JP3207411B2 - Method for producing phenolic co-condensation resin - Google Patents

Method for producing phenolic co-condensation resin

Info

Publication number
JP3207411B2
JP3207411B2 JP06409690A JP6409690A JP3207411B2 JP 3207411 B2 JP3207411 B2 JP 3207411B2 JP 06409690 A JP06409690 A JP 06409690A JP 6409690 A JP6409690 A JP 6409690A JP 3207411 B2 JP3207411 B2 JP 3207411B2
Authority
JP
Japan
Prior art keywords
compound
reaction
resin
condensation
phenolic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06409690A
Other languages
Japanese (ja)
Other versions
JPH03265618A (en
Inventor
文一郎 富田
敦 伊藤
清人 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP06409690A priority Critical patent/JP3207411B2/en
Publication of JPH03265618A publication Critical patent/JPH03265618A/en
Application granted granted Critical
Publication of JP3207411B2 publication Critical patent/JP3207411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、新規な熱硬化性を有するフェノール系共縮
合樹脂の効率的な製造方法に関するものである。さらに
詳しくは共縮合率が著しく高く、塩類の含有量の少ない
共縮合樹脂であり優れた耐久性、耐熱性、耐加水分解
性、速硬化性、難燃性を有し成型材料、積層板、接着
剤、発泡体等として工業上有用なフェノール−アミノ共
縮合樹脂に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for efficiently producing a novel thermosetting phenolic co-condensation resin. More specifically, the co-condensation rate is remarkably high and is a co-condensation resin having a low content of salts, and has excellent durability, heat resistance, hydrolysis resistance, rapid curing properties, flame retardancy, molding materials, laminates, The present invention relates to a phenol-amino co-condensation resin which is industrially useful as an adhesive, a foam or the like.

(従来の技術) 従来、熱硬化性樹脂であるフェノールとホルムアルデ
ヒドの縮合してなるフェノール樹脂やメラミンとホルム
アルデヒドの縮合してなるメラミン樹脂は、成型材料、
積層板等として工業上広く用いられている。一般にフェ
ノール樹脂は優れた耐久性、耐熱性、耐加水分解性を有
するが硬化が遅いという欠点を有する。メラミン樹脂等
のアミノ系樹脂は硬化性は良いが、耐久性、耐熱性、耐
加水分解性は、不十分である。
(Prior art) Conventionally, a phenol resin obtained by condensing phenol and formaldehyde, which are thermosetting resins, and a melamine resin obtained by condensing melamine and formaldehyde, are used as molding materials,
It is widely used industrially as a laminate and the like. Generally, phenolic resins have excellent durability, heat resistance, and hydrolysis resistance, but have the disadvantage that curing is slow. Amino resins such as melamine resins have good curability, but have insufficient durability, heat resistance and hydrolysis resistance.

(発明が解決しようとする課題) そこで両者の長所を合わせ持つような共縮合樹脂が、
望まれていた。しかし単なる両者の混合物では性能の向
上は少なく、樹脂は保存中に分離しやすい。そこでフェ
ノールとアミノ化合物の共縮合樹脂が研究されてきた
が、通常アミノ化合物どうしの縮合反応は、フェノール
類とアミノ化合物の共縮合反応に優先するので共縮合率
の高い樹脂の製造は極めて困難だった。そしてアミノ化
合物どうしの結合はフェノール類とアミノ化合物の結合
やフェノール類どうしの結合にくらべ一般に耐熱性、耐
加水分解性に劣るのでアミノ化合物間の結合が多量に存
在するような共縮合樹脂は、耐久性がアミノ系樹脂のそ
れに近くなってしまい十分に改良された共縮合樹脂とは
ならない。近年の機器分析技術の飛躍的発展によってフ
ェノール・アミノ化合物共縮合樹脂中のフェノールやア
ミノ化合物の自己縮合とフェノールとアミノ化合物間の
共縮合の存在割合を定量的に知ることが出来るようにな
ったが従来公知の製造方法では共縮合の存在割合は、0
〜2%と低かった。
(Problems to be Solved by the Invention) Therefore, a co-condensation resin having both advantages is
Was desired. However, a mere mixture of the two provides little improvement in performance, and the resin is easily separated during storage. Therefore, co-condensation resins of phenol and amino compounds have been studied.However, since the condensation reaction between amino compounds usually takes precedence over the co-condensation reaction between phenols and amino compounds, it is extremely difficult to produce a resin having a high co-condensation rate. Was. And the co-condensation resin in which the bond between amino compounds is generally inferior to the bond between phenols and amino compound or the bond between phenols in heat resistance and hydrolysis resistance, so that a large amount of bonds between amino compounds is present, The durability is close to that of the amino resin, and the cocondensation resin is not sufficiently improved. The rapid development of instrumental analysis technology in recent years has made it possible to quantitatively determine the existence ratio of self-condensation of phenol and amino compounds and of co-condensation between phenol and amino compounds in phenol-amino compound co-condensation resins. However, in the conventionally known production method, the co-condensation ratio is 0%.
It was as low as ~ 2%.

(課題を解決するための手段) 本発明者らは、フェノール類とアミノ化合物の縮合反
応条件と共縮合率の関係について鋭意検討の結果、フェ
ノール類とアルデヒド類の初期縮合物と、尿素類を酸性
水系溶媒中で反応させることで容易に共縮合率が向上し
硬化性と耐久性に優れたフェノール類とアミノ化合物の
共縮合物が得られることを見いだし、先に新規フェノー
ル誘導体及びその製造方法について出願した(特開平3
−95152号)。しかし、その後の研究によりこの方法で
は硫酸ナトリウム等の塩類が副生、併存し、この点でま
だ満足できるものではなかった。
(Means for Solving the Problems) As a result of intensive studies on the relationship between the condensation reaction conditions of phenols and amino compounds and the cocondensation rate, the present inventors have found that the initial condensate of phenols and aldehydes and urea It was found that a co-condensation product of a phenol and an amino compound having excellent curability and durability can be easily obtained by reacting in an acidic aqueous solvent to thereby improve the co-condensation rate. (Japanese Unexamined Patent Application Publication No.
-95152). However, according to a subsequent study, salts such as sodium sulfate were produced as by-products and coexisted in this method, and this method was not yet satisfactory.

本発明者らは塩類量の少ない共縮合樹脂の製造方法に
ついてさらに検討を重ねた結果、反応を2段階で行わせ
る方法により塩類量が少なく、かつ共縮合率の高い樹脂
を得ることができ、その目的を満足しうることを見いだ
し、この知見に基づき本発明をなすに至った。すなわち
本発明は、フェノール類と、フェノール類とアルデヒ
ド類を反応させた化合物Aから成る群より選ばれた1種
または2種以上と、 アミノ化合物(ただしメラミン除く)と、アミノ化合
物(ただしメラミン除く)とアルデヒド類を反応させた
化合物Bから成る群より選ばれた1種または2種以上
を、 少なくとも化合物Bを含むように選んで、酸性下で反応
させた後アルカリ性で反応させることを特徴とするフェ
ノール系共縮合樹脂の製造方法を提供するものである。
本発明によれば下記のように定義される共縮合率が20%
以上で、共縮合樹脂中の塩類の量が樹脂の量に対して、
5重量%以下であるフェノール系共縮合樹脂が、容易に
得られる。
The present inventors have further studied a method for producing a co-condensation resin having a small amount of salts, and as a result, a resin having a small amount of salts and a high co-condensation rate can be obtained by a method of performing the reaction in two stages. The inventors have found that the object can be satisfied, and have accomplished the present invention based on this finding. That is, the present invention relates to a phenol, one or more compounds selected from the group consisting of a compound A obtained by reacting a phenol and an aldehyde, an amino compound (excluding melamine), and an amino compound (excluding melamine). ) And aldehydes are reacted with at least one compound selected from the group consisting of compound B, so that at least compound B is selected, the reaction is carried out under acidic conditions, and then the reaction is carried out under alkaline conditions. To provide a method for producing a phenolic co-condensation resin.
According to the present invention, the cocondensation rate defined as follows is 20%
Above, the amount of salts in the co-condensation resin is based on the amount of resin,
A phenolic co-condensation resin having a content of 5% by weight or less can be easily obtained.

本発明の製造方法において共縮合樹脂は共縮合率(全
メチレン基に占めるフェノール類−アミノ化合物の共縮
合に由来するメチレン基の割合(%))が20%未満では
性能の改良が不十分である。共縮合率の上限は特に制限
はないが、通常90%を越えると、反応工程が複雑になり
経済的に不利になることがあり、好ましくない。
In the production method of the present invention, if the cocondensation rate (the ratio (%) of the methylene groups derived from the cocondensation of the phenol-amino compound to all the methylene groups) is less than 20%, the performance is not sufficiently improved. is there. The upper limit of the co-condensation rate is not particularly limited, but if it exceeds 90%, the reaction step becomes complicated and may become economically disadvantageous, which is not preferable.

共縮合の割合は13C−NMRの分析で容易に知ることが出
来る。フェノール類とアミノ化合物は−CH2−,−CH2
O−CH2−等を介して結合しているが、メチレン基(−C
H2−)のシグナルの存在位置は30〜100ppmである。その
中で共縮合に基づくシグナルは40.5,44.2,46.2,49.2ppm
付近に存在する。つまり30〜100ppmの積分強度に対する
40.5,44.2,46.2,49.2ppm付近のシグナル強度の合計の比
率が共縮合率である。
The co-condensation ratio can be easily known by 13 C-NMR analysis. Phenol and amino compounds -CH 2 -, - CH 2 -
O-CH 2 - is like is attached via a methylene group (-C
The location of the signal of H 2 −) is 30 to 100 ppm. Among them, signals based on co-condensation were 40.5, 44.2, 46.2, and 49.2 ppm.
Present nearby. In other words, for an integrated intensity of 30-100 ppm
The ratio of the sum of the signal intensities around 40.5, 44.2, 46.2, and 49.2 ppm is the cocondensation rate.

本発明において、共縮合樹脂中の塩類とは反応pHの昇
降によって生じる酸性触媒とアルカリ性触媒とが反応し
た塩類であり硫酸ナトリウム、酢酸ナトリウム、酢酸カ
ルシウム等を例示できる。
In the present invention, the salts in the co-condensation resin are salts obtained by reacting an acidic catalyst and an alkaline catalyst generated by raising and lowering the reaction pH, and examples thereof include sodium sulfate, sodium acetate, and calcium acetate.

塩類量が5重量%を越えると低温下での保存安定性の
低下、湿潤下での耐久性の低下、硬化速度の低下、色汚
染等種々の性能上の問題点が生じる。また硬化に寄与し
ない成分を多量に含むことはコスト的に不利であること
はいうまでもない。そして塩類の除去は、容易ではな
い。
When the amount of the salt exceeds 5% by weight, various performance problems such as a decrease in storage stability at a low temperature, a decrease in durability under a wet condition, a decrease in a curing speed, and a color stain occur. Needless to say, including a large amount of components that do not contribute to curing is disadvantageous in terms of cost. And removing salts is not easy.

以下、本発明の熱硬化性樹脂であるフェノール系共縮
合樹脂の製造方法について具体的に説明する。
Hereinafter, the method for producing the phenolic co-condensation resin which is the thermosetting resin of the present invention will be specifically described.

本発明に用いられるフェノール類とは、フェノール、
レゾシノール、カテコール、フェニルフェノール、アル
キルフェノールから成る群より選ばれた1種または2種
以上である。アルキルフェノールとは炭素数12以下のア
ルキル基の付加したフェノールであり、具体的にはクレ
ゾール、キシレノール、p−ターシャリーブチルフェノ
ール、p−オクチルフェノール、メシトール、メチルフ
ェノール等を例示できる。
The phenols used in the present invention are phenol,
One or more selected from the group consisting of resorcinol, catechol, phenylphenol, and alkylphenol. The alkylphenol is a phenol to which an alkyl group having 12 or less carbon atoms is added, and specific examples thereof include cresol, xylenol, p-tert-butylphenol, p-octylphenol, mesitol, methylphenol and the like.

アミノ化合物とは、尿素、チオ尿素、グアナミン類、
グアニジン類、ヒダントイン類からなる群より選ばれた
1種または2種以上である。グアナミン類とは、メラミ
ンの一つのアミノ基を水素原子、脂肪族・芳香族炭化水
素またはその誘導体で置換した化合物でありホルモグア
マミン、アセトグアナミン、ベンゾグアナミン、フェニ
ルアセトグアナミン等を例示できる。グアニジン類と
は、グアニジン及びその塩類であり塩酸グアニジン、酢
酸グアニジン等を例示できる。ヒダントイン類とは、ヒ
ダントイン及びヒダントイン誘導体であり、ヒダントイ
ン誘導体としてはジメチルヒダントイン、ジエチルヒダ
ントイン、ヒダントイン酢酸等を例示できる。
Amino compounds include urea, thiourea, guanamines,
One or more selected from the group consisting of guanidines and hydantoins. Guanamines are compounds in which one amino group of melamine is substituted with a hydrogen atom, an aliphatic / aromatic hydrocarbon or a derivative thereof, and examples thereof include formomoguamamine, acetoguanamine, benzoguanamine, and phenylacetoguanamine. Guanidines are guanidine and its salts, and examples thereof include guanidine hydrochloride and guanidine acetate. Hydantoins are hydantoin and hydantoin derivatives, and examples of hydantoin derivatives include dimethylhydantoin, diethylhydantoin, and hydantoin acetic acid.

アルデヒド類とは、ホルムアルデヒド、アセトアルデ
ヒド、n−ブチルアルデヒド、パラホルムアルデヒド、
トリオキサン等である。
Aldehydes are formaldehyde, acetaldehyde, n-butyraldehyde, paraformaldehyde,
And trioxane.

上記反応成分において化合物Aは、アルデヒド類と
フェノール類を好ましくはモル比0.5〜2.0:1で反応させ
て得られる。反応モル比が0.5未満の場合は共縮合樹脂
の物理的強度が不十分となり、2.0を越えると未反応の
アルデヒド類が多くなってしまい好ましくない。反応pH
は、8.0〜13.0が望ましい。8.0より低いと分子量が高く
なりやすく、13を越えると、最終生成物の塩類が多くな
ってしまう。塩基性触媒としては、アルカリ金属の水酸
化物、酸化物等のアルカリ金属化合物やアルカリ土類金
属の水酸化物、酸化物等のアルカリ土類金属化合物やア
ミン系化合物が使用される。例えばNaOH,KOH,Ca(O
H)2,CaO,Mg(OH)2,アンモニア等を例示できる。化合
物Aの重量平均分子量は1000以下であることが望まし
い。1000以上では上記の反応成分との反応の際に不溶
解物を生じやすく好ましくない。
Compound A in the above reaction components is obtained by reacting aldehydes and phenols, preferably in a molar ratio of 0.5 to 2.0: 1. When the reaction molar ratio is less than 0.5, the physical strength of the co-condensation resin becomes insufficient, and when it exceeds 2.0, unreacted aldehydes increase, which is not preferable. Reaction pH
Is preferably 8.0 to 13.0. If it is lower than 8.0, the molecular weight tends to be high, and if it exceeds 13, the salts of the final product increase. Examples of the basic catalyst include alkali metal compounds such as hydroxides and oxides of alkali metals, alkaline earth metal compounds such as hydroxides and oxides of alkaline earth metals, and amine compounds. For example, NaOH, KOH, Ca (O
H) 2 , CaO, Mg (OH) 2 , ammonia and the like. The weight average molecular weight of compound A is desirably 1000 or less. If it is more than 1000, insolubles are liable to be formed during the reaction with the above reaction components, which is not preferable.

上記の反応成分において化合物Bは、本発明の必須
成分でありアルデヒド類とアミノ化合物を好ましくはモ
ル比2.0〜10.0:1,pH1〜3.9で反応させて得られる。pHが
1.0より低いと後の反応工程で必要とされるアルカリ触
媒が多くなり樹脂中の塩類が多くなり好ましくない。3.
9より高いと反応中に硬化する場合があるので好ましく
ない。化合物Bの重量平均分子量は、500以下であるこ
とが望ましい。500を越えると、共縮合樹脂の粘度が非
常に高くなる可能性があるので好ましくない。
In the above reaction components, compound B is an essential component of the present invention, and is obtained by reacting an aldehyde with an amino compound, preferably at a molar ratio of 2.0 to 10.0: 1, pH 1 to 3.9. pH
If it is lower than 1.0, the amount of alkali catalyst required in the subsequent reaction step increases and the amount of salts in the resin increases, which is not preferable. 3.
If it is higher than 9, it may be undesirably cured during the reaction. The compound B preferably has a weight average molecular weight of 500 or less. If it exceeds 500, the viscosity of the co-condensation resin may be extremely high, which is not preferable.

反応成分はフェノール類と化合物Aから成る群よる
選ばれた1種または2種以上でありフェノール類の比率
の大きい事が望ましい。化合物Aの比率が大きいと、最
終生成物の塩類量が多くなってしまう。好ましくは化合
物Aは50重量%以下である。
The reaction components are one or more selected from the group consisting of phenols and compound A, and it is desirable that the ratio of phenols is large. If the ratio of compound A is large, the amount of salts in the final product will increase. Preferably, compound A is less than 50% by weight.

反応成分はアミノ化合物と化合物Bから成る群より
選ばれた1種または2種以上であり化合物Bは必須成分
である。化合物Bの比率は混合物全体の50重量%以上で
あることが望ましい。
The reaction component is one or more selected from the group consisting of an amino compound and a compound B, and the compound B is an essential component. It is desirable that the ratio of the compound B is 50% by weight or more of the whole mixture.

反応成分との反応モル比はフェノール類とアミノ
化合物の比で、好ましくは10:1〜1:10であり、アルデヒ
ド類と、フェノール類とアミノ化合物の合計の比が1〜
5:1である。反応は2段階で行われる。1段目は、実質
的に共縮合が起こる反応であり、2段目は、共縮合と自
己縮合が起こる反応である。反応温度は好ましくは、1
段目及び2段目とも100℃以下である。1段目の反応は
酸性下で行わなければならず、pH1.0〜5.5が望ましく、
さらに望ましくは2.0〜5.0である。pHが1.0より低い
と、反応が早すぎてコントロールが困難となることがあ
り、5.5より高いと、反応時間が長くなる。酸性触媒と
しては、塩酸、硫酸、硝酸、リン酸等の鉱酸や酢酸、蟻
酸、フタル酸、マレイン酸、シュウ酸等の有機酸及び反
応液を酸性とできるそれらの塩を用いることが出来る。
2段目の反応は続いてアルカリ性で行わなければならな
い。反応pHは、8.0〜13.0が望ましい。触媒としては、
アルカリ金属の水酸化物、酸化物等のアルカリ金属化合
物やアルカリ土類金属の水酸化物、酸化物等のアルカリ
土類金属化合物やアミン系化合物が使用される。例えば
NaOH,KOH,Ca(OH)2,CaO,Mg(OH)2,アンモニア等を例
示できる。反応時間は、反応温度、反応pH等により異な
る特に制限はないが第1段の反応は数分間以上行わせ、
実質的に共縮合させ、その後第2段の反応に移行するこ
とができる。
The reaction molar ratio with the reaction components is the ratio of phenols to amino compounds, preferably 10: 1 to 1:10, and the total ratio of aldehydes, phenols and amino compounds is 1 to 1.
5: 1. The reaction is performed in two stages. The first stage is a reaction in which co-condensation substantially occurs, and the second stage is a reaction in which co-condensation and self-condensation occur. The reaction temperature is preferably 1
The temperature of both the second stage and the second stage is 100 ° C. or less. The first-stage reaction must be performed under acidic conditions, and a pH of 1.0 to 5.5 is desirable.
More preferably, it is 2.0 to 5.0. If the pH is lower than 1.0, the reaction may be too fast to control, and if the pH is higher than 5.5, the reaction time may be longer. As the acidic catalyst, mineral acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, organic acids such as acetic acid, formic acid, phthalic acid, maleic acid and oxalic acid, and salts thereof which can make the reaction solution acidic can be used.
The second stage reaction must subsequently be carried out alkaline. The reaction pH is desirably 8.0 to 13.0. As a catalyst,
Alkali metal compounds such as hydroxides and oxides of alkali metals, alkaline earth metal compounds such as hydroxides and oxides of alkaline earth metals, and amine compounds are used. For example
Examples include NaOH, KOH, Ca (OH) 2 , CaO, Mg (OH) 2 , and ammonia. The reaction time varies depending on the reaction temperature, reaction pH, etc., and is not particularly limited, but the first-stage reaction is performed for several minutes or more,
Substantially co-condensation can then proceed to the second stage reaction.

反応成分との混合方法は、任意でかまわないが、
へを徐々に添加する方法が望ましい。また、分割し
て添加することも可能である。
The method of mixing with the reaction components may be arbitrary,
Is preferred. Moreover, it is also possible to add in portions.

との反応は、水系溶媒中で行われることが望まし
いが、メタノール、エタノール、アセトン、イソプロピ
ルアルコール、ジオキサン等の水と可溶な有機溶媒を含
んでもかまわない。
Is preferably carried out in an aqueous solvent, but may contain a water-soluble organic solvent such as methanol, ethanol, acetone, isopropyl alcohol, or dioxane.

本発明の方法により、白色から淡赤色で、粘度が0.1
〜5ポイズ、不揮発分が35〜65重量%の樹脂液が得られ
る。必要に応じて蒸留を行い固形分を高めてもなんら問
題ない。
According to the method of the present invention, a white to pale red color having a viscosity of 0.1
This gives a resin liquid of up to 5 poise and a nonvolatile content of 35 to 65% by weight. There is no problem even if the solid content is increased by distillation if necessary.

本発明のフェノール−アミノ化合物共縮合樹脂の、実
際の使用に際しては従来のアルカリレゾール樹脂とほぼ
同様に行えばよいが、硬化性が向上しているので加熱時
間は、短くてかまわない。また、その保存安定性は向上
しているので長期の保存に耐えることが出来る。本発明
のフェノール系共縮合樹脂は、従来のフェノール樹脂に
比べ淡色であるので用途は拡大する。
When the phenol-amino compound co-condensation resin of the present invention is actually used, it may be performed in substantially the same manner as a conventional alkali resol resin, but the heating time may be short because the curability is improved. Further, since the storage stability is improved, it can withstand long-term storage. The phenolic co-condensation resin of the present invention is lighter in color than the conventional phenolic resin, so that its use is expanded.

さらに要求される性能等によって従来の尿素ホルムア
ルデヒド樹脂、メラミンホルムアルデヒド樹脂、イソシ
アネート系樹脂等と混合して使用しても構わない。
Further, depending on the required performance and the like, a conventional urea formaldehyde resin, melamine formaldehyde resin, isocyanate-based resin or the like may be used as a mixture.

また、必要に応じて充填材、増量剤、防腐剤、着色剤
等の添加剤を加えることが出来る。
If necessary, additives such as fillers, extenders, preservatives, and coloring agents can be added.

(作用) 本発明によれば、従来技術で達成できなかった安価で
硬化の早い、耐久性、耐加水分解性、難燃性に優れ、か
つ塩類量の少ないフェノール系共縮合樹脂を得ることが
できる。
(Function) According to the present invention, it is possible to obtain a phenolic co-condensation resin which is inexpensive, fast cures, has excellent durability, hydrolysis resistance, flame retardancy, and has a small amount of salts, which cannot be achieved by the prior art. it can.

(実施例) 本発明を一層具体的に示すために次に実施例を示す
が、本発明はこれらの実施例により何ら限定されるもの
ではない。
(Examples) In order to more specifically show the present invention, examples are shown below, but the present invention is not limited by these examples.

実施例1(フェノール尿素共縮合樹脂) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコに尿素120g,37%ホルマリン486gを仕込み溶
解させた後50%硫酸を加えpHを2.0に調整した後、90℃
で30分間反応させた。さらにフェノールを190g加え90℃
で、60分反応させた。ついで25%水酸化ナトリウムを加
えpHを9.4に調整し90℃で60分間反応させ冷却した。得
られた樹脂液は、淡赤色で、粘度150cp、不揮発分53重
量%だった。共縮合率は55%だった。塩類量は2.4重量
%だった。
Example 1 (Phenol-urea cocondensation resin) 120 g of urea and 486 g of 37% formalin were charged and dissolved in a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel, and 50% sulfuric acid was added to adjust the pH to 2.0. After adjusting, 90 ℃
For 30 minutes. Add 190 g of phenol and 90 ℃
And reacted for 60 minutes. Then, the pH was adjusted to 9.4 by adding 25% sodium hydroxide, and the mixture was reacted at 90 ° C. for 60 minutes and cooled. The obtained resin liquid was pale red, had a viscosity of 150 cp, and had a nonvolatile content of 53% by weight. The cocondensation rate was 55%. The salt content was 2.4% by weight.

実施例2(フェノールチオ尿素共縮合樹脂) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにチオ尿素152g,37%ホルマリン486gを仕込
み溶解させた後50%硫酸を加えpHを2.0に調整した後、9
0℃で30分間反応させた。さらに80%フェノールを234g
加え90℃でさらに60分反応させた。ついで25%水酸化ナ
トリウムを加えpHを9.4に調整し90℃で60分間反応させ
冷却した。得られた樹脂液は、淡黄色で、粘度50cp、不
揮発分52重量%だった。共縮合率は38%だった。塩類量
は2.4重量%だった。
Example 2 (Phenolthiourea cocondensation resin) 152 g of thiourea and 486 g of 37% formalin were charged and dissolved in a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel. After adjusting to 2.0, 9
The reaction was performed at 0 ° C. for 30 minutes. 234g of 80% phenol
The mixture was further reacted at 90 ° C. for 60 minutes. Then, the pH was adjusted to 9.4 by adding 25% sodium hydroxide, and the mixture was reacted at 90 ° C. for 60 minutes and cooled. The obtained resin liquid was pale yellow, had a viscosity of 50 cp, and had a nonvolatile content of 52% by weight. The cocondensation rate was 38%. The salt content was 2.4% by weight.

実施例3(フェノールベンゾグアナミン共縮合樹脂) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにベンゾグアナミン152gと37%ホルマリン48
6g,水150gを仕込み溶解させた後50%硫酸を加えpHを2.5
に調整した後、90℃で30分間反応させた。さらに80%フ
ェノールを234g加え90℃でさらに60分反応させた。つい
で25%水酸化ナトリウムを加えpHを9.4に調整し90℃で1
20分間反応させた。樹脂液を冷却し得られた樹脂液は、
淡赤色で、粘度45cp、不揮発分46重量%だった。共縮合
率は32%だった。塩類量は2.6重量%だった。
Example 3 (Phenolbenzoguanamine cocondensation resin) In a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel, 152 g of benzoguanamine and 37% formalin 48 were added.
6 g and 150 g of water were charged and dissolved, and then 50% sulfuric acid was added to adjust the pH to 2.5.
Then, the reaction was carried out at 90 ° C. for 30 minutes. Further, 234 g of 80% phenol was added and reacted at 90 ° C. for further 60 minutes. Then, the pH was adjusted to 9.4 by adding 25% sodium hydroxide.
The reaction was performed for 20 minutes. The resin liquid obtained by cooling the resin liquid is:
It was pale red, had a viscosity of 45 cp, and had a nonvolatile content of 46% by weight. The cocondensation rate was 32%. The salt content was 2.6% by weight.

参考例1(化合物A−1) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにフェノール188g,37%ホルマリン405g,25%
NaOH 35.4gを仕込み冷却しながら溶解させた後75℃で
4時間反応させた後35℃まで冷却した。これを化合物A
−1とする。
Reference Example 1 (Compound A-1) In a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel, 188 g of phenol, 37% 405 g of formalin, 405 g of 25%
35.4 g of NaOH was charged and dissolved while cooling, then reacted at 75 ° C. for 4 hours, and then cooled to 35 ° C. This is compound A
-1.

参考例2(化合物A−2) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにレゾルシノール220g,37%ホルマリン405g,
25%NaOH 22.4gを仕込み冷却しながら溶解させた後70
℃で2時間反応させた後35℃まで冷却した。これを化合
物A−2とする。
Reference Example 2 (Compound A-2) In a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel, 220 g of resorcinol, 405 g of 37% formalin,
After charging 22.4 g of 25% NaOH and dissolving while cooling, 70
After reacting at 35 ° C for 2 hours, it was cooled to 35 ° C. This is designated as compound A-2.

参考例3(化合物B−1) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにチオ尿素130g,37%ホルマリン486g,50%硫
酸20.0gを仕込み溶解させた後70℃で1時間反応させた
後35℃まで冷却した。これを化合物B−1とする。
Reference Example 3 (Compound B-1) 130 g of thiourea, 486 g of 37% formalin, and 20.0 g of 50% sulfuric acid were charged and dissolved in a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel. After reacting for 1 hour, it was cooled to 35 ° C. This is designated as compound B-1.

参考例4(化合物B−2) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコに塩酸グアニジン191g,37%ホルマリン486g,
50%硫酸7gを仕込み溶解させた後70℃で1時間反応させ
た後40℃まで冷却した。これを化合物B−2とする。
Reference Example 4 (Compound B-2) In a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel, 191 g of guanidine hydrochloride, 486 g of 37% formalin,
After adding and dissolving 7 g of 50% sulfuric acid, the mixture was reacted at 70 ° C. for 1 hour and cooled to 40 ° C. This is designated as compound B-2.

参考例5(化合物B−3) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにベンゾグアナミン364g,37%ホルマリン486
g,50%硫酸22.0gを仕込み冷却しながら溶解させた後70
℃で1時間反応させた後35℃まで冷却した。これを化合
物B−3とする。
Reference Example 5 (Compound B-3) 364 g of benzoguanamine, 37% formalin 486 was placed in a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel.
g, 50% sulfuric acid (22.0 g)
After reacting at 35 ° C for 1 hour, it was cooled to 35 ° C. This is designated as compound B-3.

実施例4 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコに化合物A−1,30gとフェノール100gと化合
物B−1,350gと尿素6gを仕込み50%硫酸を加えpHを2.0
に調整した後90℃で30分間反応させた。ついで25%水酸
化ナトリウムを加えpHを9.4に調整し90℃で60分間反応
させた。樹脂液を冷却し得られた樹脂液は、橙色は、粘
度50cp、不揮発分57重量%だった。共縮合率は58%だっ
た。塩類量は3.1重量%だった。
Example 4 A reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel was charged with 1,30 g of compound A, 100 g of phenol, 1,350 g of compound B, and 6 g of urea, and 50% sulfuric acid was added to adjust the pH to 2.0.
After adjusting to 90 ° C., the reaction was carried out at 90 ° C. for 30 minutes. Then, the pH was adjusted to 9.4 by adding 25% sodium hydroxide, and the mixture was reacted at 90 ° C. for 60 minutes. The resin liquid obtained by cooling the resin liquid had an orange color, a viscosity of 50 cp, and a nonvolatile content of 57% by weight. The cocondensation rate was 58%. The salt content was 3.1% by weight.

実施例5 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコに化合物A−2,30gとフェノール100gと化合
物B−2,350gと塩酸グアニジン6gを仕込み50%硫酸を加
えpHを2.0に調整した後90℃で30分間反応させた。つい
で25%水酸化ナトリウムを加えpHを9.4に調整し90℃で6
0分間反応させた。樹脂液を冷却し得られた樹脂液は、
淡赤色で、粘度123cp、不揮発分56重量%だった。共縮
合率は43%だった。塩類量は2.5重量%だった。
Example 5 A reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel was charged with 2,30 g of compound A, 100 g of phenol, 2,350 g of compound B, and 6 g of guanidine hydrochloride, and 50% sulfuric acid was added to adjust the pH to 2.0. After adjusting to 90 ° C., the reaction was carried out at 90 ° C. for 30 minutes. Then adjust the pH to 9.4 by adding 25% sodium hydroxide, and
The reaction was performed for 0 minutes. The resin liquid obtained by cooling the resin liquid is:
It was pale red, had a viscosity of 123 cp, and had a nonvolatile content of 56% by weight. The cocondensation rate was 43%. The salt content was 2.5% by weight.

比較例1(フェノール樹脂の製造) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにフェノール200g,37%ホルマリン517g,25%
NaOHを42.4gを仕込み冷却しながら溶解させた後80℃で
2時間反応させた後、冷却した。得られた樹脂液は赤色
で、粘度34cp、不揮発分48重量%だった。塩類量は3.8
重量%だった。
Comparative Example 1 (Production of phenolic resin) A reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel was charged with 200 g of phenol, 517 g of formalin and 517 g of 25%.
42.4 g of NaOH was charged and dissolved while cooling, followed by a reaction at 80 ° C. for 2 hours, followed by cooling. The obtained resin liquid was red, had a viscosity of 34 cp, and had a nonvolatile content of 48% by weight. 3.8 salt
% By weight.

比較例2(フェノールメラミン樹脂の製造) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにフェノール200g,37%ホルマリン517g,25%
NaOHを42.4gを仕込み冷却しながら溶解させた後50℃で
8時間反応させた。45℃まで冷却した後、メラミン127g
を加え85℃で60分反応させ冷却した。得られた樹脂液は
赤色で、粘度50cp、不揮発分50重量%だった。共縮合率
は1%だった。塩類量は5.2重量%だった。
Comparative Example 2 (Production of Phenol Melamine Resin) In a reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel, 200 g of phenol, 517 g of formalin and 517 g of 25%
42.4 g of NaOH was charged and dissolved while cooling, and then reacted at 50 ° C. for 8 hours. After cooling to 45 ° C, 127 g of melamine
Was added and the mixture was reacted at 85 ° C. for 60 minutes and cooled. The obtained resin liquid was red, had a viscosity of 50 cp, and had a nonvolatile content of 50% by weight. The cocondensation rate was 1%. The salt content was 5.2% by weight.

比較例3 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにフェノール200g,37%ホルマリン517g,25%
NaOHを22.4gを仕込み冷却しながら溶解させた後50℃で
8時間反応させた。45℃まで冷却した後、メラミン127g
を加え85℃で60分反応させ冷却した。得られた樹脂液は
淡赤色で、粘度50cp、不揮発分50重量%だった。共縮合
率は1%だった。塩類量は5.7重量%だった。
Comparative Example 3 A reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel was charged with phenol 200 g, 37% formalin 517 g, 25%.
22.4 g of NaOH was charged and dissolved while cooling, followed by reaction at 50 ° C. for 8 hours. After cooling to 45 ° C, 127 g of melamine
Was added and the mixture was reacted at 85 ° C. for 60 minutes and cooled. The obtained resin liquid was pale red, had a viscosity of 50 cp, and had a nonvolatile content of 50% by weight. The cocondensation rate was 1%. The salt content was 5.7% by weight.

比較例4(尿素樹脂の製造) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコに尿素120g,37%ホルマリン324gを仕込み、p
Hを8.6に調整する。85℃で15分間応させた後、1規定酢
酸を加えpHを5.0に調整した。そして85℃で1時間反応
させた後pHを8.0に調整し60℃まで冷却する。さらに尿
素40gを加え60℃で1時間反応させた後冷却した。得ら
れた樹脂液は白色で粘度40cp、塩類量は2.4重量%だっ
た。
Comparative Example 4 (Production of Urea Resin) A reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel was charged with 120 g of urea and 324 g of 37% formalin.
Adjust H to 8.6. After reaction at 85 ° C. for 15 minutes, 1N acetic acid was added to adjust the pH to 5.0. After reacting at 85 ° C for 1 hour, the pH is adjusted to 8.0 and cooled to 60 ° C. Further, 40 g of urea was added and reacted at 60 ° C. for 1 hour, followed by cooling. The obtained resin liquid was white, had a viscosity of 40 cp, and had a salt content of 2.4% by weight.

参考例6(フェノール尿素共縮合樹脂の製造) 還流冷却器、温度計、撹拌器、滴下ロートを備えた反
応フラスコにフェノール200g,37%ホルマリン517g,NaOH
を42.4gを仕込み冷却しながら溶解させた後50℃で8時
間反応させた。35℃まで冷却した後、50%硫酸125gを滴
下ロートより滴下させた。この時pHは3.5だった。そし
て尿素127gを加え85℃で60分反応させ冷却した。反応
後、炭酸ナトリウムで中和した。得られた樹脂液は赤色
で、粘度50cp、不揮発分50重量%だった。共縮合率は30
%だった。塩類量は15重量%だった。
Reference Example 6 (Production of phenol urea co-condensation resin) A reaction flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel was charged with 200 g of phenol, 517 g of 37% formalin, and NaOH.
Was dissolved while cooling, and then reacted at 50 ° C. for 8 hours. After cooling to 35 ° C., 125 g of 50% sulfuric acid was dropped from the dropping funnel. At this time, the pH was 3.5. Then, 127 g of urea was added, and the mixture was reacted at 85 ° C. for 60 minutes and cooled. After the reaction, the mixture was neutralized with sodium carbonate. The obtained resin liquid was red, had a viscosity of 50 cp, and had a nonvolatile content of 50% by weight. Cocondensation rate is 30
%was. The salt content was 15% by weight.

試験例 以上のようにして得られた各樹脂の性能を次のように
して試験した。
Test Example The performance of each resin obtained as described above was tested as follows.

[硬化速度の測定] 各樹脂の硬化挙動をTBA(Torsional Braid Analisis:
東洋精機製、レオログラフTBA)を用いて測定した。G
(剛性率)は貯蔵弾性率に比例し、λ(対数減衰率)は
貯蔵弾性率と損失弾性率の比であるtanδに比例する数
である。Gの変化はほぼ硬化の度合に比例する。その結
果を第1図に示す。
[Measurement of curing speed] The curing behavior of each resin was measured using TBA (Torsional Braid Analisis:
The measurement was performed using a rheograph TBA manufactured by Toyo Seiki. G
(Stiffness modulus) is proportional to the storage modulus, and λ (logarithmic decrement) is a number proportional to tan δ, which is the ratio between the storage modulus and the loss modulus. The change in G is approximately proportional to the degree of cure. The result is shown in FIG.

[パーティクルボートの製造] 各樹脂を常法に従ってチップへ塗布しパーティクルボ
ートを製造し性能試験を行った。
[Production of Particle Boat] Each resin was applied to a chip according to a conventional method to produce a particle boat, and a performance test was performed.

板 厚:15mm 密 度:0.68 チップ含水率:表層12%、芯層3% 樹脂吹付率 :表層12%、芯層3% 熱圧温度 :145℃、165℃ 熱圧時間 :3分、5分 圧 締 圧 :28kgf/cm2 木材チップ :ラワンリングフレーク [保存安定性] 5℃の恒温室に保存した所、参考例6は3週間後に結
晶が析出したが実施例1〜7及び比較例1〜4は1ケ月
以上変化が無かった。
Board thickness: 15mm Density: 0.68 Chip moisture content: Surface layer 12%, core layer 3% Resin spray rate: surface layer 12%, core layer 3% Heat pressure temperature: 145 ° C, 165 ° C Heat pressure time: 3 minutes, 5 minutes Clamping pressure: 28 kgf / cm 2 Wood chips: Rawan ring flakes [Storage stability] When stored in a constant temperature room at 5 ° C, in Reference Example 6, crystals precipitated after 3 weeks, but Examples 1 to 7 and Comparative Example 1 No. 4 has not changed for more than one month.

(発明の効果) 本発明のフェノール−アミノ共縮合樹脂は、第1表、
第1図に示すように従来のアミノ樹脂と同等以上の速硬
化性を有し、しかも従来のフェノール樹脂と同等の耐熱
性を示す。さらに本発明のフェノールメラミンを共縮合
樹脂パーティクルボード用接着剤として用いた場合は、
第2表に示すように従来樹脂に比べ低温短時間の熱圧締
でも優れたボード物性を出す事が出来る。
(Effect of the Invention) The phenol-amino co-condensation resin of the present invention is shown in Table 1,
As shown in FIG. 1, it has a rapid curing property equal to or higher than that of a conventional amino resin, and also shows heat resistance equivalent to that of a conventional phenol resin. Furthermore, when the phenol melamine of the present invention is used as an adhesive for a co-condensation resin particle board,
As shown in Table 2, excellent board physical properties can be obtained even by hot pressing at a low temperature for a short time as compared with the conventional resin.

また本発明の実施例の樹脂は、特開平3−95152号の
樹脂(参考例6)に比べても接着性能が向上している。
性能向上の理論的背景は定かではないが、塩類量の減少
に関連すると考えられる。また保存安定性も向上した。
丸鋸による切削性も参考例6よりも実施例の方が良好だ
った。
Further, the resin of the example of the present invention has improved adhesive performance as compared with the resin of JP-A-3-95152 (Reference Example 6).
Although the theoretical background of the performance improvement is not clear, it is thought to be related to the decrease in the amount of salt. In addition, storage stability was improved.
The cutability by the circular saw was better in the example than in the reference example 6.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例及び比較例の各樹脂についての剛性率G
及び対数減衰率λを示すグラフである。
FIG. 1 shows the rigidity G of each resin of the example and the comparative example.
6 is a graph showing a logarithmic decay rate λ.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−142907(JP,A) 特開 昭49−34997(JP,A) 特開 昭49−34998(JP,A) 特開 平3−243613(JP,A) 特開 平3−265619(JP,A) 特公 昭43−28479(JP,B1) 米国特許3364167(US,A) 英国特許1057400(GB,A) (58)調査した分野(Int.Cl.7,DB名) C08G 14/00 - 14/14 C08G 8/00 - 8/38 C08G 12/00 - 12/46 CA(STN) REGISTRY(STN)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-142907 (JP, A) JP-A-49-34997 (JP, A) JP-A-49-34998 (JP, A) 243613 (JP, A) JP-A-3-265619 (JP, A) JP-B-43-28479 (JP, B1) US Patent 3,364,167 (US, A) UK Patent 1,057,400 (GB, A) (58) (Int.Cl. 7 , DB name) C08G 14/00-14/14 C08G 8/00-8/38 C08G 12/00-12/46 CA (STN) REGISTRY (STN)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】フェノール類と、フェノール類とアルデ
ヒド類を反応させた化合物Aから成る群より選ばれた1
種または2種以上と、 アミノ化合物(ただしメラミン除く)と、アミノ化合
物(ただしメラミン除く)とアルデヒド類を反応させた
化合物Bから成る群より選ばれた1種または2種以上
を、 少なくとも化合物Bを含むように選んで、酸性下で反応
させた後アルカリ性で反応させることを特徴とするフェ
ノール系共縮合樹脂の製造方法。
1. A compound selected from the group consisting of phenols and compound A obtained by reacting phenols and aldehydes.
At least one compound selected from the group consisting of an amino compound (excluding melamine) and a compound B obtained by reacting an amino compound (excluding melamine) with an aldehyde; A method for producing a phenolic co-condensation resin, wherein the phenolic co-condensation resin is reacted under an acidic condition and then under an alkaline condition.
【請求項2】化合物Bがアミノ化合物とアルデヒド類を
pH1.5〜3.9で反応させた初期反応物である請求項(1)
のフェノール系共縮合樹脂の製造方法。
2. A compound B comprising an amino compound and an aldehyde.
(1) An initial reaction product reacted at pH 1.5 to 3.9.
A method for producing a phenolic co-condensation resin.
【請求項3】化合物Bのアミノ化合物とアルデヒド類の
反応モル比が、1:2〜10である請求項(1)又は(2)
のフェノール系共縮合樹脂の製造方法。
3. The compound according to claim 1, wherein the molar ratio of the reaction between the amino compound of compound B and the aldehyde is 1: 2 to 10.
A method for producing a phenolic co-condensation resin.
【請求項4】反応の任意の段階でアルデヒド類を添加す
る請求項(1)のフェノール系共縮合樹脂の製造方法。
4. The process for producing a phenolic co-condensation resin according to claim 1, wherein an aldehyde is added at any stage of the reaction.
【請求項5】反応成分とのフェノール類とアミノ化
合物の反応モル比が10:1〜1:10である請求項(1)のフ
ェノール系共縮合樹脂の製造方法。
5. The process for producing a phenolic co-condensation resin according to claim 1, wherein the reaction molar ratio of the phenols to the amino compound with the reaction components is from 10: 1 to 1:10.
【請求項6】反応成分とのアルデヒド類と、フェノ
ール類、アミノ化合物の合計のモル比が1〜5:1である
請求項(1)のフェノール系共縮合樹脂の製造方法。
6. The process for producing a phenolic co-condensation resin according to claim 1, wherein the total molar ratio of the aldehyde, the phenol and the amino compound to the reaction component is 1 to 5: 1.
【請求項7】前記フェノール系共縮合樹脂が、フェノー
ル類とアミノ化合物とアルデヒド類の縮合体であって全
メチレン基に占めるフェノール類−アミノ化合物の共縮
合に由来するメチレン基の割合が20%以上であり、かつ
得られる共縮合樹脂中の塩類の量が該縮合樹脂の量に対
して5重量%以下である請求項(1)記載のフェノール
系共縮合樹脂の製造方法。
7. The phenolic co-condensation resin is a condensate of a phenol, an amino compound and an aldehyde, wherein the proportion of methylene groups derived from the co-condensation of the phenol-amino compound in all methylene groups is 20%. The method for producing a phenolic co-condensation resin according to claim 1, wherein the amount of salts in the obtained co-condensation resin is 5% by weight or less based on the amount of the condensation resin.
JP06409690A 1990-03-16 1990-03-16 Method for producing phenolic co-condensation resin Expired - Lifetime JP3207411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06409690A JP3207411B2 (en) 1990-03-16 1990-03-16 Method for producing phenolic co-condensation resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06409690A JP3207411B2 (en) 1990-03-16 1990-03-16 Method for producing phenolic co-condensation resin

Publications (2)

Publication Number Publication Date
JPH03265618A JPH03265618A (en) 1991-11-26
JP3207411B2 true JP3207411B2 (en) 2001-09-10

Family

ID=13248206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06409690A Expired - Lifetime JP3207411B2 (en) 1990-03-16 1990-03-16 Method for producing phenolic co-condensation resin

Country Status (1)

Country Link
JP (1) JP3207411B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009579A1 (en) * 1998-08-12 2000-02-24 Gun Ei Chemical Industry Co., Ltd. Phenol/triazine derivative co-condensate resin and process for producing the same
WO2012173129A1 (en) * 2011-06-14 2012-12-20 旭有機材工業株式会社 Method for manufacturing urea-modified novolac phenol resin, urea-modified novolac phenol resin obtained thereby, and resin-coated sand obtained using same
CN111607052B (en) * 2019-02-26 2021-04-13 江南大学 Preparation method of melanin-like granules and melanin-like granules

Also Published As

Publication number Publication date
JPH03265618A (en) 1991-11-26

Similar Documents

Publication Publication Date Title
US5952447A (en) Phenol resin composition and method of producing phenol resin
US5910521A (en) Benzoxazine polymer composition
IE81045B1 (en) Modified phenol-aldehyde resin and binder system
JP3207411B2 (en) Method for producing phenolic co-condensation resin
JP3190055B2 (en) Novel phenolic co-condensation resin with improved water solubility and its production method
US6372878B1 (en) Resols, process for their production and use
JP3975552B2 (en) Phenol resin composition and method for producing phenol resin
JP3207410B2 (en) Method for producing phenol melamine co-condensation resin
JP3207412B2 (en) Method for producing powdered phenolic resin
JP4618037B2 (en) Phenolic resin compositions having excellent curability and cured products thereof
JP4661087B2 (en) Method for producing solid resol type phenolic resin
JP3277810B2 (en) Phenolic resin excellent in fast curing property and heat resistance and method for producing the same
JPH11131039A (en) Adhesive for wood
JP3502042B2 (en) Phenol / triazine derivative cocondensation resin and method for producing the same
JP5035301B2 (en) Plywood adhesive, production method and use of resol type phenolic resin for plywood adhesive
US4166166A (en) Process for producing acetophenone-modified phenolic resin
JPH11131038A (en) Production of adhesive for wood
JP2832458B2 (en) Novel phenol derivatives and their preparation
Robins Phenolic resins
JP3256034B2 (en) Amino-based co-condensation resin adhesive and method for producing the same
JP2001254065A (en) Wood adhesive composition
JP2001131522A (en) Wood adhesive composition
KR100352522B1 (en) Phenol-triazine derivative cocondensation resin and manufacturing method thereof
JPH11349652A (en) Production of phenolic resin
JP2005239949A (en) Phenol resin composition and its cured product

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9