができる。
The above method includes (a) a melt supply hopper 2 having a pouring hole 5 for pouring out the melt of the deposition material;
(b) a conveying means 6 that receives the poured melt and conveys the melt in the form of a liquid film; and (c) a means for heating and evaporating the melt in the form of a liquid film on the conveying means 6. This can be carried out using an apparatus having heating means 7, 7', 8 for heating.

搬送手段6上に形成される溶融体の液膜の厚さ
は、該溶融体の供給割合、該溶融体の粘度、該溶
融体と搬送手段6の表面材料の表面エネルギー、
該手段6の表面の粗さ(粘度)、該手段6の移動
速度等により変化するが、該溶融体の蒸発直前に
おいて平均1000μ以下(例えば平均0.1〜1000ミク
ロン)となるように各種条件を選択するのが好ま
しい。
The thickness of the liquid film of the melt formed on the conveying means 6 depends on the supply ratio of the melt, the viscosity of the melt, the surface energy of the surface materials of the melt and the conveying means 6,
Although it varies depending on the surface roughness (viscosity) of the means 6, the moving speed of the means 6, etc., various conditions are selected so that the average roughness is 1000 μm or less (for example, 0.1 to 1000 μm on average) just before the evaporation of the melt. It is preferable to do so.

溶融体供給ホツパー2の注出孔5サイズは、注
出される溶融体の粘度等により変るが、通常約1
〜7mm径である。
The size of the pouring hole 5 of the melt supply hopper 2 varies depending on the viscosity of the melt to be poured out, but is usually about 1
~7mm diameter.

搬送手段6は、少なくともその一部が注出孔5
から注出された溶融体が拡がる範囲の位置に設置
され、そしてその表面は通常高融点金属、例えば
ステンレス鋼、Ni、Fe、Cr等、又は高融点合金
から成る。該手段6は好ましくはかかる金属のベ
ルトである。
At least a portion of the conveying means 6 is connected to the spouting hole 5
It is placed at a location within which the melt poured out spreads out, and its surface usually consists of a high melting point metal, such as stainless steel, Ni, Fe, Cr, etc., or a high melting point alloy. Said means 6 is preferably such a metal belt.

溶融体液膜の加熱手段は、搬送手段6(特に金
属ベルト)表面を一様に加熱できる手段、例えば
搬送手段の裏面側に設置された加熱ローラー、で
あることができる。
The means for heating the molten liquid film may be a means capable of uniformly heating the surface of the conveying means 6 (particularly the metal belt), such as a heating roller installed on the back side of the conveying means.

以下に添付図面を参照して本発明の好ましい実
施態様を説明する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

第1および第2図において、蒸着用物質の溶融
体供給ホツパー2に仕込まれた蒸着用物質3は、
加熱ヒーター4によつて溶融されて溶融微小体の
形体(すなわち加熱された搬送手段上で容易に液
膜状となる寸法の小または細な形状)で多数個の
注出孔5から、一定方向に移動する金属ベルト
(搬送手段)6上へ落下する。ここでベルト6上
に落下した蒸着用物質の溶融体3は薄い液膜状と
なり、駆動手段に連結されてベルト駆動ローラー
としても機能するベルト加熱ローラー7、並びに
ベルト加熱ヒーター8による加熱によつて、ベル
ト6で搬送されながら徐々に蒸発される。蒸発し
きれなかつた溶融体3は、加熱ローラー7と同様
にベルト駆動ローラーを兼ねるベルト加熱ローラ
ー7′によつて完全に蒸発される。金属ベルト6
は加熱ローラー7′からテンシヨンロール9を経
て加熱ローラー7の位置に戻される。
In FIGS. 1 and 2, the deposition material 3 charged into the melt supply hopper 2 of the deposition material is
The molten particles are melted by the heating heater 4 (i.e., small or slender shapes that easily form a liquid film on the heated conveyance means) and are poured in a fixed direction from a large number of pouring holes 5. The metal belt (conveying means) 6 falls onto the moving metal belt (conveying means) 6. Here, the melted material 3 of the deposition material that has fallen onto the belt 6 becomes a thin liquid film, and is heated by the belt heating roller 7, which is connected to a driving means and also functions as a belt driving roller, and the belt heating heater 8. , and is gradually evaporated while being conveyed by the belt 6. The molten material 3 that has not been completely evaporated is completely evaporated by a belt heating roller 7' which, like the heating roller 7, also serves as a belt driving roller. metal belt 6
is returned to the position of the heating roller 7 from the heating roller 7' via the tension roll 9.

合金又は2種類の物質の蒸着膜を形成する場合
は、例えば第3Aおよび第3B図に示すように、
2個の溶融体供給ホツパー2,2′から蒸着膜成
分を別々に供給する。なお、この場合、供給ホツ
パー2,2′の注出孔5,5′の位置をずらすこと
により、落下した蒸着膜成分3,3′が混合しな
いように構成することができる。また、金属ベル
ト6の加熱ヒーター8は、低融点試料用の加熱ヒ
ーター8aと高融点試料用の加熱ヒーター8bと
に分けることもできる。3成分以上の合金等の蒸
着膜を形成する場合も、蒸着膜成分の数に合せて
複数個の溶融体供給ホツパーを設ければよい。な
お、この形式は二層以上の蒸着を実施する場合に
も有利に適用できる。
When forming an alloy or a vapor deposited film of two types of substances, for example, as shown in FIGS. 3A and 3B,
The deposited film components are separately supplied from two melt supply hoppers 2, 2'. In this case, by shifting the positions of the pouring holes 5, 5' of the supply hoppers 2, 2', it is possible to prevent the fallen vapor deposited film components 3, 3' from mixing. Further, the heater 8 for the metal belt 6 can be divided into a heater 8a for a low melting point sample and a heater 8b for a high melting point sample. Even when forming a deposited film of an alloy of three or more components, a plurality of melt supply hoppers may be provided in accordance with the number of components of the deposited film. Note that this method can also be advantageously applied when performing vapor deposition of two or more layers.

本発明の装置は上記の態様に限定されるもので
はなく、種々の変更が可能である。例えば搬送手
段として、金属ベルトの代りに金属ローラーを用
いてもよい。また、搬送手段上の液膜を加熱蒸発
させるための加熱手段を、ベルト駆動ローラーと
は別個に設けてもよい。更に加熱手段は例えば輻
射型加熱源又は電子ビーム等であつてもよい。蒸
着用物質を加熱溶融するための加熱手段は、溶融
体供給ホツパー自体の通電抵抗発熱又は該ホツパ
ー内に埋設された発熱体によるものであつてもよ
い。溶融体の供給システムは、上記の態様のよう
に落下式に限定されるものではなく、例えば圧下
ノズルを用いてもよい。
The device of the present invention is not limited to the above embodiments, and various modifications are possible. For example, a metal roller may be used instead of a metal belt as the conveying means. Further, a heating means for heating and evaporating the liquid film on the conveying means may be provided separately from the belt drive roller. Furthermore, the heating means may be, for example, a radiation heating source or an electron beam. The heating means for heating and melting the deposition material may be a heating element generated by the current-carrying resistance of the melt supply hopper itself or a heating element embedded within the hopper. The melt supply system is not limited to the drop type as in the above embodiment, and for example, a reduction nozzle may be used.

なお、類似技術として従来のフラツシユ蒸着法
があるが、この方法では溶融体供給装置が溶融液
溜からの蒸着物をさえぎる形となるため、蒸発物
供給範囲が狭くなる。これに対して本発明におい
ては広面積の搬送ベルトから蒸発物を供給でき
る。
A similar technique is the conventional flash evaporation method, but in this method, the melt supply device blocks the evaporated material from the melt reservoir, so the evaporated material supply range is narrowed. In contrast, in the present invention, the evaporated material can be supplied from a conveyor belt having a wide area.

作 用 本発明によれば、溶融体は薄い液膜状とされた
後に蒸発されるため、溶融体が沸騰又は突沸を起
こす程度に過熱される前に速やかに蒸発する。ま
た、蒸気ドームを形成する程の蒸発材料が搬送手
段上に存在しないため、飛沫の原因となる蒸気ド
ームの形成が起きない。従つて、基板上に飛沫に
よる突起体のない平滑性に優れた蒸着膜が形成さ
れる。
Effects According to the present invention, since the melt is evaporated after being made into a thin liquid film, the melt is quickly evaporated before it is overheated to the extent that boiling or bumping occurs. Further, since there is not enough evaporative material on the conveying means to form a vapor dome, no vapor dome is formed which causes splashes. Therefore, a deposited film with excellent smoothness and no protrusions caused by droplets is formed on the substrate.

実施例 本発明を実施例および比較例により更に詳しく
説明する。
Examples The present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例 第1図に示す装置において、溶融体供給ホツパ
ー2の注出孔5の径を3mm、蒸着用物質加熱ヒー
ター4を260℃、金属ベルト6のベルト幅14cm、
ベルト直線部長さ(加熱ローラー7と7′間の距
離)20cm、ベルト直線部温度310℃、ベルト速度
1cm/秒、真空度1×10-5Torrの条件下で、金
属ベルト6から30cmの距離にある、70℃に維持さ
れた図示しない基板上にSe70gを20分間で蒸着
した。この時、該基板上に付着した飛沫による蒸
着面の突起数は大小併せて0.005個/cm2であつた。
Example In the apparatus shown in FIG. 1, the diameter of the pouring hole 5 of the melt supply hopper 2 was 3 mm, the deposition material heater 4 was 260° C., the belt width of the metal belt 6 was 14 cm,
A distance of 30 cm from the metal belt 6 under the following conditions: belt straight section length (distance between heating rollers 7 and 7') 20 cm, belt straight section temperature 310°C, belt speed 1 cm/sec, vacuum level 1 x 10 -5 Torr. 70 g of Se was evaporated for 20 minutes onto a substrate (not shown) maintained at 70°C. At this time, the number of protrusions on the vapor deposition surface due to droplets adhering to the substrate was 0.005 protrusions/cm 2 in total.

比較例 第4A,4B図に示す形状の、0.5mm厚ステン
レス鋼製、中央凹部の寸法50cm(幅)×120mm(長
さ)×10mm(深さ)の真空蒸着用ボート10に
Se70gを充填し、320℃まで6分で昇温し、その
後その温度に15分間保持して、基板上に蒸着を完
了した。なおボート10と該基板の距離は30cm、
真空度は1×10-5Torr、そして基板温度は70℃
に設定した。該基板上に付着した飛沫による蒸着
面の突起数は大小併せて0.5個/cm3であつた。
Comparative Example A vacuum evaporation boat 10 having the shape shown in Figures 4A and 4B, made of stainless steel with a thickness of 0.5 mm, and having a central concave dimension of 50 cm (width) x 120 mm (length) x 10 mm (depth).
It was filled with 70 g of Se, heated to 320° C. in 6 minutes, and then held at that temperature for 15 minutes to complete vapor deposition on the substrate. Note that the distance between the boat 10 and the board is 30 cm,
The degree of vacuum is 1×10 -5 Torr, and the substrate temperature is 70℃.
It was set to The number of protrusions on the vapor deposition surface caused by droplets adhering to the substrate was 0.5/cm 3 in total.

発明の効果 上記の実施例および比較例から明らかなように
本発明の方法によると従来法に比べて蒸着膜の飛
沫は100分の1程度に低減され、一方蒸着に要す
る時間は従来法と同様である。従つて本発明によ
ると、比較的短時間で平滑性の優れた良質の蒸着
膜が得られる。
Effects of the Invention As is clear from the above Examples and Comparative Examples, according to the method of the present invention, the amount of deposited film droplets is reduced to about 1/100 compared to the conventional method, while the time required for vapor deposition is the same as that of the conventional method. It is. Therefore, according to the present invention, a high quality vapor deposited film with excellent smoothness can be obtained in a relatively short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置の一具体例を示す斜視
図、第2図は第1図の装置の概略正面図、第3A
図は2個の溶融試料ホツパーを有する本発明の他
の装置の概略平面図、第3B図は第3A図の装置
の概略正面図、第4A図は従来の真空蒸着用ボー
トの平面図、そして第4B図は第4A図のボート
のA−A断面図である。 1……真空蒸着用蒸発装置、2……溶融体供給
ホツパー、4……蒸着用物質加熱ヒーター、5…
…注出孔、6……搬送用金属ベルト、7,7′…
…ベルド駆動及びベルト加熱ローラー、8……ベ
ルト加熱ヒーター。
FIG. 1 is a perspective view showing a specific example of the device of the present invention, FIG. 2 is a schematic front view of the device in FIG. 1, and FIG.
3B is a schematic front view of the apparatus of FIG. 3A, FIG. 4A is a plan view of a conventional vacuum deposition boat, and FIG. 4B is a sectional view taken along line AA of the boat of FIG. 4A. DESCRIPTION OF SYMBOLS 1... Evaporation device for vacuum evaporation, 2... Melt supply hopper, 4... Heater for heating material for evaporation, 5...
...Pour hole, 6...Metal belt for conveyance, 7,7'...
... Belt drive and belt heating roller, 8... Belt heating heater.

Claims (1)

【特許請求の範囲】 1 溶融した蒸着用無機物質を多数個の注出口を
有する溶融体供給ホツパー手段を用いて、移動す
る搬送手段上へ溶融微小体状に注出・塗布して該
搬送手段上に該蒸着用物質の平均1000ミクロン以
下の厚さの液膜を形成させ、次いで該液膜を移動
する該搬送手段上で加熱して蒸発させることを特
徴とする、飛沫の発生を実質的に防止した無機物
質の真空蒸着用蒸発方法。 2 複数個の溶融体供給ホツパー手段を使用し
て、該搬送手段上に複数種類の蒸着用物質を別々
に供給しそして該複数種類の無機物質を蒸発させ
る、特許請求の範囲第1項の蒸発方法。
[Scope of Claims] 1. Pour out and apply the molten inorganic material for deposition in the form of molten particles onto a moving conveyance means using a melt supply hopper means having a plurality of pouring ports. Forming a liquid film with an average thickness of 1000 microns or less on the vapor deposition material, and then heating and evaporating the liquid film on the moving conveyance means, which substantially prevents the generation of droplets. Evaporation method for vacuum deposition of inorganic substances. 2. The evaporation according to claim 1, wherein a plurality of melt supply hopper means are used to separately supply a plurality of evaporation substances onto the conveying means and evaporate the plurality of inorganic substances. Method.
JP13402986A 1986-06-09 1986-06-09 Method and apparatus for evaporation for vacuum deposition Granted JPS62290863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13402986A JPS62290863A (en) 1986-06-09 1986-06-09 Method and apparatus for evaporation for vacuum deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13402986A JPS62290863A (en) 1986-06-09 1986-06-09 Method and apparatus for evaporation for vacuum deposition

Publications (2)

Publication Number Publication Date
JPS62290863A JPS62290863A (en) 1987-12-17
JPH0580554B2 true JPH0580554B2 (en) 1993-11-09

Family

ID=15118711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13402986A Granted JPS62290863A (en) 1986-06-09 1986-06-09 Method and apparatus for evaporation for vacuum deposition

Country Status (1)

Country Link
JP (1) JPS62290863A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177365A (en) * 1983-03-24 1984-10-08 Matsushita Electric Ind Co Ltd Method and device for evaporation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177365A (en) * 1983-03-24 1984-10-08 Matsushita Electric Ind Co Ltd Method and device for evaporation

Also Published As

Publication number Publication date
JPS62290863A (en) 1987-12-17

Similar Documents

Publication Publication Date Title
JP2003160855A (en) Thin-film forming apparatus
JP2003535372A (en) Apparatus and method for electrographic printing or reproduction using a liquid ink material
KR920003675B1 (en) Manufacturing method of shadowmask
JPH0580554B2 (en)
CA1202819A (en) Thermal printing with ink replenishment
JPS62500528A (en) tin vapor deposition
JPH08286497A (en) Toner carrier and its production
JPH0528383B2 (en)
US4773244A (en) Apparatus for producing a substrate for a photoconductive members
JP2011020448A (en) Image forming system
JPS6338569A (en) Evaporating device for vacuum deposition
JP3915851B2 (en) Method for marking using a laser beam and method for marking identification information on a glass substrate in the manufacturing process of a display panel
JPS6338570A (en) Evaporating device for vacuum deposition
JPH0580553B2 (en)
JPH07114205B2 (en) Method of forming solder bumps
JPS6363625B2 (en)
US8471879B2 (en) Image forming apparatus and image forming method
JPS5864382A (en) Vacuum depositing device
JPS5887269A (en) Vapor source device
JPS60116769A (en) Vapor deposition device
JP2003516886A (en) Direct printing device
JPH03197668A (en) Evaporating source and evaporating device formed by using this source
JPH0230754A (en) Vacuum deposition method
JPH09324261A (en) Vacuum deposition device and method for controlling film thickness therefor
JPH0313566A (en) Production of thin film