JPH058041B2 - - Google Patents

Info

Publication number
JPH058041B2
JPH058041B2 JP60125776A JP12577685A JPH058041B2 JP H058041 B2 JPH058041 B2 JP H058041B2 JP 60125776 A JP60125776 A JP 60125776A JP 12577685 A JP12577685 A JP 12577685A JP H058041 B2 JPH058041 B2 JP H058041B2
Authority
JP
Japan
Prior art keywords
resin
paper
melamine
methanol
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60125776A
Other languages
Japanese (ja)
Other versions
JPS61283318A (en
Inventor
Kazuhiko Kawamoto
Daijiro Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP12577685A priority Critical patent/JPS61283318A/en
Publication of JPS61283318A publication Critical patent/JPS61283318A/en
Publication of JPH058041B2 publication Critical patent/JPH058041B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、省エネルギー、生産工程合理化を目
的に改良された省エネルギー型フイルターの製造
法に関する。 (従来の技術) 従来より、自動車用エアーフイルター、オイル
フイルター、燃料用フイルター等は、フイルター
用紙にレゾール型フエノール樹脂(以下、レゾー
ル樹脂と略す)を含浸させ、溶剤を揮発させてB
化(乾燥)状態とし、コルゲート付けをして巻き
とつたB化含浸紙を更に次の工程でプリーツ加工
し、次いでC化(硬化)させた後、エンドプレー
トを装着して製造されている。このようにC化状
態のレゾール樹脂含浸紙から得られたキユア型オ
イルフイルターの特色は、耐熱性、耐油性がよ
く、破裂強度も大きく、強靱であつて、しかも通
気性、濾過効率のよいことである。 (発明が解決しようとする問題点) 併しながら、かかるキユア型オイルフイルター
のC化工程は、含浸紙のC化のために多大の熱量
と時間とを消費し、省エネルギー、生産性の合理
化の観点からすれば省略あるいは改善されるべき
工程であり、且つその要求も大きいものである。 (問題点を解決するための手段) 本発明者等は、従来のレゾール樹脂含浸紙から
なるフイルター紙の長所をそのまま保持し、ある
いは改善し、併せてC化工程の省略、C化時間の
短縮又はC化温度の低減が達成できるフイルター
の製造法につき鋭意検討した結果、レゾール樹脂
とメラミン樹脂と硬化促進剤とからなる樹脂組成
物、および/またはフエノールメラミン樹脂と硬
化促進剤とからなる樹脂組成物を含浸液として用
いると、従来のレゾール樹脂含浸紙のもつ性能を
保持あるいは改善しながら、従来必要とされてる
C化時間を省略あるいは著しく短かくすることが
できることを見い出し、本発明を完成するに至つ
た。 すなわち本発明は、レゾール樹脂とメラミン樹
脂、および/またはフエノールメラミン樹脂と硬
化促進剤とからなる樹脂組成物を主成分として含
有する含浸液を用いることを特徴とするフイルタ
ーの製造法を提供するものである。 本発明で用いるレゾール樹脂としては、フエノ
ール類とアルデヒド類をアルカリ性触媒存在下に
反応させて得られる樹脂であつて、しかもメタノ
ール可溶性のものが挙げられ、通常の場合ポリス
チレンの分子量で検量線を作成したゲルパーメシ
ヨン・クロマトグラフ法(GPC法)で測定した
数平均分子量()が300〜1200(ただし、フリ
ーフエノールも分子量計算に含める)で、しかも
重量平均分子量()と数平均分子量()
の比/が4〜50のものを用いるが、なか
でもが500〜800、/が10〜35の範囲の
ものはコルゲーシヨン加工、プリーツ加工等の型
付け加工性が良好で、ブロツキングや割れがない
点で好ましい。 原料として用いるフエノール類としては、例え
ばフエノール、m−クレゾール、p−クレゾー
ル、o−クレゾール、3,5−キシレノール、レ
ゾルシン、アルキルレゾルシン、ビスフエノール
A等の化合物があり、なかでも価格/性能比の点
でフエノールが好ましい。アルデヒド類として
は、例えばホルムアルデヒド、パラホルムアルデ
ヒド、トリオキサン、アセトアルデヒド等の化合
物があり、なかでも価格/性能比の点でホルムア
ルデヒドが好ましい。アルデヒド類とフエノール
類の反応モル比としては、アルデヒド類/フエノ
ール類=(0.7〜1.6)/1.0の範囲が、歩留り、含
浸性が良く、反応途中のゲル化がない点で好まし
い。 アルカリ性触媒としては、例えばアルカリ金属
の水酸化物および炭酸塩、アルカリ土類金属の水
酸化物および炭酸塩、アルカノールアミン、アル
キルアミン、アンモニア等の化合物があり、好適
なものとしては水酸化ナトリウム、水酸化カリウ
ム、炭酸ナトリウム、炭酸カリウム、トリエチル
アミン、アンモニアが挙げられる。その使用量と
しては、フエノール類100モルに対して5モル以
下の範囲が、吸湿性が高くならず、好ましい。 本発明で用いるメラミン樹脂としては、メラミ
ン系化合物とアルデヒド類とをアルカリ性触媒の
存在下で付加反応させ、次いで酸とアルコールを
添加し、弱酸性あるいは酸性として更に付加縮合
反応を進めて高分子化を図ると共に生成したメチ
ロール基等のアルコキシ基の一部又は全部を該ア
ルコールでエーテル化して得られる樹脂であつ
て、しかもメタノール可溶性のものが挙げられ、
なかでもアルデヒド類とメラミン系化合物とを
(2.0〜5.0)/1・0のモル比で反応させたもの
が、反応性およびメタノールへの溶解性に優れる
点で好ましい。 ここで用いるメラミン系化合物としては、一般
(但し、式中のR1〜R6は水素原子、−OH、−
CH2OCH3、−CH2OC2H5、−CH2OH、−CH2CH2
OH、−CH2CH2CH2OHを表わす。ただし、R1
R6のうち少なくとも1個は水素原子である。) で示される化合物および該一般式(1)の化合物を尿
素、ジシアンジアミド、ベンゾグアナミン、アセ
トグアナミン等の公知の変性用化合物で変性した
もの等が挙げられる。 ここで用いるアルデヒド類およびアルカリ性触
媒は前記レゾール樹脂の製造で用いたものと同一
である。 酸としては、塩酸、硫酸、リン酸等の鉱酸類、
シユウ酸、マレイン酸、ギ酸等の有機酸類が挙げ
られるが、アルカリ性触媒との中和反応でメタノ
ールに可溶な塩が生成すると濾過が不用となるの
で好ましい。この場合、残留する塩による吸湿を
防止するためアルカリ性触媒の使用量は極力少な
くすることが好ましい。 アルコールとしては、メタノール、エタノー
ル、n−プロパノール、イソプロパノール、n−
ブタノール、イソブタノール等の脂肪族アルコー
ルが挙げられ、なかでも乾燥温度が高く、価格が
低い点でメタノールが好ましい。 レゾール樹脂とメラミン樹脂の配合比は、樹脂
固型分重量比で通常レゾール樹脂/メラミン樹脂
=95/5〜30/70の範囲であるが、なかでも90/
10〜60/40の範囲で配合した場合には樹脂固型分
40重量%以下という含浸濃度にメタノールで希釈
しても不溶解分の発生がなく、含浸濃度での粘度
が含浸に適した範囲(樹脂固型分30重量%で100
センチポイズ以下)となり、しかも硬化速度が十
分速く、得られるB化紙の剛性も高く、へたりが
生じない等の利点があるので好ましい。 本発明で用いるフエノールメラミン樹脂として
は、前記したと同様のフエノール類、アルデヒド
類および一般式(1)のメラミン系化合物(ただし、
前記した如き変性メラミン系化合物も含む)を必
須の原料とする共縮合物が挙げられる。 このフエノールメラミン樹脂はターポリマーで
あるため、その製法は原料の添加順序等が種々考
えられ、特に限定されないが、一例を示すと、メ
ラミン系化合物とアルデヒド類をアルカリ性触媒
により付加反応させた後、アルコール、酸、更に
前記したレゾール樹脂、好ましくは=500〜
800、/=10〜35のレゾール樹脂を加え、
アルコールによるアルコキシ基のエーテル化とレ
ゾール樹脂との共縮合を進める方法がある。 フエノール類とメラミン系化合物とアルデヒド
類の反応モル比としては、フエノール類/メラミ
ン系化合物/アルデヒド類=1.0/(0.03〜
0.3)/(1.0〜1.9)の範囲が、硬化速度およびメ
タノールによる希釈性が高く、アルデヒド類の臭
気が小さい点で好ましい。 尚、本発明ではレゾール樹脂とメラミン樹脂の
混合物および/又はフエノールメラミン樹脂を用
いるが、該混合物とフエノールメラミン樹脂を比
較した場合、フエノール樹脂とメラミン樹脂の配
合比が適宜選択でき、フイルターC化紙の耐熱
性、硬化性を自由に調整できることおよび樹脂自
体の貯蔵安定性がフエノールメラミン樹脂に比べ
て優れることから、レゾール樹脂とメラミン樹脂
とを混合して用いる場合が好ましい。 本発明で用いる硬化促進剤としては、含浸−硬
化系のPHを7より低い領域に下げる化合物であれ
ばよく、特に限定されないが、例えば塩酸、硫
酸、リン酸、酢酸、ギ酸、パラトルエンスルホン
酸、キシレンスルホン酸、マレイン酸、リン酸エ
ステル化合物等の無機又は有機の酸性化合物;塩
酸アンモニウム、スルフアミン酸アンモニウム、
塩酸のモノエタノールアミン塩等の、いわゆる
「潜在性触媒」と称される酸とアミン化合物の塩
などが挙げられる。なかでもリン酸、リン酸エス
テル系化合物が、メタノールに良く溶解し、少量
で効果が大きく、しかも腐食性が低い点で好まし
い。 硬化促進剤の添加量は、硬化促進剤の種類によ
り大巾に異なり、特定するのは困難であるが、例
えば酸性化合物を使用した場合、樹脂固型分10重
量%のメタノール溶液でのPHが7以下となる様に
添加するのが通常であり、なかでもPHが1〜5に
なる様に添加すると十分に速い硬化速度が得られ
るので好ましい。また、「潜在性触媒」を使用し
た場合、該触媒に使用した酸性化合物(塩酸アン
モニウムで言えば塩酸)を単独で使用した場合に
上記のPHとなる量に相当する範囲である。 本発明の方法で用いるフイルター用紙として
は、従来公知のフイルター用紙がいずれも好まし
く用いられる。例えば、リンターパルプのフアイ
バーを主体とし、必要に応じてレイヨン、ポリエ
ステル等の合繊フアイバーを加え、抄紙して、透
気度、坪量、厚み等を調整した一般用フイルター
用紙等がある。 得られた含浸液のフイルター用紙への含浸は、
樹脂固形分5〜20重量%の含浸液を用い、浸漬及
び絞り操作により含浸させる、いわゆるデイツプ
スクイーズ(Dip−squeeze)方式や樹脂固形分
20〜40重量%の含浸液を用いてキスロールにより
含浸させるキスコート(Kiss−coat)方式等の
従来公知の方法によつて、フイルター用紙100重
量部に対して樹脂固形分が15〜30重量部付着する
ように実施されるのが一般的である。 含浸紙のB化乾燥は、通常の乾燥条件、例えば
80〜120℃/1〜10分等で行われ、コルゲート付
けをした後巻きとられる。 このようにして巻きとられたフイルターB化紙
は、プリーツ加工機でヒダ折り加工を行なう。 オイルフイルタ用にこのフイルターB化紙が、
適用される場合、使用環境が80〜150℃と高いた
め、C化を省略して、ヒダ折り加工済みフイルタ
ーB化紙を使用して、フイルターエレメントに組
み立てても良いが、C化を加えても良い。 C化工程の温度は100〜200℃、時間は10秒〜30
分の範囲であり、従来のレゾール樹脂のみの場合
に比べて低温又は短時間でC化が行なわれる。勿
論、温度が低いと時間は長くかかり、逆に温度が
高いと短かくて済む。同一温度でC化した場合の
最適条件(破裂強度が最大となる条件)で比較す
ると、例えば本発明で用いるB化紙では150℃で
10秒〜6分であるが、従来のレゾール樹脂のみの
場合同温度で8〜15分必要である。 C化後、適当な長さに裁断され、フイルターエ
レメントとして、組み立てられる。 (考案の効果) 本発明のフイルター製造法によれば、従来のレ
ゾール樹脂含浸紙のもつ性能を保持したままで、
あるいは改善しながら、従来の含浸紙が必要とし
たC化時間を省略あるいは著しく短縮、又は従来
に比べて低い温度でも同一時間でC化でき、C化
に関する工程の合理化あるいは省エネルギー化が
計れるという利点がある。 (実施例) 次に本発明を実施例、比較例および製造例によ
り具体的に説明するが、例中の部および%は特に
断りのない限りすべて重量基準であるものとす
る。 製造例1 (レゾール樹脂の製造) 2の4つ口フラスコに還流冷却器、温度計、
攪拌機をセツトし、フエノール887g、37%ホル
マリン913g、96%KOH8.3gを仕込み、還流温
度で5時間反応させた後、50〜70℃で減圧蒸留を
し、濃縮した。留出物がほとんど出なくなつた時
点で減圧蒸留を中止し、70℃に保つ。この間フラ
スコ内の反応液をサンプリングし、メタノールの
希釈して樹脂固型分を50%とした後、粘度を測定
し、150センチポイズになつた時点でフラスコに
メタノールを徐々に加え、中の反応液を十分溶解
しながら、樹脂固型分を50%に調整して、レゾー
ル樹脂(A−1)を得た。 この樹脂の数平均分子量()と重量平均分
子量()をGPC法で測定したところ、が
620、/が20であつた。 製造例2 (メラミン樹脂の製造) 2の4つ口フラスコに還流冷却器、温度計、
攪拌機をセツトし、メラミン307g、37%ホルマ
リン687g、96%KOH2gを仕込み、60℃に昇温
し、結晶物が析出するまで60℃でメチロール化反
応を続けた。次いで50℃で減圧蒸留を攪拌が困難
になるまで続けた後、メタノール1170g、85%ギ
酸2.6gを加え、50℃で30分でエーテル化反応を
行なつた後、96%KOH0.8gを添加し、系を中和
し、過剰のメタノールを減圧蒸留で除去し、樹脂
固型分80%のメラミン樹脂(B−1)を得た。 製造例3 (フエノールメラミン樹脂の製造) 2の4つ口フラスコに還流冷却器、温度計、
攪拌機をセツトし、メラミン97g、37%ホルマリ
ン217g、96%KOH0.63gを仕込み、60℃に昇温
し、結晶物が析出するまでメチロール化反応を続
けた。次いで50℃で減圧蒸留を行ない、もはや蒸
留物が留出しなくなつたことを確認した後、メタ
ノール370g、製造例1で得たレゾール樹脂(A
−1)1242gを加えた。更に85%ギ酸5.9gを添
加し、50℃で30分メチロール化メラミン樹脂とメ
タノールによるメチルエーテル化反応およびフエ
ノール樹脂との共縮合反応を行なわせた後、96%
KOH0.3gで系を中和し、過剰のメタノールを減
圧蒸留で除去し、樹脂固型分50%のフエノールメ
ラミン樹脂(C)を得た。 製造例4 (レゾール樹脂の製造) フエノール787g、37%ホルマリン1013gおよ
び48%NaOH16.3gを用い、還流温度で4時間反
応させた以外は製造例1と全く同様の操作を行
い、樹脂固型分50%の粘度が200センチポイズと
なつたところでメタノールを加えて樹脂固形分50
%に調整しレゾール樹脂(A−2)を得た。 この樹脂のは750、/は30であつた。 製造例5 (レゾール樹脂の製造) フエノール1068g、37%ホルマリン733gおよ
び炭酸カリウム17.2gを用い、還流温度で4時間
反応させた以外は製造例1と全く同様の操作を行
い、樹脂固型分50%の粘度が100センチポイズに
なつたところでメタノールを加えて樹脂固型分50
%に調整しレゾール樹脂(A−3)を得た。 この樹脂のは550、/は15であつた。 製造例 6 メラミン256g、38%ホルマリン737gおよび96
%KOH1.7gを用いメチロール化を行い、次いで
メタノール1320gおよび85%ギ酸2.2gを用いて
エーテル化を行い、96%KOH0.7gを用いて中和
した以外は製造例3と全く同様な操作を行い、樹
脂固型分80%のメラミン樹脂(B−2)を得た。 製造例 7 メラミン384g、37%ホルマリン615gおよび96
%KOH2.5gを用いメチロール化を行い、次いで
メタノール1360gおよび85%ギ酸3.3gを用いて
エーテル化を行い、96%KOH1.1gを用いて中和
した以外は製造例3と全く同様な操作を行い、樹
脂固型分80%のメラミン樹脂(B−3)を得た。 実施例 1〜6 主としてコツトンリンターパルプからなり、坪
量が140g/m2、厚みが0.6mmなるフイルター用紙
を供試紙として用い、他方前期製造例1〜7のレ
ゾール樹脂(A−1)〜(A−3)、メラミン樹
脂(B−1)〜(B−3)、フエノールメラミン
樹脂(C)、ベツカミンP198〔大日本インキ化学工業
(株)製リン酸エステル系硬化促進剤〕、無水マレイ
ン酸およびメタノールを、樹脂固型分の濃度が10
%になる様に表−1に示す組成で混合して含浸液
とし、これを供試紙にデイツプスクイーズ方式で
含浸させて含浸紙とした。 次いで、各含浸紙を80℃、5分の溶剤乾燥(B
化)条件で乾燥させ、次いで150℃、3分の熱硬
化(C化)条件で熱硬化を行い、得られたフイル
ターC化紙につき、破裂強度試験をおこなつたと
ころ、良好な結果が得られた。その結果を表−1
に示す。尚、破裂強度試験はJIS P−8112に準拠
して測定した。 尚、ベツカミンP198(硬化促進剤)を入れる前
のレゾール樹脂とメラミン樹脂の混合物はフエノ
ールメラミン樹脂に比べてより保存安定性に優れ
ていた。 比較例 1 硬化促進剤を入れない以外は実施例1と同様に
して比較対照用のフイルターC化紙を得た。次い
で同様の試験を行ない、表−1に示す如き結果を
得た。 このC化紙は、C化条件150℃×3分では破裂
強度がB化紙と変らず、強度が立ち上がつていな
かつた。 比較例 2 含浸樹脂としてレゾール樹脂(A)のみを使用した
以外は比較例1と同様にして比較対照用のフイル
ターC化紙を得た。次いで同様の試験を行ない、
表−1に示す如き結果を得た。 このC化紙は、C化条件150℃×3分では破裂
強度がB化紙と変らず、強度が立ち上がつていな
かつた。 比較例 3 メラミン樹脂(B)の使用を省略した以外は実施例
1と同様にして比較対照用のフイルターC化紙を
得た。 このC化紙の破裂強度は、B化紙のそれより若
干の立ち上がりを示したが、十分ではなく、劣る
ものであつた。
(Industrial Field of Application) The present invention relates to a method for manufacturing an energy-saving filter, which is improved for the purpose of saving energy and streamlining the production process. (Prior Art) Conventionally, air filters for automobiles, oil filters, fuel filters, etc. have been manufactured by impregnating filter paper with resol type phenol resin (hereinafter abbreviated as resol resin) and volatilizing the solvent.
In the next step, the B-impregnated paper is brought to a dry state, corrugated, and rolled up, and then pleated in the next step, and then C-formed (cured), and then end plates are attached. The characteristics of the cure-type oil filter obtained from resol resin-impregnated paper in the C state are that it has good heat resistance, oil resistance, high bursting strength, and toughness, as well as good air permeability and filtration efficiency. It is. (Problems to be Solved by the Invention) However, the carbonization process of the cure-type oil filter consumes a large amount of heat and time to carbonize the impregnated paper, making it difficult to save energy and streamline productivity. From this point of view, this is a process that should be omitted or improved, and there is a great demand for it. (Means for Solving the Problems) The present inventors have maintained or improved the advantages of conventional filter paper made of resol resin impregnated paper, and also omitted the carbonization step and shortened the carbonization time. Or, as a result of intensive study on a method for manufacturing a filter that can achieve a reduction in C temperature, we have developed a resin composition consisting of a resol resin, a melamine resin, and a curing accelerator, and/or a resin composition consisting of a phenol melamine resin and a curing accelerator. The present invention was completed based on the discovery that by using a resol resin-impregnated paper as an impregnating liquid, the conventionally required carbonization time can be omitted or significantly shortened while maintaining or improving the performance of conventional resol resin-impregnated paper. It came to this. That is, the present invention provides a method for manufacturing a filter, which uses an impregnating liquid containing as a main component a resin composition consisting of a resol resin, a melamine resin, and/or a phenol melamine resin and a curing accelerator. It is. The resol resin used in the present invention includes resins obtained by reacting phenols and aldehydes in the presence of an alkaline catalyst, and which are soluble in methanol. Usually, a calibration curve is created using the molecular weight of polystyrene. The number average molecular weight () measured by gel permeation chromatography (GPC method) is 300 to 1200 (however, free phenol is included in the molecular weight calculation), and the weight average molecular weight () and number average molecular weight () are
Those with a ratio / of 4 to 50 are used, but those with a ratio of / of 500 to 800 and 10 to 35 have good molding processability such as corrugation and pleating, and are free from blocking and cracking. It is preferable. Examples of phenols used as raw materials include compounds such as phenol, m-cresol, p-cresol, o-cresol, 3,5-xylenol, resorcinol, alkylresorcinol, and bisphenol A. From this point of view, phenol is preferred. Examples of aldehydes include compounds such as formaldehyde, paraformaldehyde, trioxane, and acetaldehyde, and among these, formaldehyde is preferred in terms of price/performance ratio. As for the reaction molar ratio of aldehydes and phenols, a range of aldehydes/phenols=(0.7 to 1.6)/1.0 is preferred in terms of good yield and impregnating properties, and no gelation during the reaction. Examples of alkaline catalysts include compounds such as alkali metal hydroxides and carbonates, alkaline earth metal hydroxides and carbonates, alkanolamines, alkylamines, and ammonia. Preferred examples include sodium hydroxide, Examples include potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, and ammonia. The amount used is preferably 5 moles or less per 100 moles of the phenol since the hygroscopicity will not increase. The melamine resin used in the present invention is produced by conducting an addition reaction between a melamine compound and an aldehyde in the presence of an alkaline catalyst, then adding an acid and an alcohol, making it weakly acidic or acidic, and proceeding with an addition condensation reaction to form a polymer. Examples include resins obtained by etherifying some or all of the alkoxy groups such as methylol groups produced with the alcohol, and which are soluble in methanol.
Among these, those in which aldehydes and melamine compounds are reacted at a molar ratio of (2.0 to 5.0)/1.0 are preferred because they have excellent reactivity and solubility in methanol. The melamine compound used here has the general formula (However, R 1 to R 6 in the formula are hydrogen atoms, -OH, -
CH2OCH3 , -CH2OC2H5 , -CH2OH , -CH2CH2 _
OH, -CH 2 CH 2 CH 2 OH. However, R 1 ~
At least one of R 6 is a hydrogen atom. ) and compounds obtained by modifying the compound of general formula (1) with known modifying compounds such as urea, dicyandiamide, benzoguanamine, and acetoguanamine. The aldehydes and alkaline catalyst used here are the same as those used in the production of the resol resin. Examples of acids include mineral acids such as hydrochloric acid, sulfuric acid, and phosphoric acid;
Organic acids such as oxalic acid, maleic acid, and formic acid can be used, but it is preferable that a methanol-soluble salt is produced by a neutralization reaction with an alkaline catalyst because filtration becomes unnecessary. In this case, it is preferable to use as little amount of alkaline catalyst as possible in order to prevent moisture absorption due to residual salt. Alcohols include methanol, ethanol, n-propanol, isopropanol, n-
Examples include aliphatic alcohols such as butanol and isobutanol, and methanol is particularly preferred because it has a high drying temperature and is inexpensive. The blending ratio of resol resin and melamine resin is usually in the range of 95/5 to 30/70 (resin solid weight ratio), but especially 90/70.
When blended in the range of 10 to 60/40, the resin solid content
Even when diluted with methanol to an impregnating concentration of 40% by weight or less, no insoluble matter is generated, and the viscosity at the impregnating concentration is within the range suitable for impregnation (100% by weight with a resin solid content of 30% by weight).
centipoise or less), the curing speed is sufficiently fast, the resulting B-cured paper has high rigidity, and it does not sag, so it is preferable. The phenol melamine resin used in the present invention includes the same phenols, aldehydes, and melamine compounds of general formula (1) as described above (however,
Examples include co-condensates containing as essential raw materials (including modified melamine compounds such as those described above). Since this phenol melamine resin is a terpolymer, there are various ways to manufacture it, including the order in which raw materials are added, and there are no particular limitations, but as an example, after making an addition reaction between a melamine compound and an aldehyde using an alkaline catalyst, Alcohol, acid, and the above-mentioned resol resin, preferably = 500 ~
Add resol resin of 800, / = 10 to 35,
There is a method of proceeding with etherification of an alkoxy group with alcohol and co-condensation with a resol resin. The reaction molar ratio of phenols, melamine compounds, and aldehydes is phenols/melamine compounds/aldehydes = 1.0/(0.03~
The range of 0.3)/(1.0 to 1.9) is preferable because the curing speed and dilutability with methanol are high and the odor of aldehydes is low. In addition, in the present invention, a mixture of resol resin and melamine resin and/or phenol melamine resin is used, but when comparing the mixture and phenol melamine resin, the blending ratio of phenol resin and melamine resin can be selected as appropriate, and the filter C-treated paper It is preferable to use a mixture of a resol resin and a melamine resin because the heat resistance and curability of the resin can be freely adjusted and the storage stability of the resin itself is superior to that of a phenol melamine resin. The curing accelerator used in the present invention may be any compound that lowers the pH of the impregnation-curing system to a region lower than 7, and is not particularly limited. For example, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, formic acid, para-toluenesulfonic acid , xylene sulfonic acid, maleic acid, inorganic or organic acidic compounds such as phosphoric acid ester compounds; ammonium hydrochloride, ammonium sulfamate,
Examples include salts of acid and amine compounds, so-called "latent catalysts", such as monoethanolamine salts of hydrochloric acid. Among these, phosphoric acid and phosphate ester compounds are preferred because they dissolve well in methanol, are highly effective even in small amounts, and have low corrosivity. The amount of curing accelerator to be added varies widely depending on the type of curing accelerator, and is difficult to specify, but for example, when using an acidic compound, the pH of a methanol solution with a resin solid content of 10% by weight is It is usual to add it so that the pH is 7 or less, and it is especially preferable to add it so that the pH is 1 to 5 because a sufficiently fast curing speed can be obtained. In addition, when a "latent catalyst" is used, the range corresponds to the amount that results in the above PH when the acidic compound (hydrochloric acid in terms of ammonium hydrochloride) used in the catalyst is used alone. As the filter paper used in the method of the present invention, any conventionally known filter paper is preferably used. For example, there is general-use filter paper that is mainly made of linter pulp fibers, with synthetic fibers such as rayon and polyester added as needed, and paper is made to adjust air permeability, basis weight, thickness, etc. The impregnation of the obtained impregnating liquid into the filter paper is as follows:
The so-called dip-squeeze method uses an impregnating solution with a resin solid content of 5 to 20% by weight and impregnation by dipping and squeezing operations, and the resin solid content
A resin solid content of 15 to 30 parts by weight is attached to 100 parts by weight of filter paper by a conventionally known method such as the Kiss-coat method in which 20 to 40% by weight of impregnating liquid is used for impregnation with a kiss roll. It is generally carried out as follows. B-drying of impregnated paper is carried out under normal drying conditions, e.g.
It is carried out at 80 to 120℃ for 1 to 10 minutes, and is rolled up after corrugating. The filter B paper thus wound is subjected to a pleating process using a pleating machine. This filter B conversion paper is used for oil filters.
When applied, since the operating environment is as high as 80 to 150℃, it is possible to omit the C conversion and use pleated filter B conversion paper and assemble it into the filter element. Also good. The temperature of the C conversion process is 100 to 200℃, and the time is 10 seconds to 30 seconds.
The C conversion is carried out at a lower temperature or in a shorter time than when using only conventional resol resins. Of course, if the temperature is low, it will take a long time, and if the temperature is high, it will take a short time. Comparing the optimum conditions (conditions where the bursting strength is maximized) for C conversion at the same temperature, for example, the B conversion paper used in the present invention has a
It takes 10 seconds to 6 minutes, but in the case of conventional resol resin only, it takes 8 to 15 minutes at the same temperature. After converting into carbon, it is cut to an appropriate length and assembled as a filter element. (Effects of the invention) According to the filter manufacturing method of the present invention, while maintaining the performance of conventional resol resin-impregnated paper,
Alternatively, while improving the carbonization time required by conventional impregnated paper, it can be omitted or significantly shortened, or it can be converted to carbon in the same time even at a lower temperature than before, streamlining the process related to carbonization or saving energy. There is. (Examples) Next, the present invention will be specifically explained with reference to Examples, Comparative Examples, and Production Examples, and all parts and percentages in the Examples are based on weight unless otherwise specified. Production Example 1 (Production of resol resin) A reflux condenser, a thermometer,
A stirrer was set, and 887 g of phenol, 913 g of 37% formalin, and 8.3 g of 96% KOH were charged, and after reacting at reflux temperature for 5 hours, vacuum distillation was performed at 50 to 70°C to concentrate. When almost no distillate comes out, stop vacuum distillation and maintain the temperature at 70°C. During this time, the reaction solution in the flask was sampled, diluted with methanol to make the resin solid content 50%, the viscosity was measured, and when the viscosity reached 150 centipoise, methanol was gradually added to the flask, and the reaction solution inside was While sufficiently dissolving the resin, the resin solid content was adjusted to 50% to obtain a resol resin (A-1). When the number average molecular weight () and weight average molecular weight () of this resin were measured using the GPC method, it was found that
620, / was 20. Production Example 2 (Production of melamine resin) A reflux condenser, a thermometer,
A stirrer was set, and 307 g of melamine, 687 g of 37% formalin, and 2 g of 96% KOH were charged, the temperature was raised to 60°C, and the methylolation reaction was continued at 60°C until crystals precipitated. Next, vacuum distillation was continued at 50°C until stirring became difficult, then 1170g of methanol and 2.6g of 85% formic acid were added, and after etherification reaction was carried out at 50°C for 30 minutes, 0.8g of 96% KOH was added. The system was then neutralized, and excess methanol was removed by vacuum distillation to obtain a melamine resin (B-1) with a resin solid content of 80%. Production Example 3 (Production of phenol melamine resin) A reflux condenser, a thermometer,
A stirrer was set, and 97 g of melamine, 217 g of 37% formalin, and 0.63 g of 96% KOH were charged, the temperature was raised to 60°C, and the methylolation reaction was continued until crystals precipitated. Next, vacuum distillation was performed at 50°C, and after confirming that no distillate was distilled out, 370 g of methanol and the resol resin (A
-1) 1242g was added. Furthermore, 5.9 g of 85% formic acid was added and the methylolated melamine resin was subjected to a methyl etherification reaction with methanol and a cocondensation reaction with the phenol resin at 50°C for 30 minutes.
The system was neutralized with 0.3 g of KOH, and excess methanol was removed by vacuum distillation to obtain a phenolmelamine resin (C) with a resin solid content of 50%. Production Example 4 (Production of resol resin) Using 787 g of phenol, 1013 g of 37% formalin, and 16.3 g of 48% NaOH, the same operation as in Production Example 1 was carried out except that the reaction was carried out at reflux temperature for 4 hours, and the resin solid content was When the viscosity of 50% is 200 centipoise, methanol is added to reduce the resin solid content to 50 centipoise.
% to obtain a resol resin (A-2). This resin had a weight of 750 and a weight of 30. Production Example 5 (Production of resol resin) Using 1068 g of phenol, 733 g of 37% formalin, and 17.2 g of potassium carbonate, the same operation as in Production Example 1 was carried out except that the reaction was carried out at reflux temperature for 4 hours, and the resin solid content was 50 When the viscosity of % reaches 100 centipoise, methanol is added to reduce the resin solids content to 50 centipoise.
% to obtain resol resin (A-3). This resin had a rating of 550 and a rating of 15. Production example 6 Melamine 256g, 38% formalin 737g and 96
%KOH 1.7g, then etherification using 1320g methanol and 85% formic acid 2.2g, and neutralization using 0.7g 96% KOH. A melamine resin (B-2) having a resin solid content of 80% was obtained. Production example 7 Melamine 384g, 37% formalin 615g and 96
%KOH 2.5g, then etherification using 1360g methanol and 85% formic acid 3.3g, and neutralization using 96% KOH 1.1g. A melamine resin (B-3) with a resin solid content of 80% was obtained. Examples 1 to 6 A filter paper mainly made of cotton linter pulp with a basis weight of 140 g/m 2 and a thickness of 0.6 mm was used as the test paper, and on the other hand, the resol resins (A-1) of Production Examples 1 to 7 of the previous period were used. (A-3), melamine resin (B-1) to (B-3), phenol melamine resin (C), Betsukamine P198 [Dainippon Ink & Chemicals
Co., Ltd. phosphate ester curing accelerator], maleic anhydride, and methanol to a resin solid content of 10%.
% of the composition shown in Table 1 to obtain an impregnating liquid, and a test paper was impregnated with this by a deep squeeze method to obtain an impregnated paper. Next, each impregnated paper was solvent dried at 80°C for 5 minutes (B
The paper was dried at 150°C for 3 minutes under heat curing (C) conditions, and the resulting filter C paper was subjected to a bursting strength test, and good results were obtained. It was done. Table 1 shows the results.
Shown below. Note that the bursting strength test was measured in accordance with JIS P-8112. Note that the mixture of resol resin and melamine resin before adding Betsukamine P198 (curing accelerator) had better storage stability than the phenol melamine resin. Comparative Example 1 A filter C-treated paper for comparison was obtained in the same manner as in Example 1 except that no curing accelerator was added. A similar test was then conducted and the results shown in Table 1 were obtained. This C paper had the same bursting strength as the B paper under the C conversion conditions of 150° C. for 3 minutes, and its strength had not increased. Comparative Example 2 A filter C-treated paper for comparison was obtained in the same manner as in Comparative Example 1 except that only resol resin (A) was used as the impregnating resin. Then a similar test was carried out,
The results shown in Table 1 were obtained. This C paper had the same bursting strength as the B paper under the C conversion conditions of 150° C. for 3 minutes, and its strength had not increased. Comparative Example 3 A filter C-treated paper for comparison was obtained in the same manner as in Example 1 except that the use of melamine resin (B) was omitted. Although the bursting strength of this C paper showed a slight rise compared to that of the B paper, it was not sufficient and was inferior.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 レゾール型フエノール樹脂とメラミン樹脂、
および/またはフエノールメラミン樹脂と、硬化
促進剤とからなる樹脂組成物を主成分として含有
する含浸液を用いることを特徴とするフイルター
の製造法。
1 resol type phenolic resin and melamine resin,
and/or a method for manufacturing a filter, characterized in that an impregnating liquid containing as a main component a resin composition consisting of a phenol melamine resin and a curing accelerator is used.
JP12577685A 1985-06-10 1985-06-10 Preparation of filter Granted JPS61283318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12577685A JPS61283318A (en) 1985-06-10 1985-06-10 Preparation of filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12577685A JPS61283318A (en) 1985-06-10 1985-06-10 Preparation of filter

Publications (2)

Publication Number Publication Date
JPS61283318A JPS61283318A (en) 1986-12-13
JPH058041B2 true JPH058041B2 (en) 1993-02-01

Family

ID=14918554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12577685A Granted JPS61283318A (en) 1985-06-10 1985-06-10 Preparation of filter

Country Status (1)

Country Link
JP (1) JPS61283318A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299620A (en) * 1988-05-30 1989-12-04 Gun Ei Chem Ind Co Ltd Preparation of impregnated paper to be used for filter
JPH026812A (en) * 1988-06-27 1990-01-11 Gun Ei Chem Ind Co Ltd Production of impregnated paper for filter

Also Published As

Publication number Publication date
JPS61283318A (en) 1986-12-13

Similar Documents

Publication Publication Date Title
US5691426A (en) Resin composition
US4831106A (en) Low-Formaldehyde binders
WO1999050352A1 (en) A benzoxazine polymer composition
CN113831490A (en) High-strength water-based phenolic resin and preparation method thereof
CN102648187B (en) Melamine based mannich-compounds and a process for obtaining the same
JP6390581B2 (en) Method for producing liquid resol type phenolic resin, and method for producing wet paper friction material
JPH058041B2 (en)
JP4367323B2 (en) Thermosetting resin composition
JP3879971B2 (en) Method for producing resol type phenolic resin
JP2006152052A5 (en)
US2538883A (en) Phenol-modified acetone resins
US4868227A (en) Mineral and textile webs bonded with a cured resin mixture
JP2004059841A (en) Resin composition for filter
JPH0363968B2 (en)
JPH04142324A (en) Production of modified phenol/aralkyl resin
JP3207410B2 (en) Method for producing phenol melamine co-condensation resin
JP3207411B2 (en) Method for producing phenolic co-condensation resin
JP4206909B2 (en) Method for producing triazine-modified novolac-type phenolic resin
JP4609148B2 (en) Filter resin composition
JP4403293B2 (en) Thermosetting resin composition and friction material
JP2005281546A (en) Resin composition for filter
JPH1133321A (en) Resin-impregnated filter-paper for filtering
PL225883B1 (en) Method for obtaining phenol-formaldehyde resin for production of filter papers
JPH04292612A (en) New phenolic cocondensed resin having improved water-solubility and its production
JP2002302525A (en) Method for producing novolak-type phenolic resin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees