JPH0580292B2 - - Google Patents

Info

Publication number
JPH0580292B2
JPH0580292B2 JP62327876A JP32787687A JPH0580292B2 JP H0580292 B2 JPH0580292 B2 JP H0580292B2 JP 62327876 A JP62327876 A JP 62327876A JP 32787687 A JP32787687 A JP 32787687A JP H0580292 B2 JPH0580292 B2 JP H0580292B2
Authority
JP
Japan
Prior art keywords
plating
metal
mold
film
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62327876A
Other languages
Japanese (ja)
Other versions
JPH01266925A (en
Inventor
Toshio Matsui
Yoshio Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawa Prefecture
Original Assignee
Ishikawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawa Prefecture filed Critical Ishikawa Prefecture
Priority to JP32787687A priority Critical patent/JPH01266925A/en
Publication of JPH01266925A publication Critical patent/JPH01266925A/en
Publication of JPH0580292B2 publication Critical patent/JPH0580292B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、プラスチツク製品、セラミツク製
品、金属製品等の成形に使用される金型の製造方
法に関する。 〔従来技術〕 上記各種製品の従来の型成形方法としては、木
型、石膏型、プラスチツク型等の原型を砂に転写
して型を作る方法、又は原型に電鋳めつきを施し
型を作る方法、更に原型に溶射を施し型を作る方
法が行われている。 〔発明が解決しようとする問題点〕 (1) 砂型作成法 砂作成法は、先ず、原型を砂に転写するが、
砂の粒度の関係で精密な転写ができず、転写後
の修正仕上げと鋳造後の型の補修及び鋳造品の
補正作業に非常な時間と労力を要する欠点があ
つた。 (2) 電鋳めつき法 電鋳めつき法は、原型を導電化し、鉄、銅、
ニツケル、銀等のめつきの電鋳後、低融点合金
を流し込み裏打ちするが、この際電鋳金属が熱
により酸化され裏打ち金属との密着強度が弱く
なり、金型として長期の使用に耐え得ない欠点
があつた。 (3) 溶射法 ドライプロセスの一手法である溶射法は、金
属を電弧、電熱又は高温火焔により溶融させ、
直ちに圧縮空気により原型の表面にスプレーに
て吹き付け溶射し、低融点合金で裏打ちする
が、溶射金属皮膜に必ず空〓と気泡及び酸化物
が存在することは周知のことであり、また、溶
射金属と裏打ち金属とは、金属結合ではなく主
として分子間結合であるため、その密着強度が
弱く、これも金型として長期と使用に耐え得な
い欠点があつた。 以上の点に鑑み、本発明は、短時間に製造する
ことができ、仕上げ加工をも不要とし、その上、
金属皮膜と裏打ち金属との密着強度が抜群に強い
金型の製造方法を提供せんとするものである。 〔問題点を解決するための手段〕 本発明は、上記の問題点を解決するため、原型
1に電鋳めつきにより金属皮膜2を形成した後、
その金属皮膜の表面に化学めつき手法又は溶融め
つき手法によりめつき皮膜3を付け、その後に裏
打ち金属としてめつき皮膜の金属と成分が同種の
溶融合金4をめつき皮膜の表面側に流し込むこと
を特徴とするものである。 〔作用〕 本発明製造方法により、金属皮膜2は熱による
酸化を受けず、又、溶融合金4とのなじみがよい
ので密着度が強い。 また、原型1に微細な細工を施してあつても、
電鋳めつき法で形成した金属皮膜2は、原型1に
沿つた精密な型の表面が形成され、砂型のように
砂の精度に左右されたりはしない。 更に本発明方法では、分子間結合ではなく金属
結合であるため、裏打ち金属との密着強度が大き
いので、金属皮膜2の厚みを10μ程度にまで薄く
することができ(従来の最小厚みは500μ程度で
あつた)、それに伴い金型製造時間を格段に短縮
することもできる。 〔実施例〕 以下本発明の実施例を図面に基づき説明する。 第1図aないしeは本発明実施例方法を製造工
程順に説明した断面図で、先ず木型、石膏型、プ
ラスチツク型等の原型1を作製し(第1図a)、
この原型1の表面に金属皮膜2を形成する(第1
図b)が、その方法は電鋳めつきによる。 電鋳めつきによる方法において、原型1の表面
に電導性を与えるための物理的方法としては、黒
鉛や金属粉を塗布する方法、スパツタリング法、
蒸着法等があり、化学方法としては金属還元法つ
まり銀鏡や銅鏡、還元めつき法等がある。この公
知のいずれかの方法により電導性を与え、銅、ニ
ツケル、鉄又は銀等の電鋳めつきを30分〜24時間
施すと、10μ〜1mm程度の厚さの金属皮膜2が形
成される。 かくして、原型1の表面に金属皮膜2を形成し
た後、化学めつき手法又は溶融めつき手法により
めつき皮膜3を付ける(第1図c)。このめつき
皮膜3は、例えば温度18〜22℃、M比=1.8〜2.2
の条件で実施される(所要時間10分〜30分間)。 こゝにM比とは、次の内容を示す。 M比=めつき浴中の全青化ソーダ量/めつき浴中
の全金属亜鉛量 =NaCN(g/)/Zn(g/) 即ち、青化亜鉛めつき浴には、青化亜鉛酸ソー
ダ(Na2Zn(CN)4)と亜鉛酸ソーダ
(Na2ZnO2)、やゝ過剰の遊離青化ソーダ及びカ
セイソーダが存在する。そこで、これらの成分を
一定に保つように管理するのに、上記M比(1リ
ツトル中に含まれるNaCN量(g)と1リツトル
中に含まれるZn量(g)の比)が用いられる。 化学めつき手法又は溶融めつき手法によるめつ
き工程終了後は、乾燥工程を経てめつき表面の濡
を取り去り、その後にめつき皮膜金属と成分が同
種の溶融合金4を流し込めば(第1図d)、合金
皮膜2と溶融合金4の密着強度の強い貼り合わせ
ができる(所要時間2〜5時間)。 このめつき皮膜3と溶融合金4の実施例として
は、亜鉛めつき皮膜(化学めつき手法)とダイガ
スト用亜鉛基合金、又は、鉛−錫(半田)めつき
皮膜(溶融めつき手法)と鉛−錫合金などを挙げ
ることができる。 そして、原型1を分解すれば(第1図e)、金
属皮膜2と溶融合金4の密着強度の強い金型が製
造されるのである。 次いで、本発明製造方法による金属皮膜と裏打
ち金属との密着強度と、従来例方法による金属皮
膜と裏打ち金属との密着強度とを、次の密着性試
験方法により比較する。 〔密着性試験方法〕 試片5の作成 (1) 原型1の代用には、150×50×0.3mmの大きさ
の熱間圧延軟鋼板を使用した。 (2) 電鋳金属皮膜2は、銅の電鋳めつきで0.01mm
の厚さで覆つたものを一の例とし、ニツケルの
電鋳めつきで0.01mmの厚さで覆つたものを別の
例とした。 (3) めつき皮膜3は、アルカリ性シアン化亜鉛浴
で、亜鉛の厚みを0.005mmに付けた。 (4) 溶融合金4は、従来の亜鉛ダイカスト用合金
元素に、アルミニウム4%と銅3%を添加し均
質なダイガスト用亜鉛基合金を使用し、ドブ付
け法で0.01mmの厚さにした。 金属皮膜2と溶融合金4の密着性の評価は、第
2図に示す折曲試験装置6を使用してJIS H8504
曲げ試験方法に準拠して行つた。 この試験装置6及び上記試験方法を説明する
と、次の通りである。
[Industrial Application Field] The present invention relates to a method for manufacturing a mold used for molding plastic products, ceramic products, metal products, etc. [Prior art] Conventional molding methods for the various products mentioned above include methods of making a mold by transferring a master mold such as a wooden mold, plaster mold, or plastic mold onto sand, or creating a mold by applying electroforming plating to the master mold. Another method is to apply thermal spraying to a prototype to make a mold. [Problems to be solved by the invention] (1) Sand mold making method In the sand molding method, first, a prototype is transferred to sand.
Due to the particle size of the sand, precise transfer was not possible, and the process of correcting and finishing after transfer, repairing the mold after casting, and correcting the cast product required a great deal of time and effort. (2) Electroforming plating method The electroforming plating method makes the original conductive and
After electroforming plating with nickel, silver, etc., a low-melting point alloy is poured to provide a lining, but at this time the electroformed metal is oxidized by heat, weakening its adhesion to the lining metal, and cannot withstand long-term use as a mold. There were flaws. (3) Thermal spraying method Thermal spraying method, which is a dry process method, melts metal using an electric arc, electric heat, or high-temperature flame.
Immediately spray the surface of the model with compressed air and line it with a low melting point alloy, but it is well known that there are always voids, bubbles, and oxides in the sprayed metal film, and Since the bond and the backing metal are mainly intermolecular bonds rather than metal bonds, their adhesion strength is weak, and this also has the disadvantage that it cannot withstand long-term use as a mold. In view of the above points, the present invention can be manufactured in a short time, does not require finishing processing, and,
It is an object of the present invention to provide a method for manufacturing a mold in which the adhesion strength between the metal film and the lining metal is extremely strong. [Means for Solving the Problems] In order to solve the above problems, the present invention provides the following steps: After forming the metal film 2 on the master mold 1 by electroforming plating,
A plating film 3 is attached to the surface of the metal film by a chemical plating method or a melt plating method, and then a molten alloy 4 having the same composition as the metal of the plating film is poured onto the surface side of the plating film as a backing metal. It is characterized by this. [Function] According to the manufacturing method of the present invention, the metal film 2 is not oxidized by heat and has good compatibility with the molten alloy 4, so that the degree of adhesion is strong. Also, even if the prototype 1 is made with fine work,
The metal film 2 formed by the electroforming plating method has a precise mold surface that follows the original mold 1, and is not affected by the precision of the sand unlike a sand mold. Furthermore, in the method of the present invention, since the bond is metallic rather than intermolecular, the adhesion strength to the metal lining is high, so the thickness of the metal film 2 can be reduced to about 10μ (the conventional minimum thickness is about 500μ). Accordingly, the mold manufacturing time can be significantly shortened. [Examples] Examples of the present invention will be described below based on the drawings. Figures 1a to 1e are cross-sectional views illustrating the method according to the present invention in the order of manufacturing steps. First, a prototype 1 such as a wooden mold, a plaster mold, a plastic mold, etc. is prepared (Fig. 1a),
A metal film 2 is formed on the surface of this prototype 1 (first
The method used in Figure b) is electroplating. In the electroforming plating method, physical methods for imparting conductivity to the surface of the prototype 1 include a method of applying graphite or metal powder, a sputtering method,
There are vapor deposition methods, etc., and chemical methods include metal reduction methods, that is, silver mirrors, copper mirrors, reduction plating methods, etc. When electrical conductivity is imparted by any of these known methods and electroplating of copper, nickel, iron, silver, etc. is applied for 30 minutes to 24 hours, a metal film 2 with a thickness of about 10 μ to 1 mm is formed. . After the metal film 2 is thus formed on the surface of the master model 1, a plating film 3 is applied by chemical plating or melt plating (FIG. 1c). This plating film 3 has a temperature of 18 to 22°C and an M ratio of 1.8 to 2.2, for example.
The test will be conducted under the following conditions (required time: 10 to 30 minutes). Here, the M ratio indicates the following content. M ratio = Total amount of soda cyanide in the plating bath / Total amount of zinc metal in the plating bath = NaCN (g/) / Zn (g/) In other words, the zinc cyanide plating bath contains zinc cyanide. Soda (Na 2 Zn(CN) 4 ) and sodium zincate (Na 2 ZnO 2 ) are present, with a slight excess of free cyanide soda and caustic soda. Therefore, the above M ratio (the ratio of the amount of NaCN (g) contained in 1 liter to the amount (g) of Zn contained in 1 liter) is used to manage these components to keep them constant. After the plating process by chemical plating method or melt plating method is completed, the wetness of the plating surface is removed through a drying process, and then the molten alloy 4 having the same composition as the plating film metal is poured (first step). d), the alloy film 2 and the molten alloy 4 can be bonded together with strong adhesion strength (required time: 2 to 5 hours). Examples of the plating film 3 and the molten alloy 4 include a galvanized film (chemical plating method) and a zinc-based alloy for die-gusting, or a lead-tin (solder) plating film (hot-dip plating method). Examples include lead-tin alloy. When the master mold 1 is disassembled (FIG. 1e), a mold with strong adhesion between the metal coating 2 and the molten alloy 4 is manufactured. Next, the adhesion strength between the metal coating and the metal lining produced by the production method of the present invention and the adhesion strength between the metal coating and the metal lining produced by the conventional method are compared using the following adhesion test method. [Adhesion test method] Preparation of specimen 5 (1) As a substitute for prototype 1, a hot rolled mild steel plate with a size of 150 x 50 x 0.3 mm was used. (2) Electroformed metal film 2 is 0.01mm thick with copper electroformed plating.
One example is one covered with a thickness of 0.01 mm, and another example is one covered with nickel electroforming to a thickness of 0.01 mm. (3) The plating film 3 was formed by applying zinc to a thickness of 0.005 mm in an alkaline zinc cyanide bath. (4) Molten alloy 4 was made of a homogeneous zinc-based alloy for die-casting by adding 4% aluminum and 3% copper to the conventional alloying elements for zinc die-casting, and was made to a thickness of 0.01 mm using the dove method. The adhesion between the metal film 2 and the molten alloy 4 was evaluated using the bending test device 6 shown in Figure 2 according to JIS H8504.
The test was conducted in accordance with the bending test method. This test device 6 and the above test method will be explained as follows.

【第2図に示す折曲試験装置6は、一定の曲率
を有する心棒7の周りに塗膜を折り曲げ、塗膜に
生ずる割目を観察して、その強さを検査するもの
であり、一定の曲率を有する心棒7と、これを中
心として回転して試料5を屈曲すべき2枚の試料
受台8,8と(この心棒7を押入すべき受台メタ
ル9の周囲には、10°置きに180°の角度目盛10
が施してある、)それぞれの心棒7に組合わせて
用うべき補助板11とにより成つている この心棒7及び補助板11とは、下記の如き寸
法を有しており、これ等を組合わして用いる事に
より、心棒7と試料5面との間隔を1mmになるよ
うに設計してある。 心棒7径 補助板11厚み(単位mm) 2 4 3 3.5 4 3 6 2 8 1 10 受板は使用しない 次の、その一般的な使用法を説明すると、150
×50×0.3mmのブリキ板に塗膜を作り、これを一
定温度の下に一定時間(各試料により異なる)乾
燥し、処理を終つた塗膜面を受台の方にしてセツ
トし、折曲げた時、塗面が表面に出るようにす
る。1秒間180°の速度でこれを折曲げて、180°折
曲げても割目を生じない時は合格とする。 なお、それぞれの試料に応じ、予め心棒7及び
補助板11を選んでおくものである。】 本密着性試験方法は、この折曲試験装置6を使
用し、試片5を180°密着曲げした後、その曲げ部
外側にセラフアンテープを貼り、引き剥して溶融
合金4の剥離状態を評価したものである。 密着性の評点 評点5:溶融合金層が割れずに健全な状態 評点4:曲げ加工により溶融金属層に大きなクラ
ツクを発生するが剥離には至らない状態 評点3:曲げ加工により割れた溶融金属層がセロ
フアンテープ引き剥しにより浮き上がるが、剥
離には至らない状態 評点2:溶融金属層がわずかに剥離して、セロ
フアンテープへ付着した状態 評点1:溶融金属層が剥離してりん片状にセロフ
アンテープに付着した状態 密着性試験結果は、次の第1表ないし第3表に示
す通りである。 第1表:銅の電鋳金属皮膜2、及びニツケルの電
鋳金属皮膜2のそれぞれに、めつき皮膜3を付
けないで直接亜鉛合金の溶融合金4をドブ付け
した試片(従来例)についての密着性試験結果 第2表:銅の電鋳金属皮膜2に亜鉛めつき皮膜3
を付けその後亜鉛合金の溶融合金4をドブ付け
した試片(本発明実施例法1)についての密着
性試験結果 第3表:ニツケルの電鋳金属皮膜2に亜鉛めつき
皮膜3を付けその後亜鉛合金の溶融合金をドブ
付けした試片(本発明実施例法2)についての
密着性試験結果
[The bending test device 6 shown in FIG. The mandrel 7 has a curvature of 180° angle scale 10 at every turn
) and an auxiliary plate 11 to be used in combination with each mandrel 7. These mandrels 7 and auxiliary plates 11 have the dimensions as shown below. It is designed so that the distance between the mandrel 7 and the surface of the sample 5 is 1 mm. Diameter of mandrel 7 Thickness of auxiliary plate 11 (unit: mm) 2 4 3 3.5 4 3 6 2 8 1 10 Do not use a receiving plate The following general usage is explained as follows: 150
A coating film is made on a tin plate measuring 50mm x 0.3mm, dried at a constant temperature for a certain period of time (varies depending on each sample), set with the treated coating surface facing the pedestal, and folded. When bent, the painted surface should be exposed. Bend it at a speed of 180° for 1 second, and if no cracks occur even after bending 180°, it will pass. Note that the mandrel 7 and the auxiliary plate 11 are selected in advance according to each sample. ] This adhesion test method uses this bending test device 6 to closely bend the specimen 5 by 180°, then apply Ceraphan tape to the outside of the bent part and peel it off to check the peeling state of the molten alloy 4. It was evaluated. Adhesion Rating Score 5: The molten metal layer is healthy without cracking. Rating 4: Large cracks occur in the molten metal layer due to bending, but no peeling occurs. Rating 3: The molten metal layer cracks due to bending. is lifted when the cellophane tape is peeled off, but does not peel off.Rating 2: The molten metal layer has peeled off slightly and adhered to the cellophane tape.Rating 1: The molten metal layer has peeled off and turned into flakes. The results of the adhesion test on cellophane tape are shown in Tables 1 to 3 below. Table 1: Samples (conventional example) in which molten zinc alloy 4 was directly applied to copper electroformed metal film 2 and nickel electroformed metal film 2 without applying plating film 3. Adhesion test results Table 2: Galvanized film 3 on copper electroformed metal film 2
Table 3: Adhesion test results for specimens to which molten zinc alloy 4 was applied (method 1 of the present invention): Galvanized film 3 was applied to nickel electroformed metal film 2, and then zinc was applied. Adhesion test results for specimens doped with molten alloy (Example Method 2 of the present invention)

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、金型の表面を電鋳めつき
による薄い金属皮膜2で構成しているので、原型
1における微細な線や細工を忠実に成形再現する
ことができ、且つ砂型法のような仕上げ加工や型
補修は全く不要である。 また、本発明方法は、溶射方式ではなく、化学
めつき手法又は溶融めつき手法によるめつき皮膜
3を介して、金属皮膜2と、めつき皮膜3と成分
が同種の裏打ち溶融合金4とを接合しているの
で、金属皮膜2に熱よる酸化を受けず、且つ、分
子間結合(溶射方式の場合)ではなく、金属結合
(化学めつき手法又は溶融めつき手法)であるた
め、溶融合金4とのなじみが非常に良好となり、
このため、両者の密着度は非常に強力になつてい
る。 このように、金型に必要な厚さ及び強度を補な
う裏打ち合金4と、金型表面を構成する金属皮膜
2との接着強度が従来より格段に向上したことか
ら、金属皮膜2の厚みの最小限界を従来の500μ
程度から一挙に10μ程度の約1/50にまで薄くする
ことが可能となつた。そしてこのように厚みを1/
50にできることから、従来、、電鋳めつきに要し
ていた最短時間2時間を約30分間にまで短縮する
ことができた。このことによる作業能率の向上及
び金属製作コストの低減は顕著であり、そと効果
は頗る大きいものである。
According to the method of the present invention, since the surface of the mold is composed of a thin metal film 2 formed by electroforming, the fine lines and details of the original mold 1 can be faithfully reproduced. No finishing work or mold repair is required. In addition, the method of the present invention does not use a thermal spraying method, but uses a chemical plating method or a hot melt plating method to coat the metal film 2 and the backing molten alloy 4 having the same components as the plating film 3. Since the metal coating 2 is bonded, it does not undergo oxidation due to heat, and since it is a metal bond (chemical plating method or hot-dip plating method) rather than an intermolecular bond (in the case of thermal spray method), the molten alloy The familiarity with 4 became very good,
For this reason, the degree of adhesion between the two is extremely strong. In this way, the adhesive strength between the backing alloy 4, which supplements the thickness and strength required for the mold, and the metal coating 2, which constitutes the mold surface, has been significantly improved compared to before, so the thickness of the metal coating 2 can be reduced. The minimum limit of conventional 500μ
It has now become possible to reduce the thickness from about 10μ to about 1/50 in one fell swoop. And like this, reduce the thickness to 1/
50, the minimum time conventionally required for electroforming plating was reduced to about 30 minutes, which was 2 hours. This significantly improves work efficiency and reduces metal manufacturing costs, and the effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aないしeは本発明実施例方法を製造工
程順に説明した断面図、第2図は密着性試験用に
使用した折曲試験装置で、同図eは斜視図、同図
bは折曲前、同図cは折曲後の状態を示す説明図
である。 1……原型、2……金属皮膜、3……めつき皮
膜、4……めつき皮膜と成分が同種の溶融金属。
Figures 1a to 1e are cross-sectional views explaining the method according to the present invention in the order of manufacturing steps, Figure 2 is a bending test device used for the adhesion test, figure e is a perspective view, and figure b is a folding test device. Figure c is an explanatory view showing the state before the song is bent and after the song is bent. 1...Prototype, 2...Metal coating, 3...Plating coating, 4... Molten metal having the same components as the plating coating.

Claims (1)

【特許請求の範囲】[Claims] 1 原型1に電鋳めつきにより金属被膜2を形成
した後、その金属皮膜の表面に化学めつき手法又
は溶融めつき手法によりめつき皮膜3を付け、そ
の後に裏打ち金属としてめつき皮膜の金属と成分
が同種の溶融合金4をめつき皮膜の表面側に流し
込むことを特徴とする金型の製造方法。
1 After forming a metal coating 2 on the master model 1 by electroforming plating, a plating coating 3 is attached to the surface of the metal coating by a chemical plating method or a hot melt plating method, and then the metal of the plating coating is used as a backing metal. A method for manufacturing a mold, characterized in that a molten alloy 4 having the same composition as , is poured onto the surface side of a plating film.
JP32787687A 1987-12-24 1987-12-24 Manufacture of die Granted JPH01266925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32787687A JPH01266925A (en) 1987-12-24 1987-12-24 Manufacture of die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32787687A JPH01266925A (en) 1987-12-24 1987-12-24 Manufacture of die

Publications (2)

Publication Number Publication Date
JPH01266925A JPH01266925A (en) 1989-10-24
JPH0580292B2 true JPH0580292B2 (en) 1993-11-08

Family

ID=18203966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32787687A Granted JPH01266925A (en) 1987-12-24 1987-12-24 Manufacture of die

Country Status (1)

Country Link
JP (1) JPH01266925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180081345A (en) * 2017-01-06 2018-07-16 원종환 Assembly led block and display device using the led block

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118986B2 (en) * 1989-01-27 1995-12-20 トヨタ自動車株式会社 Mold manufacturing method
JP4737188B2 (en) * 2007-11-24 2011-07-27 関東自動車工業株式会社 Mold repair and reinforcement methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118831A (en) * 1981-01-17 1982-07-23 Toshiba Corp Manufacture of metallic pattern

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118831A (en) * 1981-01-17 1982-07-23 Toshiba Corp Manufacture of metallic pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180081345A (en) * 2017-01-06 2018-07-16 원종환 Assembly led block and display device using the led block

Also Published As

Publication number Publication date
JPH01266925A (en) 1989-10-24

Similar Documents

Publication Publication Date Title
US3480465A (en) Method of chemically bonding aluminum or aluminum alloys to ferrous alloys
JPS60501461A (en) Plated plastic parts that can be soldered
JPS5825758B2 (en) Steel plate for welded painted cans
JPH0580292B2 (en)
US2418265A (en) Process for providing aluminum and aluminum alloys with metal coatings
GB1387300A (en) Reusable mandrel
US4204931A (en) Process for the pre-treatment of non-ferrous metals to be electrophoretically covered with ceramic materials
US3403999A (en) Manufacture of braze shim stock
JP3343676B2 (en) Composite coating of plating and fluororesin and method of forming
JPS62187560A (en) Metal cladding and casting method
JPH02145779A (en) Zn-fe flash plating method for alloyed hot dip galvanized steel sheet
JPS61104091A (en) Manufacture of surface-treated steel sheet
US1677354A (en) Bonding metal
US2258451A (en) Process of making negatives in metal of metal surfaces
JPS62192597A (en) Plated steel sheet having superior powdering resistance
JPS6152374A (en) Formation of heat and corrosion resistant film
JPH04131386A (en) Zinc plated steel sheet and production thereof
JPH04101311U (en) Low Corona Noise Overhead Transmission Line
JPS58133378A (en) Manufacture of steel plate coated with aluminum or aluminum alloy
JPH0562587B2 (en)
JPS59191561A (en) Composite material of aluminum and lead and its production
JPH06184496A (en) Method for coating of polyphenylene sulfide resin-based coating compound
JPS5735674A (en) Manufacture of pb-sn alloy hot-dipped steel sheet with superior corrosion resistance
Ipatov Study of Adhesive Strength of Antiburn Coatings
JPH02145778A (en) Zn-fe flash plating method for alloyed hot dip galvanized steel sheet