JPH0580247B2 - - Google Patents

Info

Publication number
JPH0580247B2
JPH0580247B2 JP61249226A JP24922686A JPH0580247B2 JP H0580247 B2 JPH0580247 B2 JP H0580247B2 JP 61249226 A JP61249226 A JP 61249226A JP 24922686 A JP24922686 A JP 24922686A JP H0580247 B2 JPH0580247 B2 JP H0580247B2
Authority
JP
Japan
Prior art keywords
membrane
pipe
tank
gas
stock solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61249226A
Other languages
Japanese (ja)
Other versions
JPS63104609A (en
Inventor
Takao Imasaka
Nobuhiko Kanekuni
Naohito Wajima
Shigeru Yoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP24922686A priority Critical patent/JPS63104609A/en
Publication of JPS63104609A publication Critical patent/JPS63104609A/en
Publication of JPH0580247B2 publication Critical patent/JPH0580247B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、逆浸透圧法、限外瀘過濾過或いは精
密瀘過法によつて原液を処理する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for treating stock solutions by reverse osmosis, ultrafiltration or precision filtration.

(従来の技術) 食品工業における溶液の分離、濃縮、工業排水
や下水の直接膜分離処理或いは排水や下水を活性
汚泥処理又は嫌気性処理等の生物学的処理によつ
て浄化する際の微生物を含む汚泥を高濃度に維持
する場合に従来から膜処理装置を用いている。
(Prior art) Microorganisms used in the separation and concentration of solutions in the food industry, direct membrane separation treatment of industrial wastewater and sewage, or purification of wastewater and sewage by biological treatment such as activated sludge treatment or anaerobic treatment. Membrane treatment equipment has traditionally been used to maintain high concentrations of sludge.

この膜処理装置は第5図に示すように、原液1
00を満たしたタンク101から循環ポンプ10
2によつて透過膜103を備えた膜処理装置10
4に原液100を供給し、透過膜103によつて
原液を透過液と濃縮液に分離し、濃縮液をタンク
101に戻すようにしたものである。
As shown in Fig. 5, this membrane treatment equipment
Circulation pump 10 from tank 101 filled with 00
Membrane processing device 10 equipped with permeable membrane 103 by 2
4 is supplied with a stock solution 100, the stock solution is separated into a permeate solution and a concentrated solution by a permeable membrane 103, and the concentrated solution is returned to a tank 101.

上述した膜処理にあつては、濃度分極等によつ
て膜面に溶質が析出してゲル状となつて付着した
り、原液中の異物が膜面に付着し、透過水量が低
下する不利がある。
The above-mentioned membrane treatment has the disadvantage that solutes may precipitate and adhere to the membrane surface as a gel due to concentration polarization, or foreign matter in the stock solution may adhere to the membrane surface, resulting in a decrease in the amount of permeated water. be.

斯る不利を解消すべく従来から種々の方法が採
られている。具体的には管状の膜モジユール内に
スポンジボール或いはプラスチツクボールを流
し、膜面の付着物を除去す方法、膜モジユール内
における原液の流れに積極的に乱流を生じさせて
膜面の付着物を除去する方法及び膜モジユール内
に原液と気体とを混合して供給して付着物を除去
する方法があり、気体を混合する方法としては特
公昭55−23644号及び特開昭61−129094号に開示
されるものが知られている。
Various methods have been used to overcome this disadvantage. Specifically, there is a method in which a sponge ball or plastic ball is passed through a tubular membrane module to remove deposits on the membrane surface, and a method in which a turbulent flow is actively created in the flow of the stock solution within the membrane module to remove deposits on the membrane surface. There are two methods: to remove the deposits, and to remove the deposits by mixing and supplying the stock solution and gas into the membrane module.The method of mixing gas is described in Japanese Patent Publication No. 55-23644 and Japanese Patent Application Laid-open No. 61-129094. The one disclosed in is known.

特公昭5−23644号に開示される方法は、透過
流束がある程度低下した時点で、電磁弁を開とし
て圧縮気体を瞬間的に膜モジユール内に導入して
付着物を除去するようにしたものであり、特開昭
61−129094号に開示される方法は、曝気槽内に散
気管を設け、この散気管の上方に膜装置を配置
し、散気管からの気液混合流を膜間通路に通すこ
とで、膜面での濃度分極及び膜面の汚染を防止す
るようにしたものである。
In the method disclosed in Japanese Patent Publication No. 5-23644, when the permeation flux has decreased to a certain extent, a solenoid valve is opened and compressed gas is instantaneously introduced into the membrane module to remove deposits. and Tokukai Sho
In the method disclosed in No. 61-129094, an aeration pipe is provided in an aeration tank, a membrane device is arranged above the aeration pipe, and a gas-liquid mixed flow from the aeration pipe is passed through an intermembrane passage. This is to prevent concentration polarization on the surface and contamination of the membrane surface.

また特開昭50−109178号公報、特開昭52−
134882号公報或いは特開昭56−21615号公報に開
示される先行技術もある。
Also, JP-A-50-109178, JP-A-52-
There is also prior art disclosed in Japanese Patent Application Laid-Open No. 134882 or Japanese Patent Application Laid-open No. 56-21615.

特開昭50−109178号公報に開示されるものは、
タンクから導出されタンクに戻る配管の途中に膜
モジユール(管状要素)を配設し、この膜モジユ
ールよりも上流側の配管の一部にガス吹込み口を
設け、更にこのガス吹込み口よりも上流側に循環
ポンプを配置している。
What is disclosed in Japanese Patent Application Laid-Open No. 50-109178 is
A membrane module (tubular element) is installed in the middle of the piping led out from the tank and returned to the tank, a gas inlet is provided in a part of the piping upstream of this membrane module, and A circulation pump is placed on the upstream side.

特開昭52−134882号公報に開示されるものは、
撹拌槽と濾槽とを原液導管および益流管でつな
ぎ、これら撹拌槽及び濾槽内に空気吹込み管を配
置するとともに、原液導管の途中に循環ポンプを
設けている。
What is disclosed in Japanese Patent Application Laid-Open No. 52-134882 is
The stirring tank and the filter tank are connected by a stock solution conduit and a beneficial flow pipe, and an air blowing pipe is arranged in the stirring tank and the filter tank, and a circulation pump is provided in the middle of the stock solution pipe.

また、特開昭56−21615号公報に開示されるも
のは、眼外濾過装置に原液を供給する配管の途中
で空気を導入するとともに、この空気導入部より
も上流側に循環ポンプを設けている。
Furthermore, the method disclosed in Japanese Patent Application Laid-open No. 56-21615 introduces air in the middle of the piping that supplies the stock solution to the extraocular filtration device, and also provides a circulation pump upstream of this air introduction section. There is.

(発明が解決しようとする問題点) 特開昭55−23644号に開示される方法にあつて
は、間欠的に膜装置(膜モジユール)の圧力を開
放するとともに圧縮気体を膜装置に供給するた
め、昇圧・降圧を繰返すこととなる。特に眼外濾
過法にあつては2〜10Kg・f/cm2、逆浸透圧法に
つては30〜100Kg・f/cm2の圧力をかけて行うた
め、昇圧・降圧を繰返すと、膜だけでなく、ハウ
ジング、配管、パツキング、圧力計、流量計等装
置を構成する部材全てに圧変化の繰返しによる疲
労を又え、部材の寿命が短くなるとともに部材の
破損も生じやすい。また、膜装置への原液の供給
は循環ポンプを用いなければならず運転コストの
面で問題がある。
(Problems to be Solved by the Invention) In the method disclosed in JP-A No. 55-23644, the pressure of the membrane device (membrane module) is intermittently released and compressed gas is supplied to the membrane device. Therefore, the voltage increases and decreases repeatedly. In particular, the extraocular filtration method applies a pressure of 2 to 10 Kg·f/cm 2 and the reverse osmosis method applies a pressure of 30 to 100 Kg·f/cm 2 , so if the pressure is raised and lowered repeatedly, the membrane alone Moreover, all the members constituting the device, such as the housing, piping, packing, pressure gauge, flow meter, etc., suffer from fatigue due to repeated pressure changes, shortening the lifespan of the members and easily causing damage to the members. Furthermore, a circulation pump must be used to supply the stock solution to the membrane device, which poses a problem in terms of operating costs.

一方、特開昭61−129094号に開示される方法に
あつては、膜装置を曝気槽内に設けているため、
膜装置にトラブルが発生すると曝気槽の運転を停
止しなければならず、且つ膜装置を目視によつて
観察できないので、異常検出が困難となり、更に
膜装置を長期間曝気槽に浸漬しておくと外筒ジヤ
ケツト等が汚染し、膜装置全体を交換しなければ
ならないという問題がある。
On the other hand, in the method disclosed in JP-A-61-129094, since the membrane device is installed in the aeration tank,
If a problem occurs with the membrane equipment, the operation of the aeration tank must be stopped, and the membrane equipment cannot be visually observed, making it difficult to detect abnormalities.Furthermore, the membrane equipment must be immersed in the aeration tank for a long period of time. There is a problem in that the outer cylinder jacket etc. become contaminated and the entire membrane device has to be replaced.

また、特開昭50−109178号公報、特開昭5−
134882号公報或いは特開昭56−21615号公報に開
示されている先行技術にあつては原液を膜モジユ
ールに送るために循環ポンプが必須の部材とな
り、運転コストがかかる。
Also, JP-A-50-109178, JP-A-5-
In the prior art disclosed in Japanese Patent Application Laid-open No. 134882 or Japanese Patent Application Laid-Open No. 56-21615, a circulation pump is an essential component to send the stock solution to the membrane module, and the operation cost is high.

(問題点を解決するための手段) 上記問題点を解決すべく本発明は、原液を貯留
するタンクと、このタンクから導出される降下管
と、この降下管に一体的に連続する上昇管と、こ
の上昇管の途中に設けられる透過膜を備えた膜モ
ジユールと、この膜モジユールからの濃縮液を前
記タンク戻す戻し管と、前記膜モジユールよりも
下方位置の上昇管の一部に設けられた常時上昇管
内の原液にガスを供給する気液混合器にて膜処理
装置を構成した。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a tank for storing stock solution, a downcomer led out from the tank, and a riser pipe integrally continuous with the downcomer. , a membrane module equipped with a permeable membrane installed in the middle of this rising pipe, a return pipe for returning the concentrated liquid from this membrane module to the tank, and a part of the rising pipe provided below the membrane module. The membrane treatment device was constructed with a gas-liquid mixer that constantly supplied gas to the stock solution in the riser.

(作用) 上昇管に設けた気液混合器によつて、膜モジユ
ールに供給する眼液を常時気液混合の二相流とし
たので、膜表面の付着物を効果的に除去できると
ともに、ヘツダータンクと膜モジユールとの間で
原液が循環ポンプを用いずに自然循環する。
(Function) The gas-liquid mixer installed in the riser tube makes the eye fluid supplied to the membrane module a two-phase flow of gas-liquid mixture at all times. The stock solution is naturally circulated between the membrane module and the membrane module without using a circulation pump.

(実施例) 以下に本発明の実施例を添付図面に基いて説明
する。
(Example) Examples of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明に係る膜処理装置の全体図であ
り、原液1を満たした原液タンク2は上方位置に
液面レベルを一定にするために設けられたヘツダ
ータンク3と供給管4を介して接続され、この供
給管4には供給ポンプ5を設けている。ヘツダー
タンク3からは下方に降下管6が導出され、この
降下管6の下端はU字状に湾曲して上昇管7とな
り、この上昇管7の途中に気液混合器8を設けて
いる。この気液混合器8はヘツダータンク3より
も下方に配置され、配管9によつて加圧ボンベ或
いはコンプレツサに接続されている。また、気液
混合器8よりも上方位置において上昇管7に膜モ
ジユール10,10が垂直状態で上下に離間して
接続され、上方の膜モジユール10からはヘツダ
ータンク3への戻し管11が導出され、また各膜
モジユール10,10からは透過水の取出し管1
2が導出され、この取出し管12には吸引ポンプ
13が設けられている。尚、ヘツダータンク3に
は原液タンク2へのオーバーフロー管14を取付
けている。
FIG. 1 is an overall view of the membrane treatment apparatus according to the present invention, in which a stock solution tank 2 filled with a stock solution 1 is connected via a header tank 3 and a supply pipe 4 provided at an upper position to keep the liquid level constant. The supply pipe 4 is connected to the supply pipe 4 and is provided with a supply pump 5 . A downcomer pipe 6 is guided downward from the header tank 3, and the lower end of this downcomer pipe 6 is curved into a U-shape to become a riser pipe 7, and a gas-liquid mixer 8 is provided in the middle of this riser pipe 7. This gas-liquid mixer 8 is arranged below the header tank 3 and is connected to a pressurized cylinder or compressor by a pipe 9. Further, membrane modules 10, 10 are vertically connected to the riser pipe 7 at a position above the gas-liquid mixer 8 and spaced apart from each other, and a return pipe 11 to the header tank 3 is led out from the upper membrane module 10. , and each membrane module 10, 10 has a permeated water take-out pipe 1.
2 is led out, and this extraction pipe 12 is provided with a suction pump 13. Incidentally, an overflow pipe 14 to the stock solution tank 2 is attached to the header tank 3.

ここで、前記膜モジユール10は透視可能な透
明樹脂からなる筒状ジヤケツト内に管状透過膜を
配置し、管状透過膜の内側流路と前記上昇管7及
び戻し管11とをつなぎ、管状透過膜の外側流路
と前記取出し管12とをつないでいる。
Here, the membrane module 10 has a tubular permeable membrane arranged in a cylindrical jacket made of transparent resin that can be seen through, and connects the inner flow path of the tubular permeable membrane with the riser pipe 7 and the return pipe 11. The outer flow path of the outlet pipe 12 is connected to the outlet pipe 12.

そして、膜モジユール10の配列は第1図に示
したように複数の膜モジユール10を縦置きにし
て上下方向に離間した配列に限定されず、第2図
に示すように複数の膜モジユール10を千島状に
配列したもの、或いは第3図に示すように複数の
膜モジユール10を横置きにして上下方向に離間
したものであつてもよい。ただし、気液二相流中
の気体は管内の上部を流動する傾向があるので、
管状透過膜の全周を均一に洗浄するには、第1図
に示した配列が最も有利となる。
The arrangement of the membrane modules 10 is not limited to the arrangement in which a plurality of membrane modules 10 are arranged vertically and spaced apart in the vertical direction as shown in FIG. The membrane modules 10 may be arranged in a thousand-island pattern, or as shown in FIG. 3, a plurality of membrane modules 10 may be placed horizontally and spaced apart in the vertical direction. However, since gas in a gas-liquid two-phase flow tends to flow in the upper part of the pipe,
In order to uniformly clean the entire circumference of the tubular permeable membrane, the arrangement shown in FIG. 1 is most advantageous.

また、前記気液混合器8から上昇管7内に吹込
むガスとしては、原液の酸化をきらうものにあつ
てはN2ガス等を用い、原液が活性汚染処理液の
ような場合にはエアーレーシヨンを兼ねて空気を
吹込む。
In addition, as the gas blown into the riser pipe 7 from the gas-liquid mixer 8, N2 gas or the like is used if the undiluted solution should not be oxidized, and air is used if the undiluted solution is an active contamination treatment solution. It also serves as a ration and blows air into it.

以上において、原液タンク2から供給ポンプ5
の駆動で供給管4を介してヘツダータンク3内に
供給された原液1は、降下管6内を通つて降下
し、上昇管7に入り、この上昇管7の気液混合器
8の部分で気液混合の二相流(中心部が気体で外
周部が液体)となつて管状透過膜内に流入する。
In the above, from the stock solution tank 2 to the supply pump 5
The stock solution 1 supplied into the header tank 3 via the supply pipe 4 by the drive of the pump descends through the downcomer pipe 6, enters the riser pipe 7, and is vaporized in the gas-liquid mixer 8 portion of the riser pipe 7. The liquid flows into the tubular permeable membrane as a two-phase flow (gas at the center and liquid at the outer periphery).

そして、通過膜内に入つた原液は透過水と濃縮
液に分離され、透過水は取出し管12を介して取
出され、濃縮液は戻し管11を介してヘツダータ
ンク3に戻される。
The stock solution that has entered the membrane is separated into permeated water and concentrated liquid, the permeated water is taken out through the take-out pipe 12, and the concentrated liquid is returned to the header tank 3 through the return pipe 11.

ここで、透過膜内に流入する原液は気液混合の
二相流となつており、この二相流は脈動(0.05〜
0.4Kg・f/cm2Gの範囲)を呈するため膜表面へ
の剪断効果が発揮され、膜表面の付着物を効果的
に除去する。
Here, the stock solution flowing into the permeable membrane is a two-phase flow of gas-liquid mixture, and this two-phase flow is pulsating (0.05~
0.4Kg·f/cm 2 G), it exerts a shearing effect on the membrane surface and effectively removes deposits on the membrane surface.

更に原液1は、ヘツダータンク3→降下管6→
上昇管7→膜モジユール10→戻し管11→ヘツ
ダータンク3の順で循環するが、上昇部(上昇管
及び膜モジユールを含む)の流路内にはガスが存
在してみかけの比重が低下し、降下管6内の原液
との密度差(水頭差)が駆動力となつて自然に循
環するため、循環ポンプは不要である。
Furthermore, the stock solution 1 is transferred to the header tank 3 → the downcomer pipe 6 →
It circulates in the order of rising pipe 7 → membrane module 10 → return pipe 11 → header tank 3, but gas is present in the flow path of the rising part (including the rising pipe and membrane module) and the apparent specific gravity decreases. Since the density difference (hydraulic head difference) with the stock solution in the downcomer pipe 6 acts as a driving force and circulates naturally, a circulation pump is not necessary.

また図示例にあつては原液タンクからの原液を
一旦ヘツダータンクに供給するようにたが、原液
タンクを上昇位置に設け、ヘツダータンクを省略
してもよい。
Further, in the illustrated example, the stock solution from the stock solution tank is once supplied to the header tank, but the stock solution tank may be provided in the raised position and the header tank may be omitted.

(発明の効果) 第4図は第1図に示した本発明方法と、第5図
に示した従来方法とを実験結果に基いて比較した
グラフであり、実験に用いた膜モジユールの透過
膜は、外径5.2mm、内径3.9mm、流さ500mm、平均
気孔径0.42μm、気孔率47%のアルミナセラミツ
ク膜とし、原液は平均粒径0.48μmのポリメチル
メタアクリレート粒子が5000ppmとなるようにイ
オン交換水中に分散させたもの(25℃)を用い
た。
(Effect of the invention) Figure 4 is a graph comparing the method of the present invention shown in Figure 1 and the conventional method shown in Figure 5 based on experimental results. is an alumina ceramic membrane with an outer diameter of 5.2 mm, an inner diameter of 3.9 mm, a flow rate of 500 mm, an average pore diameter of 0.42 μm, and a porosity of 47%. A solution dispersed in exchange water (25°C) was used.

また、従来方法にあつては運転圧を1.05Kg・
f/cm2G、膜面流速を1.93m/sとして実施し、
本発明方法にあつては、透過水側圧力を真空ポン
プによつて22mmHgまで減圧し、ガス吹込流量を
2.54N/minとして実施した。尚本発明方法に
よる循環流量は0.329/minであり、気相或い
は液相が単独で膜の流路を全て満たして流れたと
仮定して評価したみかけの流速に換算すれば、み
かけの液流速は0.44m/s、みかけのガス流速は
3.74m/sであつた。
In addition, in the conventional method, the operating pressure is 1.05Kg・
f/cm 2 G, membrane surface flow velocity was 1.93 m/s,
In the method of the present invention, the pressure on the permeated water side is reduced to 22 mmHg using a vacuum pump, and the gas injection flow rate is reduced.
It was carried out at 2.54N/min. The circulation flow rate according to the method of the present invention is 0.329/min, and when converted to the apparent flow rate evaluated assuming that the gas phase or liquid phase flows by itself filling all the channels of the membrane, the apparent liquid flow rate is: 0.44m/s, the apparent gas flow velocity is
It was 3.74m/s.

グラフからも明らかなように本発明方法によれ
ば透過流束が約5.0m3/m2・dayにも達し、従来法
に比べ大巾に改善されていることが分る。
As is clear from the graph, according to the method of the present invention, the permeation flux reaches approximately 5.0 m 3 /m 2 ·day, which is a significant improvement over the conventional method.

また本発明によれば、常時気体を吹込むように
しているため自然循環によつて原液が循環し、従
来のように循環ポンプを設ける必要がなく、コス
ト的に極めて有利となる。
Further, according to the present invention, since gas is always blown into the system, the stock solution is circulated by natural circulation, and there is no need to provide a circulation pump as in the conventional system, which is extremely advantageous in terms of cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る膜処理装置の全体構成
図、第2図及び第3図は別実施例を示す要部構成
図、第4図は透過流束と経過時間との関係を示す
グラフ、第5図は従来の膜処理装置の構成図であ
る。 尚、図面中1は原液、2は原液タンク、3はヘ
ツダータンク、6は降下管、7は上昇管、8は気
液混合器、10は膜モジユールである。
Fig. 1 is an overall configuration diagram of a membrane treatment device according to the present invention, Figs. 2 and 3 are main part configuration diagrams showing another embodiment, and Fig. 4 is a graph showing the relationship between permeation flux and elapsed time. , FIG. 5 is a block diagram of a conventional membrane processing apparatus. In the drawings, 1 is a stock solution, 2 is a stock solution tank, 3 is a header tank, 6 is a down pipe, 7 is a rise pipe, 8 is a gas-liquid mixer, and 10 is a membrane module.

Claims (1)

【特許請求の範囲】 1 原液を貯溜するタンクと、このタンクから導
出される降下管と、この降下管に一体的に連続す
る上昇管と、この上昇管の途中に設けられる透過
膜を備えた膜モジユールと、この膜モジユールか
らの濃縮液を前記タンクに戻す戻し管と、前記膜
モジユールよりも下方位置の上昇管の一部に設け
られ常時上昇管内の原液にガスを供給する気液混
合器とからなる膜処理装置。 2 前記膜モジユールは上昇管の途中に複数個直
列に配置されていることを特徴とする請求項1に
記載の膜処理装置。
[Scope of Claims] 1. A system comprising: a tank for storing stock solution, a downcomer led out from the tank, an ascent pipe integrally continuous with the downcomer, and a permeable membrane provided in the middle of the ascent pipe. a membrane module, a return pipe that returns the concentrated liquid from the membrane module to the tank, and a gas-liquid mixer that is provided in a part of the rising pipe below the membrane module and constantly supplies gas to the raw liquid in the rising pipe. A membrane processing device consisting of. 2. The membrane processing apparatus according to claim 1, wherein a plurality of said membrane modules are arranged in series in the middle of a riser pipe.
JP24922686A 1986-10-20 1986-10-20 Method and device for treating membrane Granted JPS63104609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24922686A JPS63104609A (en) 1986-10-20 1986-10-20 Method and device for treating membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24922686A JPS63104609A (en) 1986-10-20 1986-10-20 Method and device for treating membrane

Publications (2)

Publication Number Publication Date
JPS63104609A JPS63104609A (en) 1988-05-10
JPH0580247B2 true JPH0580247B2 (en) 1993-11-08

Family

ID=17189795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24922686A Granted JPS63104609A (en) 1986-10-20 1986-10-20 Method and device for treating membrane

Country Status (1)

Country Link
JP (1) JPS63104609A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747110B2 (en) * 1989-02-27 1995-05-24 東陶機器株式会社 Membrane treatment method
GB9515438D0 (en) * 1995-07-27 1995-09-27 Isis Innovation Membrane filtration apparatus
US6217770B1 (en) * 1998-08-14 2001-04-17 Atp International Apparatus and method for treatment of water
JP2010162505A (en) * 2009-01-16 2010-07-29 Panasonic Electric Works Co Ltd Water treatment apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109178A (en) * 1974-02-07 1975-08-28
JPS52134882A (en) * 1976-05-07 1977-11-11 Tooshin Sci Kk Precise filter
JPS5621615A (en) * 1979-07-26 1981-02-28 Iwai Kikai Kogyo Kk Prevention of gel layer adhesion on membrane of flat membrane type ultrafiltration device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534799Y2 (en) * 1986-02-05 1993-09-02

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109178A (en) * 1974-02-07 1975-08-28
JPS52134882A (en) * 1976-05-07 1977-11-11 Tooshin Sci Kk Precise filter
JPS5621615A (en) * 1979-07-26 1981-02-28 Iwai Kikai Kogyo Kk Prevention of gel layer adhesion on membrane of flat membrane type ultrafiltration device

Also Published As

Publication number Publication date
JPS63104609A (en) 1988-05-10

Similar Documents

Publication Publication Date Title
Wibisono et al. Two-phase flow in membrane processes: A technology with a future
US7585411B2 (en) Low pressure filtration
EP1645327B1 (en) Membrane filtration device
EP1140330B1 (en) Water filtration using immersed membranes
US11339068B2 (en) Eductor-based membrane bioreactor
JP3446399B2 (en) Immersion type membrane separation device and membrane separation method using the same
JP2008221070A (en) Gas-liquid contacting device and gas-liquid contacting method
JPS61129094A (en) Apparatus for treating membrane
JPH0580247B2 (en)
EP1170052B1 (en) System for withdrawing permeate from a multicomponent liquid substrate
JPH0580248B2 (en)
NO345995B1 (en) Low energy consumption process and device for cleaning and aerating spent water from a land-based aquaculture vessel
Chang et al. Domestic wastewater treatment by a submerged MBR (membrane bio-reactor) with enhanced air sparging
JP2634837B2 (en) Membrane processing equipment
AU2004203856B2 (en) Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces
JP2003290766A (en) Method and apparatus for treating waste water by membrane separation
JP2740613B2 (en) Membrane treatment method
AU2004203855B2 (en) Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces
JPH02227121A (en) Treatment by membrane
AU715364B2 (en) Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces
KR101263561B1 (en) 2-phase flow inducing type MBR system having submerged membrane module
JPH08237B2 (en) Wastewater treatment method using bioreactor
EP1559472A1 (en) Water filtration using immersed membranes
JP2015182015A (en) Apparatus and method for treating water

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees