JPH058041B2 - - Google Patents

Info

Publication number
JPH058041B2
JPH058041B2 JP60125776A JP12577685A JPH058041B2 JP H058041 B2 JPH058041 B2 JP H058041B2 JP 60125776 A JP60125776 A JP 60125776A JP 12577685 A JP12577685 A JP 12577685A JP H058041 B2 JPH058041 B2 JP H058041B2
Authority
JP
Japan
Prior art keywords
resin
paper
melamine
methanol
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60125776A
Other languages
Japanese (ja)
Other versions
JPS61283318A (en
Inventor
Kazuhiko Kawamoto
Daijiro Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP12577685A priority Critical patent/JPS61283318A/en
Publication of JPS61283318A publication Critical patent/JPS61283318A/en
Publication of JPH058041B2 publication Critical patent/JPH058041B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、省゚ネルギヌ、生産工皋合理化を目
的に改良された省゚ネルギヌ型フむルタヌの補造
法に関する。 埓来の技術 埓来より、自動車甚゚アヌフむルタヌ、オむル
フむルタヌ、燃料甚フむルタヌ等は、フむルタヌ
甚玙にレゟヌル型プノヌル暹脂以䞋、レゟヌ
ル暹脂ず略すを含浞させ、溶剀を揮発させお
化也燥状態ずし、コルゲヌト付けをしお巻き
ず぀た化含浞玙を曎に次の工皋でプリヌツ加工
し、次いで化硬化させた埌、゚ンドプレヌ
トを装着しお補造されおいる。このように化状
態のレゟヌル暹脂含浞玙から埗られたキナア型オ
むルフむルタヌの特色は、耐熱性、耐油性がよ
く、砎裂匷床も倧きく、匷靱であ぀お、しかも通
気性、濟過効率のよいこずである。 発明が解決しようずする問題点 䜵しながら、かかるキナア型オむルフむルタヌ
の化工皋は、含浞玙の化のために倚倧の熱量
ず時間ずを消費し、省゚ネルギヌ、生産性の合理
化の芳点からすれば省略あるいは改善されるべき
工皋であり、䞔぀その芁求も倧きいものである。 問題点を解決するための手段 本発明者等は、埓来のレゟヌル暹脂含浞玙から
なるフむルタヌ玙の長所をそのたた保持し、ある
いは改善し、䜵せお化工皋の省略、化時間の
短瞮又は化枩床の䜎枛が達成できるフむルタヌ
の補造法に぀き鋭意怜蚎した結果、レゟヌル暹脂
ずメラミン暹脂ず硬化促進剀ずからなる暹脂組成
物、およびたたはプノヌルメラミン暹脂ず硬
化促進剀ずからなる暹脂組成物を含浞液ずしお甚
いるず、埓来のレゟヌル暹脂含浞玙のも぀性胜を
保持あるいは改善しながら、埓来必芁ずされおる
化時間を省略あるいは著しく短かくするこずが
できるこずを芋い出し、本発明を完成するに至぀
た。 すなわち本発明は、レゟヌル暹脂ずメラミン暹
脂、およびたたはプノヌルメラミン暹脂ず硬
化促進剀ずからなる暹脂組成物を䞻成分ずしお含
有する含浞液を甚いるこずを特城ずするフむルタ
ヌの補造法を提䟛するものである。 本発明で甚いるレゟヌル暹脂ずしおは、プノ
ヌル類ずアルデヒド類をアルカリ性觊媒存圚䞋に
反応させお埗られる暹脂であ぀お、しかもメタノ
ヌル可溶性のものが挙げられ、通垞の堎合ポリス
チレンの分子量で怜量線を䜜成したゲルパヌメシ
ペン・クロマトグラフ法GPC法で枬定した
数平均分子量が300〜1200ただし、フリ
ヌプノヌルも分子量蚈算に含めるで、しかも
重量平均分子量ず数平均分子量
の比が〜50のものを甚いるが、なか
でもが500〜800、が10〜35の範囲の
ものはコルゲヌシペン加工、プリヌツ加工等の型
付け加工性が良奜で、ブロツキングや割れがない
点で奜たしい。 原料ずしお甚いるプノヌル類ずしおは、䟋え
ばプノヌル、−クレゟヌル、−クレゟヌ
ル、−クレゟヌル、−キシレノヌル、レ
ゟルシン、アルキルレゟルシン、ビスプノヌル
等の化合物があり、なかでも䟡栌性胜比の点
でプノヌルが奜たしい。アルデヒド類ずしお
は、䟋えばホルムアルデヒド、パラホルムアルデ
ヒド、トリオキサン、アセトアルデヒド等の化合
物があり、なかでも䟡栌性胜比の点でホルムア
ルデヒドが奜たしい。アルデヒド類ずプノヌル
類の反応モル比ずしおは、アルデヒド類プノ
ヌル類0.7〜1.61.0の範囲が、歩留り、含
浞性が良く、反応途䞭のゲル化がない点で奜たし
い。 アルカリ性觊媒ずしおは、䟋えばアルカリ金属
の氎酞化物および炭酞塩、アルカリ土類金属の氎
酞化物および炭酞塩、アルカノヌルアミン、アル
キルアミン、アンモニア等の化合物があり、奜適
なものずしおは氎酞化ナトリりム、氎酞化カリり
ム、炭酞ナトリりム、炭酞カリりム、トリ゚チル
アミン、アンモニアが挙げられる。その䜿甚量ず
しおは、プノヌル類100モルに察しおモル以
䞋の範囲が、吞湿性が高くならず、奜たしい。 本発明で甚いるメラミン暹脂ずしおは、メラミ
ン系化合物ずアルデヒド類ずをアルカリ性觊媒の
存圚䞋で付加反応させ、次いで酞ずアルコヌルを
添加し、匱酞性あるいは酞性ずしお曎に付加瞮合
反応を進めお高分子化を図るず共に生成したメチ
ロヌル基等のアルコキシ基の䞀郚又は党郚を該ア
ルコヌルで゚ヌテル化しお埗られる暹脂であ぀
お、しかもメタノヌル可溶性のものが挙げられ、
なかでもアルデヒド類ずメラミン系化合物ずを
2.0〜5.0・のモル比で反応させたもの
が、反応性およびメタノヌルぞの溶解性に優れる
点で奜たしい。 ここで甚いるメラミン系化合物ずしおは、䞀般
匏 䜆し、匏䞭のR1〜R6は氎玠原子、−OH、−
CH2OCH3、−CH2OC2H5、−CH2OH、−CH2CH2
OH、−CH2CH2CH2OHを衚わす。ただし、R1〜
R6のうち少なくずも個は氎玠原子である。 で瀺される化合物および該䞀般匏(1)の化合物を尿
玠、ゞシアンゞアミド、ベンゟグアナミン、アセ
トグアナミン等の公知の倉性甚化合物で倉性した
もの等が挙げられる。 ここで甚いるアルデヒド類およびアルカリ性觊
媒は前蚘レゟヌル暹脂の補造で甚いたものず同䞀
である。 酞ずしおは、塩酞、硫酞、リン酞等の鉱酞類、
シナり酞、マレむン酞、ギ酞等の有機酞類が挙げ
られるが、アルカリ性觊媒ずの䞭和反応でメタノ
ヌルに可溶な塩が生成するず濟過が䞍甚ずなるの
で奜たしい。この堎合、残留する塩による吞湿を
防止するためアルカリ性觊媒の䜿甚量は極力少な
くするこずが奜たしい。 アルコヌルずしおは、メタノヌル、゚タノヌ
ル、−プロパノヌル、む゜プロパノヌル、−
ブタノヌル、む゜ブタノヌル等の脂肪族アルコヌ
ルが挙げられ、なかでも也燥枩床が高く、䟡栌が
䜎い点でメタノヌルが奜たしい。 レゟヌル暹脂ずメラミン暹脂の配合比は、暹脂
固型分重量比で通垞レゟヌル暹脂メラミン暹脂
95〜3070の範囲であるが、なかでも90
10〜6040の範囲で配合した堎合には暹脂固型分
40重量以䞋ずいう含浞濃床にメタノヌルで垌釈
しおも䞍溶解分の発生がなく、含浞濃床での粘床
が含浞に適した範囲暹脂固型分30重量で100
センチポむズ以䞋ずなり、しかも硬化速床が十
分速く、埗られる化玙の剛性も高く、ぞたりが
生じない等の利点があるので奜たしい。 本発明で甚いるプノヌルメラミン暹脂ずしお
は、前蚘したず同様のプノヌル類、アルデヒド
類および䞀般匏(1)のメラミン系化合物ただし、
前蚘した劂き倉性メラミン系化合物も含むを必
須の原料ずする共瞮合物が挙げられる。 このプノヌルメラミン暹脂はタヌポリマヌで
あるため、その補法は原料の添加順序等が皮々考
えられ、特に限定されないが、䞀䟋を瀺すず、メ
ラミン系化合物ずアルデヒド類をアルカリ性觊媒
により付加反応させた埌、アルコヌル、酞、曎に
前蚘したレゟヌル暹脂、奜たしくは500〜
800、10〜35のレゟヌル暹脂を加え、
アルコヌルによるアルコキシ基の゚ヌテル化ずレ
ゟヌル暹脂ずの共瞮合を進める方法がある。 プノヌル類ずメラミン系化合物ずアルデヒド
類の反応モル比ずしおは、プノヌル類メラミ
ン系化合物アルデヒド類1.00.03〜
0.31.0〜1.9の範囲が、硬化速床およびメ
タノヌルによる垌釈性が高く、アルデヒド類の臭
気が小さい点で奜たしい。 尚、本発明ではレゟヌル暹脂ずメラミン暹脂の
混合物および又はプノヌルメラミン暹脂を甚
いるが、該混合物ずプノヌルメラミン暹脂を比
范した堎合、プノヌル暹脂ずメラミン暹脂の配
合比が適宜遞択でき、フむルタヌ化玙の耐熱
性、硬化性を自由に調敎できるこずおよび暹脂自
䜓の貯蔵安定性がプノヌルメラミン暹脂に比べ
お優れるこずから、レゟヌル暹脂ずメラミン暹脂
ずを混合しお甚いる堎合が奜たしい。 本発明で甚いる硬化促進剀ずしおは、含浞−硬
化系のPHをより䜎い領域に䞋げる化合物であれ
ばよく、特に限定されないが、䟋えば塩酞、硫
酞、リン酞、酢酞、ギ酞、パラトル゚ンスルホン
酞、キシレンスルホン酞、マレむン酞、リン酞゚
ステル化合物等の無機又は有機の酞性化合物塩
酞アンモニりム、スルフアミン酞アンモニりム、
塩酞のモノ゚タノヌルアミン塩等の、いわゆる
「朜圚性觊媒」ず称される酞ずアミン化合物の塩
などが挙げられる。なかでもリン酞、リン酞゚ス
テル系化合物が、メタノヌルに良く溶解し、少量
で効果が倧きく、しかも腐食性が䜎い点で奜たし
い。 硬化促進剀の添加量は、硬化促進剀の皮類によ
り倧巟に異なり、特定するのは困難であるが、䟋
えば酞性化合物を䜿甚した堎合、暹脂固型分10重
量のメタノヌル溶液でのPHが以䞋ずなる様に
添加するのが通垞であり、なかでもPHが〜に
なる様に添加するず十分に速い硬化速床が埗られ
るので奜たしい。たた、「朜圚性觊媒」を䜿甚し
た堎合、該觊媒に䜿甚した酞性化合物塩酞アン
モニりムで蚀えば塩酞を単独で䜿甚した堎合に
䞊蚘のPHずなる量に盞圓する範囲である。 本発明の方法で甚いるフむルタヌ甚玙ずしお
は、埓来公知のフむルタヌ甚玙がいずれも奜たし
く甚いられる。䟋えば、リンタヌパルプのフアむ
バヌを䞻䜓ずし、必芁に応じおレむペン、ポリ゚
ステル等の合繊フアむバヌを加え、抄玙しお、透
気床、坪量、厚み等を調敎した䞀般甚フむルタヌ
甚玙等がある。 埗られた含浞液のフむルタヌ甚玙ぞの含浞は、
暹脂固圢分〜20重量の含浞液を甚い、浞挬及
び絞り操䜜により含浞させる、いわゆるデむツプ
スクむヌズDip−squeeze方匏や暹脂固圢分
20〜40重量の含浞液を甚いおキスロヌルにより
含浞させるキスコヌトKiss−coat方匏等の
埓来公知の方法によ぀お、フむルタヌ甚玙100重
量郚に察しお暹脂固圢分が15〜30重量郚付着する
ように実斜されるのが䞀般的である。 含浞玙の化也燥は、通垞の也燥条件、䟋えば
80〜120℃〜10分等で行われ、コルゲヌト付
けをした埌巻きずられる。 このようにしお巻きずられたフむルタヌ化玙
は、プリヌツ加工機でヒダ折り加工を行なう。 オむルフむルタ甚にこのフむルタヌ化玙が、
適甚される堎合、䜿甚環境が80〜150℃ず高いた
め、化を省略しお、ヒダ折り加工枈みフむルタ
ヌ化玙を䜿甚しお、フむルタヌ゚レメントに組
み立おおも良いが、化を加えおも良い。 化工皋の枩床は100〜200℃、時間は10秒〜30
分の範囲であり、埓来のレゟヌル暹脂のみの堎合
に比べお䜎枩又は短時間で化が行なわれる。勿
論、枩床が䜎いず時間は長くかかり、逆に枩床が
高いず短かくお枈む。同䞀枩床で化した堎合の
最適条件砎裂匷床が最倧ずなる条件で比范す
るず、䟋えば本発明で甚いる化玙では150℃で
10秒〜分であるが、埓来のレゟヌル暹脂のみの
堎合同枩床で〜15分必芁である。 化埌、適圓な長さに裁断され、フむルタヌ゚
レメントずしお、組み立おられる。 考案の効果 本発明のフむルタヌ補造法によれば、埓来のレ
ゟヌル暹脂含浞玙のも぀性胜を保持したたたで、
あるいは改善しながら、埓来の含浞玙が必芁ずし
た化時間を省略あるいは著しく短瞮、又は埓来
に比べお䜎い枩床でも同䞀時間で化でき、化
に関する工皋の合理化あるいは省゚ネルギヌ化が
蚈れるずいう利点がある。 実斜䟋 次に本発明を実斜䟋、比范䟋および補造䟋によ
り具䜓的に説明するが、䟋䞭の郚およびは特に
断りのない限りすべお重量基準であるものずす
る。 補造䟋 レゟヌル暹脂の補造 の぀口フラスコに還流冷华噚、枩床蚈、
攪拌機をセツトし、プノヌル887、37ホル
マリン913、96KOH8.3を仕蟌み、還流枩
床で時間反応させた埌、50〜70℃で枛圧蒞留を
し、濃瞮した。留出物がほずんど出なくな぀た時
点で枛圧蒞留を䞭止し、70℃に保぀。この間フラ
スコ内の反応液をサンプリングし、メタノヌルの
垌釈しお暹脂固型分を50ずした埌、粘床を枬定
し、150センチポむズにな぀た時点でフラスコに
メタノヌルを埐々に加え、䞭の反応液を十分溶解
しながら、暹脂固型分を50に調敎しお、レゟヌ
ル暹脂−を埗た。 この暹脂の数平均分子量ず重量平均分
子量をGPC法で枬定したずころ、が
620、が20であ぀た。 補造䟋 メラミン暹脂の補造 の぀口フラスコに還流冷华噚、枩床蚈、
攪拌機をセツトし、メラミン307、37ホルマ
リン687、96KOH2を仕蟌み、60℃に昇枩
し、結晶物が析出するたで60℃でメチロヌル化反
応を続けた。次いで50℃で枛圧蒞留を攪拌が困難
になるたで続けた埌、メタノヌル1170、85ギ
酾2.6を加え、50℃で30分で゚ヌテル化反応を
行な぀た埌、96KOH0.8を添加し、系を䞭和
し、過剰のメタノヌルを枛圧蒞留で陀去し、暹脂
固型分80のメラミン暹脂−を埗た。 補造䟋 プノヌルメラミン暹脂の補造 の぀口フラスコに還流冷华噚、枩床蚈、
攪拌機をセツトし、メラミン97、37ホルマリ
ン217、96KOH0.63を仕蟌み、60℃に昇枩
し、結晶物が析出するたでメチロヌル化反応を続
けた。次いで50℃で枛圧蒞留を行ない、もはや蒞
留物が留出しなくな぀たこずを確認した埌、メタ
ノヌル370、補造䟋で埗たレゟヌル暹脂
−1242を加えた。曎に85ギ酞5.9を添
加し、50℃で30分メチロヌル化メラミン暹脂ずメ
タノヌルによるメチル゚ヌテル化反応およびプ
ノヌル暹脂ずの共瞮合反応を行なわせた埌、96
KOH0.3で系を䞭和し、過剰のメタノヌルを枛
圧蒞留で陀去し、暹脂固型分50のプノヌルメ
ラミン暹脂(C)を埗た。 補造䟋 レゟヌル暹脂の補造 プノヌル787、37ホルマリン1013およ
び48NaOH16.3を甚い、還流枩床で時間反
応させた以倖は補造䟋ず党く同様の操䜜を行
い、暹脂固型分50の粘床が200センチポむズず
な぀たずころでメタノヌルを加えお暹脂固圢分50
に調敎しレゟヌル暹脂−を埗た。 この暹脂のは750、は30であ぀た。 補造䟋 レゟヌル暹脂の補造 プノヌル1068、37ホルマリン733およ
び炭酞カリりム17.2を甚い、還流枩床で時間
反応させた以倖は補造䟋ず党く同様の操䜜を行
い、暹脂固型分50の粘床が100センチポむズに
な぀たずころでメタノヌルを加えお暹脂固型分50
に調敎しレゟヌル暹脂−を埗た。 この暹脂のは550、は15であ぀た。 補造䟋  メラミン256、38ホルマリン737および96
KOH1.7を甚いメチロヌル化を行い、次いで
メタノヌル1320および85ギ酞2.2を甚いお
゚ヌテル化を行い、96KOH0.7を甚いお䞭和
した以倖は補造䟋ず党く同様な操䜜を行い、暹
脂固型分80のメラミン暹脂−を埗た。 補造䟋  メラミン384、37ホルマリン615および96
KOH2.5を甚いメチロヌル化を行い、次いで
メタノヌル1360および85ギ酞3.3を甚いお
゚ヌテル化を行い、96KOH1.1を甚いお䞭和
した以倖は補造䟋ず党く同様な操䜜を行い、暹
脂固型分80のメラミン暹脂−を埗た。 実斜䟋 〜 䞻ずしおコツトンリンタヌパルプからなり、坪
量が140m2、厚みが0.6mmなるフむルタヌ甚玙
を䟛詊玙ずしお甚い、他方前期補造䟋〜のレ
ゟヌル暹脂−〜−、メラミン暹
脂−〜−、プノヌルメラミン
暹脂(C)、ベツカミンP198〔倧日本むンキ化孊工業
(æ ª)補リン酞゚ステル系硬化促進剀〕、無氎マレむ
ン酞およびメタノヌルを、暹脂固型分の濃床が10
になる様に衚−に瀺す組成で混合しお含浞液
ずし、これを䟛詊玙にデむツプスクむヌズ方匏で
含浞させお含浞玙ずした。 次いで、各含浞玙を80℃、分の溶剀也燥
化条件で也燥させ、次いで150℃、分の熱硬
化化条件で熱硬化を行い、埗られたフむル
タヌ化玙に぀き、砎裂匷床詊隓をおこな぀たず
ころ、良奜な結果が埗られた。その結果を衚−
に瀺す。尚、砎裂匷床詊隓はJIS −8112に準拠
しお枬定した。 尚、ベツカミンP198硬化促進剀を入れる前
のレゟヌル暹脂ずメラミン暹脂の混合物はプノ
ヌルメラミン暹脂に比べおより保存安定性に優れ
おいた。 比范䟋  硬化促進剀を入れない以倖は実斜䟋ず同様に
しお比范察照甚のフむルタヌ化玙を埗た。次い
で同様の詊隓を行ない、衚−に瀺す劂き結果を
埗た。 この化玙は、化条件150℃×分では砎裂
匷床が化玙ず倉らず、匷床が立ち䞊が぀おいな
か぀た。 比范䟋  含浞暹脂ずしおレゟヌル暹脂(A)のみを䜿甚した
以倖は比范䟋ず同様にしお比范察照甚のフむル
タヌ化玙を埗た。次いで同様の詊隓を行ない、
衚−に瀺す劂き結果を埗た。 この化玙は、化条件150℃×分では砎裂
匷床が化玙ず倉らず、匷床が立ち䞊が぀おいな
か぀た。 比范䟋  メラミン暹脂(B)の䜿甚を省略した以倖は実斜䟋
ず同様にしお比范察照甚のフむルタヌ化玙を
埗た。 この化玙の砎裂匷床は、化玙のそれより若
干の立ち䞊がりを瀺したが、十分ではなく、劣る
ものであ぀た。
(Industrial Field of Application) The present invention relates to a method for manufacturing an energy-saving filter, which is improved for the purpose of saving energy and streamlining the production process. (Prior Art) Conventionally, air filters for automobiles, oil filters, fuel filters, etc. have been manufactured by impregnating filter paper with resol type phenol resin (hereinafter abbreviated as resol resin) and volatilizing the solvent.
In the next step, the B-impregnated paper is brought to a dry state, corrugated, and rolled up, and then pleated in the next step, and then C-formed (cured), and then end plates are attached. The characteristics of the cure-type oil filter obtained from resol resin-impregnated paper in the C state are that it has good heat resistance, oil resistance, high bursting strength, and toughness, as well as good air permeability and filtration efficiency. It is. (Problems to be Solved by the Invention) However, the carbonization process of the cure-type oil filter consumes a large amount of heat and time to carbonize the impregnated paper, making it difficult to save energy and streamline productivity. From this point of view, this is a process that should be omitted or improved, and there is a great demand for it. (Means for Solving the Problems) The present inventors have maintained or improved the advantages of conventional filter paper made of resol resin impregnated paper, and also omitted the carbonization step and shortened the carbonization time. Or, as a result of intensive study on a method for manufacturing a filter that can achieve a reduction in C temperature, we have developed a resin composition consisting of a resol resin, a melamine resin, and a curing accelerator, and/or a resin composition consisting of a phenol melamine resin and a curing accelerator. The present invention was completed based on the discovery that by using a resol resin-impregnated paper as an impregnating liquid, the conventionally required carbonization time can be omitted or significantly shortened while maintaining or improving the performance of conventional resol resin-impregnated paper. It came to this. That is, the present invention provides a method for manufacturing a filter, which uses an impregnating liquid containing as a main component a resin composition consisting of a resol resin, a melamine resin, and/or a phenol melamine resin and a curing accelerator. It is. The resol resin used in the present invention includes resins obtained by reacting phenols and aldehydes in the presence of an alkaline catalyst, and which are soluble in methanol. Usually, a calibration curve is created using the molecular weight of polystyrene. The number average molecular weight () measured by gel permeation chromatography (GPC method) is 300 to 1200 (however, free phenol is included in the molecular weight calculation), and the weight average molecular weight () and number average molecular weight () are
Those with a ratio / of 4 to 50 are used, but those with a ratio of / of 500 to 800 and 10 to 35 have good molding processability such as corrugation and pleating, and are free from blocking and cracking. It is preferable. Examples of phenols used as raw materials include compounds such as phenol, m-cresol, p-cresol, o-cresol, 3,5-xylenol, resorcinol, alkylresorcinol, and bisphenol A. From this point of view, phenol is preferred. Examples of aldehydes include compounds such as formaldehyde, paraformaldehyde, trioxane, and acetaldehyde, and among these, formaldehyde is preferred in terms of price/performance ratio. As for the reaction molar ratio of aldehydes and phenols, a range of aldehydes/phenols=(0.7 to 1.6)/1.0 is preferred in terms of good yield and impregnating properties, and no gelation during the reaction. Examples of alkaline catalysts include compounds such as alkali metal hydroxides and carbonates, alkaline earth metal hydroxides and carbonates, alkanolamines, alkylamines, and ammonia. Preferred examples include sodium hydroxide, Examples include potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, and ammonia. The amount used is preferably 5 moles or less per 100 moles of the phenol since the hygroscopicity will not increase. The melamine resin used in the present invention is produced by conducting an addition reaction between a melamine compound and an aldehyde in the presence of an alkaline catalyst, then adding an acid and an alcohol, making it weakly acidic or acidic, and proceeding with an addition condensation reaction to form a polymer. Examples include resins obtained by etherifying some or all of the alkoxy groups such as methylol groups produced with the alcohol, and which are soluble in methanol.
Among these, those in which aldehydes and melamine compounds are reacted at a molar ratio of (2.0 to 5.0)/1.0 are preferred because they have excellent reactivity and solubility in methanol. The melamine compound used here has the general formula (However, R 1 to R 6 in the formula are hydrogen atoms, -OH, -
CH2OCH3 , -CH2OC2H5 , -CH2OH , -CH2CH2 _
OH, -CH 2 CH 2 CH 2 OH. However, R 1 ~
At least one of R 6 is a hydrogen atom. ) and compounds obtained by modifying the compound of general formula (1) with known modifying compounds such as urea, dicyandiamide, benzoguanamine, and acetoguanamine. The aldehydes and alkaline catalyst used here are the same as those used in the production of the resol resin. Examples of acids include mineral acids such as hydrochloric acid, sulfuric acid, and phosphoric acid;
Organic acids such as oxalic acid, maleic acid, and formic acid can be used, but it is preferable that a methanol-soluble salt is produced by a neutralization reaction with an alkaline catalyst because filtration becomes unnecessary. In this case, it is preferable to use as little amount of alkaline catalyst as possible in order to prevent moisture absorption due to residual salt. Alcohols include methanol, ethanol, n-propanol, isopropanol, n-
Examples include aliphatic alcohols such as butanol and isobutanol, and methanol is particularly preferred because it has a high drying temperature and is inexpensive. The blending ratio of resol resin and melamine resin is usually in the range of 95/5 to 30/70 (resin solid weight ratio), but especially 90/70.
When blended in the range of 10 to 60/40, the resin solid content
Even when diluted with methanol to an impregnating concentration of 40% by weight or less, no insoluble matter is generated, and the viscosity at the impregnating concentration is within the range suitable for impregnation (100% by weight with a resin solid content of 30% by weight).
centipoise or less), the curing speed is sufficiently fast, the resulting B-cured paper has high rigidity, and it does not sag, so it is preferable. The phenol melamine resin used in the present invention includes the same phenols, aldehydes, and melamine compounds of general formula (1) as described above (however,
Examples include co-condensates containing as essential raw materials (including modified melamine compounds such as those described above). Since this phenol melamine resin is a terpolymer, there are various ways to manufacture it, including the order in which raw materials are added, and there are no particular limitations, but as an example, after making an addition reaction between a melamine compound and an aldehyde using an alkaline catalyst, Alcohol, acid, and the above-mentioned resol resin, preferably = 500 ~
Add resol resin of 800, / = 10 to 35,
There is a method of proceeding with etherification of an alkoxy group with alcohol and co-condensation with a resol resin. The reaction molar ratio of phenols, melamine compounds, and aldehydes is phenols/melamine compounds/aldehydes = 1.0/(0.03~
The range of 0.3)/(1.0 to 1.9) is preferable because the curing speed and dilutability with methanol are high and the odor of aldehydes is low. In addition, in the present invention, a mixture of resol resin and melamine resin and/or phenol melamine resin is used, but when comparing the mixture and phenol melamine resin, the blending ratio of phenol resin and melamine resin can be selected as appropriate, and the filter C-treated paper It is preferable to use a mixture of a resol resin and a melamine resin because the heat resistance and curability of the resin can be freely adjusted and the storage stability of the resin itself is superior to that of a phenol melamine resin. The curing accelerator used in the present invention may be any compound that lowers the pH of the impregnation-curing system to a region lower than 7, and is not particularly limited. For example, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, formic acid, para-toluenesulfonic acid , xylene sulfonic acid, maleic acid, inorganic or organic acidic compounds such as phosphoric acid ester compounds; ammonium hydrochloride, ammonium sulfamate,
Examples include salts of acid and amine compounds, so-called "latent catalysts", such as monoethanolamine salts of hydrochloric acid. Among these, phosphoric acid and phosphate ester compounds are preferred because they dissolve well in methanol, are highly effective even in small amounts, and have low corrosivity. The amount of curing accelerator to be added varies widely depending on the type of curing accelerator, and is difficult to specify, but for example, when using an acidic compound, the pH of a methanol solution with a resin solid content of 10% by weight is It is usual to add it so that the pH is 7 or less, and it is especially preferable to add it so that the pH is 1 to 5 because a sufficiently fast curing speed can be obtained. In addition, when a "latent catalyst" is used, the range corresponds to the amount that results in the above PH when the acidic compound (hydrochloric acid in terms of ammonium hydrochloride) used in the catalyst is used alone. As the filter paper used in the method of the present invention, any conventionally known filter paper is preferably used. For example, there is general-use filter paper that is mainly made of linter pulp fibers, with synthetic fibers such as rayon and polyester added as needed, and paper is made to adjust air permeability, basis weight, thickness, etc. The impregnation of the obtained impregnating liquid into the filter paper is as follows:
The so-called dip-squeeze method uses an impregnating solution with a resin solid content of 5 to 20% by weight and impregnation by dipping and squeezing operations, and the resin solid content
A resin solid content of 15 to 30 parts by weight is attached to 100 parts by weight of filter paper by a conventionally known method such as the Kiss-coat method in which 20 to 40% by weight of impregnating liquid is used for impregnation with a kiss roll. It is generally carried out as follows. B-drying of impregnated paper is carried out under normal drying conditions, e.g.
It is carried out at 80 to 120℃ for 1 to 10 minutes, and is rolled up after corrugating. The filter B paper thus wound is subjected to a pleating process using a pleating machine. This filter B conversion paper is used for oil filters.
When applied, since the operating environment is as high as 80 to 150℃, it is possible to omit the C conversion and use pleated filter B conversion paper and assemble it into the filter element. Also good. The temperature of the C conversion process is 100 to 200℃, and the time is 10 seconds to 30 seconds.
The C conversion is carried out at a lower temperature or in a shorter time than when using only conventional resol resins. Of course, if the temperature is low, it will take a long time, and if the temperature is high, it will take a short time. Comparing the optimum conditions (conditions where the bursting strength is maximized) for C conversion at the same temperature, for example, the B conversion paper used in the present invention has a
It takes 10 seconds to 6 minutes, but in the case of conventional resol resin only, it takes 8 to 15 minutes at the same temperature. After converting into carbon, it is cut to an appropriate length and assembled as a filter element. (Effects of the invention) According to the filter manufacturing method of the present invention, while maintaining the performance of conventional resol resin-impregnated paper,
Alternatively, while improving the carbonization time required by conventional impregnated paper, it can be omitted or significantly shortened, or it can be converted to carbon in the same time even at a lower temperature than before, streamlining the process related to carbonization or saving energy. There is. (Examples) Next, the present invention will be specifically explained with reference to Examples, Comparative Examples, and Production Examples, and all parts and percentages in the Examples are based on weight unless otherwise specified. Production Example 1 (Production of resol resin) A reflux condenser, a thermometer,
A stirrer was set, and 887 g of phenol, 913 g of 37% formalin, and 8.3 g of 96% KOH were charged, and after reacting at reflux temperature for 5 hours, vacuum distillation was performed at 50 to 70°C to concentrate. When almost no distillate comes out, stop vacuum distillation and maintain the temperature at 70°C. During this time, the reaction solution in the flask was sampled, diluted with methanol to make the resin solid content 50%, the viscosity was measured, and when the viscosity reached 150 centipoise, methanol was gradually added to the flask, and the reaction solution inside was While sufficiently dissolving the resin, the resin solid content was adjusted to 50% to obtain a resol resin (A-1). When the number average molecular weight () and weight average molecular weight () of this resin were measured using the GPC method, it was found that
620, / was 20. Production Example 2 (Production of melamine resin) A reflux condenser, a thermometer,
A stirrer was set, and 307 g of melamine, 687 g of 37% formalin, and 2 g of 96% KOH were charged, the temperature was raised to 60°C, and the methylolation reaction was continued at 60°C until crystals precipitated. Next, vacuum distillation was continued at 50°C until stirring became difficult, then 1170g of methanol and 2.6g of 85% formic acid were added, and after etherification reaction was carried out at 50°C for 30 minutes, 0.8g of 96% KOH was added. The system was then neutralized, and excess methanol was removed by vacuum distillation to obtain a melamine resin (B-1) with a resin solid content of 80%. Production Example 3 (Production of phenol melamine resin) A reflux condenser, a thermometer,
A stirrer was set, and 97 g of melamine, 217 g of 37% formalin, and 0.63 g of 96% KOH were charged, the temperature was raised to 60°C, and the methylolation reaction was continued until crystals precipitated. Next, vacuum distillation was performed at 50°C, and after confirming that no distillate was distilled out, 370 g of methanol and the resol resin (A
-1) 1242g was added. Furthermore, 5.9 g of 85% formic acid was added and the methylolated melamine resin was subjected to a methyl etherification reaction with methanol and a cocondensation reaction with the phenol resin at 50°C for 30 minutes.
The system was neutralized with 0.3 g of KOH, and excess methanol was removed by vacuum distillation to obtain a phenolmelamine resin (C) with a resin solid content of 50%. Production Example 4 (Production of resol resin) Using 787 g of phenol, 1013 g of 37% formalin, and 16.3 g of 48% NaOH, the same operation as in Production Example 1 was carried out except that the reaction was carried out at reflux temperature for 4 hours, and the resin solid content was When the viscosity of 50% is 200 centipoise, methanol is added to reduce the resin solid content to 50 centipoise.
% to obtain a resol resin (A-2). This resin had a weight of 750 and a weight of 30. Production Example 5 (Production of resol resin) Using 1068 g of phenol, 733 g of 37% formalin, and 17.2 g of potassium carbonate, the same operation as in Production Example 1 was carried out except that the reaction was carried out at reflux temperature for 4 hours, and the resin solid content was 50 When the viscosity of % reaches 100 centipoise, methanol is added to reduce the resin solids content to 50 centipoise.
% to obtain resol resin (A-3). This resin had a rating of 550 and a rating of 15. Production example 6 Melamine 256g, 38% formalin 737g and 96
%KOH 1.7g, then etherification using 1320g methanol and 85% formic acid 2.2g, and neutralization using 0.7g 96% KOH. A melamine resin (B-2) having a resin solid content of 80% was obtained. Production example 7 Melamine 384g, 37% formalin 615g and 96
%KOH 2.5g, then etherification using 1360g methanol and 85% formic acid 3.3g, and neutralization using 96% KOH 1.1g. A melamine resin (B-3) with a resin solid content of 80% was obtained. Examples 1 to 6 A filter paper mainly made of cotton linter pulp with a basis weight of 140 g/m 2 and a thickness of 0.6 mm was used as the test paper, and on the other hand, the resol resins (A-1) of Production Examples 1 to 7 of the previous period were used. (A-3), melamine resin (B-1) to (B-3), phenol melamine resin (C), Betsukamine P198 [Dainippon Ink & Chemicals
Co., Ltd. phosphate ester curing accelerator], maleic anhydride, and methanol to a resin solid content of 10%.
% of the composition shown in Table 1 to obtain an impregnating liquid, and a test paper was impregnated with this by a deep squeeze method to obtain an impregnated paper. Next, each impregnated paper was solvent dried at 80°C for 5 minutes (B
The paper was dried at 150°C for 3 minutes under heat curing (C) conditions, and the resulting filter C paper was subjected to a bursting strength test, and good results were obtained. It was done. Table 1 shows the results.
Shown below. Note that the bursting strength test was measured in accordance with JIS P-8112. Note that the mixture of resol resin and melamine resin before adding Betsukamine P198 (curing accelerator) had better storage stability than the phenol melamine resin. Comparative Example 1 A filter C-treated paper for comparison was obtained in the same manner as in Example 1 except that no curing accelerator was added. A similar test was then conducted and the results shown in Table 1 were obtained. This C paper had the same bursting strength as the B paper under the C conversion conditions of 150° C. for 3 minutes, and its strength had not increased. Comparative Example 2 A filter C-treated paper for comparison was obtained in the same manner as in Comparative Example 1 except that only resol resin (A) was used as the impregnating resin. Then a similar test was carried out,
The results shown in Table 1 were obtained. This C paper had the same bursting strength as the B paper under the C conversion conditions of 150° C. for 3 minutes, and its strength had not increased. Comparative Example 3 A filter C-treated paper for comparison was obtained in the same manner as in Example 1 except that the use of melamine resin (B) was omitted. Although the bursting strength of this C paper showed a slight rise compared to that of the B paper, it was not sufficient and was inferior.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  レゟヌル型プノヌル暹脂ずメラミン暹脂、
およびたたはプノヌルメラミン暹脂ず、硬化
促進剀ずからなる暹脂組成物を䞻成分ずしお含有
する含浞液を甚いるこずを特城ずするフむルタヌ
の補造法。
1 resol type phenolic resin and melamine resin,
and/or a method for manufacturing a filter, characterized in that an impregnating liquid containing as a main component a resin composition consisting of a phenol melamine resin and a curing accelerator is used.
JP12577685A 1985-06-10 1985-06-10 Preparation of filter Granted JPS61283318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12577685A JPS61283318A (en) 1985-06-10 1985-06-10 Preparation of filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12577685A JPS61283318A (en) 1985-06-10 1985-06-10 Preparation of filter

Publications (2)

Publication Number Publication Date
JPS61283318A JPS61283318A (en) 1986-12-13
JPH058041B2 true JPH058041B2 (en) 1993-02-01

Family

ID=14918554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12577685A Granted JPS61283318A (en) 1985-06-10 1985-06-10 Preparation of filter

Country Status (1)

Country Link
JP (1) JPS61283318A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299620A (en) * 1988-05-30 1989-12-04 Gun Ei Chem Ind Co Ltd Preparation of impregnated paper to be used for filter
JPH026812A (en) * 1988-06-27 1990-01-11 Gun Ei Chem Ind Co Ltd Production of impregnated paper for filter

Also Published As

Publication number Publication date
JPS61283318A (en) 1986-12-13

Similar Documents

Publication Publication Date Title
US5691426A (en) Resin composition
US4831106A (en) Low-Formaldehyde binders
WO1999050352A1 (en) A benzoxazine polymer composition
CN113831490A (en) High-strength water-based phenolic resin and preparation method thereof
CN102648187B (en) Melamine based mannich-compounds and a process for obtaining the same
JP6390581B2 (en) Method for producing liquid resol type phenolic resin, and method for producing wet paper friction material
JPH058041B2 (en)
JP4367323B2 (en) Thermosetting resin composition
JP3879971B2 (en) Method for producing resol type phenolic resin
JP2006152052A5 (en)
US2538883A (en) Phenol-modified acetone resins
US4868227A (en) Mineral and textile webs bonded with a cured resin mixture
US5650478A (en) Liquid binding agents
JP2004059841A (en) Resin composition for filter
JPH0363968B2 (en)
JPH04142324A (en) Production of modified phenol/aralkyl resin
JP3207410B2 (en) Method for producing phenol melamine co-condensation resin
JP3190055B2 (en) Novel phenolic co-condensation resin with improved water solubility and its production method
JP3207411B2 (en) Method for producing phenolic co-condensation resin
JP4206909B2 (en) Method for producing triazine-modified novolac-type phenolic resin
JP4609148B2 (en) Filter resin composition
JP4403293B2 (en) Thermosetting resin composition and friction material
JP2005281546A (en) Resin composition for filter
JPH1133321A (en) Resin-impregnated filter-paper for filtering
PL225883B1 (en) Method for obtaining phenol-formaldehyde resin for production of filter papers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees