JPH0580410B2 - - Google Patents

Info

Publication number
JPH0580410B2
JPH0580410B2 JP8927788A JP8927788A JPH0580410B2 JP H0580410 B2 JPH0580410 B2 JP H0580410B2 JP 8927788 A JP8927788 A JP 8927788A JP 8927788 A JP8927788 A JP 8927788A JP H0580410 B2 JPH0580410 B2 JP H0580410B2
Authority
JP
Japan
Prior art keywords
iodine
alkali
reducing agent
solution
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8927788A
Other languages
Japanese (ja)
Other versions
JPH01261224A (en
Inventor
Toshio Takahashi
Muneo Isayama
Mitsuo Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISE CHEM IND
Original Assignee
ISE CHEM IND
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISE CHEM IND filed Critical ISE CHEM IND
Priority to JP8927788A priority Critical patent/JPH01261224A/en
Publication of JPH01261224A publication Critical patent/JPH01261224A/en
Publication of JPH0580410B2 publication Critical patent/JPH0580410B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/12Iodides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はLiI、NaI、KI、CsIのようなヨウ化ア
ルカリの製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing alkali iodides such as LiI, NaI, KI, and CsI.

[従来の技術] LiI、NaI、KI、CsIのようなヨウ化アルカリ
は、ヨウ化水素酸を水酸化リチウム、水酸化ナト
リウム、水酸化カリウム、水酸化セシウムのよう
な水酸化アルカリで中和することにより製造する
ことができ、高純度ものを得ることができるが、
この方法(中和法)はコストも大きく工業的な製
法ではない。
[Prior art] Alkali iodides such as LiI, NaI, KI, and CsI neutralize hydriodic acid with alkali hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide. Although it is possible to obtain high purity products by
This method (neutralization method) is expensive and is not an industrial production method.

工業的にはヨウ化アルカリは、ヨウ素を水酸化
アルカリの水溶液に溶解し、鉄粉を徐々に加えつ
つ攪拌し、ヨウ素を鉄粉で還元する鉄還元法によ
つて製造される。
Industrially, alkali iodide is produced by an iron reduction method in which iodine is dissolved in an aqueous solution of alkali hydroxide, iron powder is gradually added and stirred, and iodine is reduced with iron powder.

なお上記反応においては、次式により生成した
AIO3(Aはアルカリ金属)が鉄粉により還元され
るものと思われる。
In the above reaction, the following formula was used to generate
It is thought that AIO 3 (A is an alkali metal) is reduced by the iron powder.

3I2+6AOH→5AI+AIO3+3H2O [発明が解決しようとする課題] 鉄還元法は次のような問題点を有する。 3I 2 +6AOH→5AI+AIO 3 +3H 2 O [Problems to be solved by the invention] The iron reduction method has the following problems.

還元反応がアルカリ性で行なわれるとFe
(OH)3が生成しヨウ化アルカリ、鉄粉とも消費
量が増大し、コストアツプの原因となる。この
為、反応は酸性側で行なわれなければならない
が、酸性が強いと、ヨウ素の蒸気が発生し作業環
境を悪化させ又ヨウ素の損失が大となる。このた
めPHを厳密に制御する必要が生じ、工程管理が困
難となる。
When the reduction reaction is carried out in alkaline conditions, Fe
(OH) 3 is generated, which increases the consumption of both alkali iodide and iron powder, causing an increase in costs. For this reason, the reaction must be carried out in an acidic environment, but if the acidity is strong, iodine vapor will be generated, deteriorating the working environment and causing a large loss of iodine. Therefore, it is necessary to strictly control the pH, making process control difficult.

酸性においてヨウ素の水酸化アルカリ水溶液を
鉄粉で還元するとFe3O4が生成する。この反応は
次式によるものと考えられる。
When an aqueous alkali hydroxide solution of iodine is reduced with iron powder under acidic conditions, Fe 3 O 4 is produced. This reaction is thought to be based on the following equation.

4AIO3+9Fe→4AI+3Fe3O4 生成したFe3O4は濾別されて廃棄されるが、こ
の廃棄物中には高濃度のヨウ化物が吸着、含有さ
れ、このヨウ素を別作業で回収する必要があり、
しかも100%の回収は不能である。
4AIO 3 +9Fe→4AI+3Fe 3 O 4The generated Fe 3 O 4 is filtered and discarded, but this waste adsorbs and contains a high concentration of iodide, and this iodine needs to be recovered in a separate operation. There is,
Moreover, 100% recovery is impossible.

本発明は、前述した従来技術の有する欠点を改
良し、産業廃棄物の生成を伴わず、且つヨウ素の
損失もなく、厳密なPH制御が不要な、工業的なヨ
ウ化アルカリの製造法を提供することを目的とす
るものである。
The present invention improves the drawbacks of the prior art described above and provides an industrial method for producing alkali iodide that does not involve the generation of industrial waste, no loss of iodine, and does not require strict PH control. The purpose is to

[課題を解決するための手段] 上記目的を達成するため、本発明においては、
ヨウ素の水酸化アルカリ水溶液に有機還元剤を作
用させてヨウ化アルカリを製造する。
[Means for Solving the Problem] In order to achieve the above object, in the present invention,
Alkali iodide is produced by reacting an organic reducing agent with an aqueous alkali hydroxide solution of iodine.

次に本発明を更に具体的に説明する。 Next, the present invention will be explained in more detail.

本発明においてはヨウ素の水酸化アルカリ溶液
を有機還元剤で還元する。
In the present invention, an alkali hydroxide solution of iodine is reduced with an organic reducing agent.

なおI2は有機還元剤の作用で直線還元されてI-
となる場合と、次式によつて一旦IO3 -が生成し、
このIO3 -が還元される場合とがあるものと思わ
れる。
Note that I 2 is linearly reduced to I - by the action of an organic reducing agent.
In the case where IO 3 - is generated once by the following equation,
It is thought that this IO 3 - may be reduced in some cases.

3I2+6OH-→5I-+IO3 - 水酸化アルカリ溶液としては水酸化リチウム、
水酸化ナトリウム、水酸化カリウム、水酸化セシ
ウムのようなアルカリ金属の水酸化物を1〜
50wt%、望ましくは20〜40wt%含む溶液が適当
である。
3I 2 +6OH - →5I - +IO 3 - Lithium hydroxide as the alkaline hydroxide solution,
Alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.
A solution containing 50 wt%, preferably 20 to 40 wt% is suitable.

前述した水酸化アルカリ溶液中にヨウ素を投入
し、攪拌して溶解せしめ、ヨウ素の水酸化アルカ
リ溶液とする。ヨウ素の濃度は1〜65wt%、好
ましくは40〜50wt%とするのが適当である。
Iodine is added to the above-mentioned alkaline hydroxide solution and stirred to dissolve it to form an iodine alkaline hydroxide solution. The concentration of iodine is suitably 1 to 65 wt%, preferably 40 to 50 wt%.

なお、ヨウ素は全量を予め溶解しておくことは
必らずしも必要でなく、粒状域は微粉状のヨウ素
と水酸化アルカリ溶液との混合物を攪拌状態に保
ち、後述する有機還元剤を加え、水酸化アルカリ
溶液中に溶解しているヨウ素の還元と併行してヨ
ウ素を溶解させることもできる。
Note that it is not always necessary to dissolve the entire amount of iodine in advance; in the granular region, the mixture of finely powdered iodine and alkaline hydroxide solution is kept in a stirring state, and an organic reducing agent (described later) is added. It is also possible to dissolve iodine in parallel with the reduction of iodine dissolved in the alkaline hydroxide solution.

ヨウ素の水酸化アルカリ溶液に還元剤を投入
し、還元する。
A reducing agent is added to an alkaline hydroxide solution of iodine for reduction.

なお還元剤は水溶液として投入するのが望まし
く、又その投入は撹拌状態で徐々に行うのが適当
である。
It is preferable to add the reducing agent as an aqueous solution, and it is appropriate to add the reducing agent gradually while stirring.

有機還元剤としては、酸化、還元、電位が0.49
mV以下の還元剤を用いることができるが、望ま
しくはギ酸、シユウ酸、マロン酸、ピルビン、乳
酸、アルコルビン酸又はそのアルカリ金属塩、特
に望ましくはギ酸、シユウ酸又はそのアルカリ金
属塩を用いるが好ましく、還元反応をスムーズに
行なわせることができ、又PHの厳密な制御も不必
要であり、しかも反応終了後、生成したヨウ化ア
ルカリの分離が容易であり、高純度のヨウ化アル
カリが得られる等の効果が特に顕著である。
As an organic reducing agent, oxidation, reduction, potential is 0.49
mV or less reducing agent can be used, preferably formic acid, oxalic acid, malonic acid, pyruvic acid, lactic acid, ascorbic acid or an alkali metal salt thereof, particularly preferably formic acid, oxalic acid or an alkali metal salt thereof. , the reduction reaction can be carried out smoothly, strict control of pH is not required, and after the reaction is completed, the generated alkali iodide can be easily separated, and highly pure alkali iodide can be obtained. The effects of

還元反応は、PH4〜11、好ましくはPH5〜10の
範囲であればスムースに進行し、PHの厳密な制御
は必要としない。
The reduction reaction proceeds smoothly as long as the pH is in the range of 4 to 11, preferably 5 to 10, and strict control of the pH is not required.

なおアルカリ金属の水酸化物は、ヨウ素を溶解
せしむべき溶液に全量溶解しておく必要はない。
Note that it is not necessary to dissolve the entire amount of the alkali metal hydroxide in the solution in which iodine is to be dissolved.

このようにヨウ素を溶解すべき水酸化アルカリ
溶液中の水酸化アルカリ含有量が少ない場合、残
りのアルカリ分は、有機酸の塩として供給しても
よく、或は反応終了後、水酸化アルカリ、或は炭
酸アルカリとして供給することもできる。
When the alkali hydroxide content in the alkali hydroxide solution in which iodine is to be dissolved is small, the remaining alkali content may be supplied as a salt of an organic acid, or after the reaction is completed, the alkali hydroxide, Alternatively, it can also be supplied as an alkali carbonate.

使用すべき有機還元剤の量はやや過剰(ヨウ素
に対し1.0〜1.1当量、好ましくは1.02〜1.08当量
程度)とするのが望ましい。
It is desirable that the amount of the organic reducing agent to be used be slightly excessive (about 1.0 to 1.1 equivalents, preferably about 1.02 to 1.08 equivalents relative to iodine).

有機還元剤の量があまり少ないと溶液中に未反
応のヨウ素、或は、IO3 -が残存し易く、収率が
減少したり、製品の純度が低下し易い。
If the amount of the organic reducing agent is too small, unreacted iodine or IO 3 - tends to remain in the solution, which tends to reduce the yield and the purity of the product.

有機還元剤の量を上記範囲より大としても、ヨ
ウ素、或は、IO3 -の残存を防止する効果の増大
は望めず、却つて無用に有機還元剤の消費量が増
大する欠点を生ずる。反応終了後溶液中に含まれ
る未反応のヨウ素、IO3 -、有機還元剤のような
挟雑物を分離除去し、溶媒を蒸発させて純粋のヨ
ウ化アルカリをうることができる。
Even if the amount of the organic reducing agent is larger than the above range, no increase in the effect of preventing the residual of iodine or IO 3 can be expected, and on the contrary, the consumption amount of the organic reducing agent increases unnecessarily. After the reaction is completed, impurities such as unreacted iodine, IO 3 - and organic reducing agent contained in the solution are separated and removed, and the solvent is evaporated to obtain pure alkali iodide.

挟雑物の除去は活性炭による吸着によつて効率
よく行なうことができる。残存した未反応のヨウ
素は、活性炭で吸着除去することができるが、活
性炭からのヨウ素の回収は困難でヨウ素の損失が
生ずる難点があり、上述したように、やや過剰の
有機還元剤を用いて反応を完全に行なわせ、残存
する過剰の有機還元剤を除去するのが適当であ
る。
Removal of impurities can be efficiently carried out by adsorption with activated carbon. Remaining unreacted iodine can be adsorbed and removed with activated carbon, but it is difficult to recover iodine from activated carbon, resulting in loss of iodine. It is appropriate to allow the reaction to proceed to completion and to remove any remaining excess organic reducing agent.

なお有機還元剤としてギ酸、シユウ酸又はその
アルカリ金属塩を用いた場合、反応液を加熱する
ことにより、これらの還元剤を蒸発乃至分解して
除去することもできる。
Note that when formic acid, oxalic acid, or an alkali metal salt thereof is used as the organic reducing agent, these reducing agents can be removed by evaporation or decomposition by heating the reaction solution.

[作用] 有機還元剤を用いてヨウ素の水酸化アルカリ溶
液を還元することにより、酸化鉄のような産業廃
棄物の生成を伴なうことなく、広いPHの範囲でス
ムースに還元反応を行なわせ、PHの厳密な制御を
不要ならしめる。又ヨウ素に対し過剰の有機還元
剤を使用することにより、ヨウ素の損失を防ぎ、
又製品中にヨウ素酸塩の混入するのを防止する。
[Action] By reducing an alkaline iodine hydroxide solution using an organic reducing agent, the reduction reaction can be carried out smoothly over a wide pH range without producing industrial waste such as iron oxide. , making strict control of PH unnecessary. Also, by using an excess of organic reducing agent for iodine, the loss of iodine is prevented,
It also prevents iodate from being mixed into the product.

実施例 1 ヨウ素3299gを5フラスコに取り、水酸化カ
リウム(47.6%溶液)を、1533g、水338gを加
えヨウ素を溶解した。これにギ酸(87.1%溶液)
721gと水酸化カリウム及び水を混ぜた溶液を少
量づつ添加する。反応は直ちに始まり全ての液を
入れ、発泡しなくなつた時点で反応が終了する。
Example 1 3299 g of iodine was placed in 5 flasks, 1533 g of potassium hydroxide (47.6% solution) and 338 g of water were added to dissolve the iodine. Add to this formic acid (87.1% solution)
Add a solution of 721 g, potassium hydroxide and water little by little. The reaction starts immediately and ends when all the liquid is added and no more foaming occurs.

反応後、活性炭の層に溶液を通し、未反応のギ
酸を吸着させる。得られたヨウ化カリウム溶液を
全量濃縮し、結晶を析出させ乾燥して製品とし
た。得られた製品は4280gであり、その品質は
JIS規格(JISK8913)に合格した。なお収率は99
%であつた。
After the reaction, the solution is passed through a layer of activated carbon to adsorb unreacted formic acid. The entire amount of the obtained potassium iodide solution was concentrated, and crystals were precipitated and dried to obtain a product. The obtained product weighs 4280g and its quality is
Passed the JIS standard (JISK8913). The yield is 99
It was %.

実施例 2 苛性ソーダ1880gを水10に溶解し、ヨウ素
5790gを少しづつ溶解した。この溶液を加熱し、
ギ酸(88%含有)1290gを少量づつ添加すると直
ちに二酸化炭素の発泡が始まる。ギ酸を全量添加
後、攪拌を続け反応を終了させる。反応終了後活
性炭を充填した層に溶液を通し、未反応のギ酸を
吸着させる。
Example 2 Dissolve 1880g of caustic soda in 10% of water, add iodine
5790g was dissolved little by little. Heat this solution and
When 1290 g of formic acid (containing 88%) is added little by little, carbon dioxide foaming begins immediately. After adding the entire amount of formic acid, stirring is continued to complete the reaction. After the reaction is complete, the solution is passed through a bed filled with activated carbon to adsorb unreacted formic acid.

得られたヨウ化ソーダ溶液を全量濃縮し、結晶
を析出させ乾燥して製品とした。
The entire amount of the obtained sodium iodide solution was concentrated, and crystals were precipitated and dried to obtain a product.

得られた製品は6770gであり、その品質はJIS
規格に合格した。
The obtained product weighs 6770g and its quality is JIS
passed the standard.

なお収率は99%であつた。 The yield was 99%.

実施例 3 水酸化カリウム溶液(47.6%)3066gに水を
1200g加え、ヨウ素3300gを溶解させる。この溶
液を加熱し、シユウ酸1228gを少量づつ添加す
る。シユウ酸を全量添加後攪拌を続け反応を終了
させる。
Example 3 Add water to 3066 g of potassium hydroxide solution (47.6%)
Add 1200g and dissolve 3300g of iodine. This solution is heated and 1228 g of oxalic acid is added in small portions. After adding the entire amount of oxalic acid, stirring is continued to complete the reaction.

反応終了後活性炭の層に溶液を通し、未反応の
シユウ酸を吸着させる。
After the reaction is complete, the solution is passed through a layer of activated carbon to adsorb unreacted oxalic acid.

得られたヨウ化カリウム溶液を全量濃縮し、結
晶を析出させ乾燥して製品とした。
The entire amount of the obtained potassium iodide solution was concentrated, and crystals were precipitated and dried to obtain a product.

得られた製品は4280gであり、その品質はJIS
規格に合格した。
The obtained product weighs 4280g and its quality is JIS
passed the standard.

なお、収率は99%であつた。 Note that the yield was 99%.

発明の効果 産業廃棄物を生成することなく高純度のヨウ化
アルカリを高収率で、効率よく、低コストで工業
的に製造することができる。
Effects of the Invention Highly purified alkali iodide can be industrially produced in high yield, efficiently, and at low cost without producing industrial waste.

Claims (1)

【特許請求の範囲】 1 ヨウ素の水酸化アルカリ水溶液に有機還元剤
を作用させることを特徴とするヨウ化アルカリの
製造法。 2 有機還元剤はギ酸、シユウ酸、マロン酸、ピ
ルビン酸、乳酸、アスコルビン酸又はそのアルカ
リ金属塩である請求項1のヨウ化アルカリの製造
法。
[Scope of Claims] 1. A method for producing alkali iodide, which comprises allowing an organic reducing agent to act on an aqueous alkali hydroxide solution of iodine. 2. The method for producing alkali iodide according to claim 1, wherein the organic reducing agent is formic acid, oxalic acid, malonic acid, pyruvic acid, lactic acid, ascorbic acid, or an alkali metal salt thereof.
JP8927788A 1988-04-13 1988-04-13 Production of alkali iodide Granted JPH01261224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8927788A JPH01261224A (en) 1988-04-13 1988-04-13 Production of alkali iodide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8927788A JPH01261224A (en) 1988-04-13 1988-04-13 Production of alkali iodide

Publications (2)

Publication Number Publication Date
JPH01261224A JPH01261224A (en) 1989-10-18
JPH0580410B2 true JPH0580410B2 (en) 1993-11-09

Family

ID=13966233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8927788A Granted JPH01261224A (en) 1988-04-13 1988-04-13 Production of alkali iodide

Country Status (1)

Country Link
JP (1) JPH01261224A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2202017A1 (en) * 1996-05-22 1997-11-22 Alfred J. Alton Photothermographic and thermographic films containing low levels of formate to prevent fog
JP4653968B2 (en) * 2004-04-28 2011-03-16 富士フイルムファインケミカルズ株式会社 Inorganic iodide recovery method
JP4796291B2 (en) * 2004-10-22 2011-10-19 日本化学工業株式会社 Barium iodide hydrate salt powder
JP4976660B2 (en) * 2005-05-12 2012-07-18 合同資源産業株式会社 Method for producing alkali iodide
US9272922B2 (en) 2008-01-31 2016-03-01 Nippoh Chemicals Co., Ltd. Inorganic iodide, production method thereof, and production system thereof
US8268284B2 (en) 2008-01-31 2012-09-18 Nippoh Chemicals Co., Ltd. System and method for producing iodine compound
JP2013103851A (en) * 2011-11-11 2013-05-30 Nippon Chem Ind Co Ltd Lithium iodide anhydrate, method for producing lithium iodide anhydrate, solid electrolyte and lithium ion battery
JP6180718B2 (en) * 2012-09-26 2017-08-16 日宝化学株式会社 Method for producing lithium iodide aqueous solution and use thereof
JP6180717B2 (en) * 2012-09-26 2017-08-16 日宝化学株式会社 Method for producing lithium iodide aqueous solution and use thereof
JP6330064B1 (en) * 2017-01-10 2018-05-23 伊勢化学工業株式会社 Method for producing hydroiodic acid and method for producing aqueous metal iodide solution

Also Published As

Publication number Publication date
JPH01261224A (en) 1989-10-18

Similar Documents

Publication Publication Date Title
US6113868A (en) Process for treating tungstate solutions to reduce molybdenum impurity and other impurity content
JPH05504256A (en) Tagatose production method
JP2019099901A (en) Method for recovering lithium from lithium-containing solution
JPH0580410B2 (en)
JPH06199501A (en) Recovery of iodine from composition containing iodine and/oriodide
US3393234A (en) Purification of an alkali metal salt of nitrilotriacetic acid
JPH07242414A (en) Production of alkali metal iodic salt
US4380533A (en) Process for the production of dibasic magnesium hypochlorite
JPH06157008A (en) Method for recovering iodine from waste liquor containing iodine and/or inorganic iodine compound
CN109195905B (en) Surface modified sodium hypochlorite pentahydrate crystal and method for producing same
JP4976660B2 (en) Method for producing alkali iodide
US2828184A (en) Preparation of alkali metal or alkali earth metal iodates and iodides
EP0354843B1 (en) Process for the preparation of alkyl or alkaline earth ferrates by the solid phase
JP3394981B2 (en) Method for producing free hydroxylamine aqueous solution
US6162263A (en) Method for producing and shipping metal cyanide salts
US2562169A (en) Method of purifying alkali metal hydroxides
US4637922A (en) Method for removing organic materials from a wet process phosphoric acid
US6017506A (en) Process for the preparation of periodates
JPH06144802A (en) Recovery of iodine from waste liquid containing organoiodine compound
US1907975A (en) Recovering iodine
US2800390A (en) Process for the production of iodides and amphoteric metal hydroxides
JPH0218906B2 (en)
US3088802A (en) Production of tetrachloropalladates
JPH06144804A (en) Recovery of iodine from waste liquid containing organoiodine compound
JP2018111618A (en) Method for producing hydriodic acid and method for producing aqueous metal iodide solution

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071109

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20081109