JPH0580137A - Probe for squid - Google Patents

Probe for squid

Info

Publication number
JPH0580137A
JPH0580137A JP3239166A JP23916691A JPH0580137A JP H0580137 A JPH0580137 A JP H0580137A JP 3239166 A JP3239166 A JP 3239166A JP 23916691 A JP23916691 A JP 23916691A JP H0580137 A JPH0580137 A JP H0580137A
Authority
JP
Japan
Prior art keywords
squid
thin film
circuit board
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3239166A
Other languages
Japanese (ja)
Inventor
Masayuki Ueda
雅之 上田
Kotaro Sasaki
広太郎 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3239166A priority Critical patent/JPH0580137A/en
Publication of JPH0580137A publication Critical patent/JPH0580137A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the amount of gas helium generation, suppress vibration due to gas passage, and reduce noise by forming each signal line connecting a superconductive quantum interferential element SQUID to a measuring circuit from a thin film conductor on a printed circuit board, and accomplishing a stratified twist pair structure. CONSTITUTION:Six signal lines connecting a SQUID element with a measuring circuit are formed from a conductive thin film wiring 4 on a printed circuit board 1, and three sets of twist pairs. That is, a plurality of substratum conductors 41, 41,... inclined in a specific direction are formed parallelly on the surface of the circuit board 1. Over it an insulative film 42 is formed, and thereover superstratum conductors 43, 43... are formed. The ends of these substrate and superstrate 41, 43 are connected with one another by contact holes 44, 44... penetrating the insulative film 42. The section areas of the wiring 4 and circuit board 1 can be lessened to a great extent, and the accomplished twist pair structure allows precise alignment of its loop areas. Accordingly heat influx from the ambient temperature lesser to a great extent to permit lessening of influence of the magnetic field on the signal lines.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 本発明は生体磁気計測や磁化率
測定等に使用されるSQUID用のプローブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe for SQUID used for biomagnetism measurement, magnetic susceptibility measurement and the like.

【0002】[0002]

【従来の技術】 SQUID(超電導量子干渉素子)に
おいては、一般に、SQUIDリング、入力コイルおよ
び変調コイルが1つのチップ上に形成されていわゆるS
QUID素子を構成し、アンプやRF発振器等の外部の
計測回路と信号線によって接続される。また、入力コイ
ルはチップ外のピックアップコイルと超電導閉ループを
形成し、被測定磁束はこのピックアップコイルによって
拾われ、入力コイルを介してSQUIDリングに伝達さ
れる。
2. Description of the Related Art In SQUID (superconducting quantum interference device), generally, a SQUID ring, an input coil and a modulation coil are formed on one chip, so-called SQUID.
It constitutes a QUID element and is connected to an external measurement circuit such as an amplifier or an RF oscillator by a signal line. The input coil forms a superconducting closed loop with the pickup coil outside the chip, and the magnetic flux to be measured is picked up by this pickup coil and transmitted to the SQUID ring via the input coil.

【0003】以上の構成のうち、SQUID素子および
ピックアップコイルが液体ヘリウムを収容したデュワー
瓶内に挿入され、超電導温度にまで冷却される。そのた
め、通常はプローブを用い、SQUID素子とピックア
ップコイルを支持体の先端に装着してデュワー瓶内に挿
入するとともに、この支持体に沿って信号線を設けてデ
ュワー瓶外の計測回路に接続する構造が採用される。
Of the above construction, the SQUID element and the pickup coil are inserted into a Dewar bottle containing liquid helium and cooled to the superconducting temperature. Therefore, normally, a probe is used, the SQUID element and the pickup coil are attached to the tip of the support body and inserted into the Dewar bottle, and a signal line is provided along this support body to connect to the measurement circuit outside the Dewar bottle. The structure is adopted.

【0004】図5は従来のSQUID用プローブの使用
状態を示す縦断面図である。支持体51は例えばステン
レスあるいはFRP等からなる筒状体であり、その先端
部にSQUID素子を収容した磁気シールド筒52が固
着されているとともに、更にその先端にピックアップコ
イル53が固着されている。この支持体51はフランジ
部Fを貫通して液体ヘリウムを収容したデュワー瓶D内
に挿入され、基部側には計測回路Cが接続される。そし
て、支持体51の内部にはエナメル被覆した銅線54が
通され、その線をツイストペアにして計測回路CとSQ
UID素子とを接続する信号線としている。銅線54を
ツイストペアにするのは、外部からの磁場が誘起する電
流を相殺して、その影響を少なくするためである。ま
た、支持体51自体の保持は、フランジ部Fに固定する
ことにより行われている。
FIG. 5 is a vertical cross-sectional view showing a usage state of a conventional SQUID probe. The support body 51 is a tubular body made of, for example, stainless steel or FRP, and a magnetic shield cylinder 52 accommodating the SQUID element is fixed to the tip end portion thereof, and a pickup coil 53 is further fixed to the tip end thereof. The support body 51 penetrates the flange portion F and is inserted into a Dewar bottle D containing liquid helium, and a measurement circuit C is connected to the base portion side. Then, an enamel-coated copper wire 54 is passed through the inside of the support body 51, and the wire is twisted to form the measurement circuits C and SQ.
It is used as a signal line for connecting to the UID element. The reason why the copper wire 54 is made into a twisted pair is to cancel the current induced by the magnetic field from the outside and reduce the influence thereof. The support 51 itself is held by fixing it to the flange portion F.

【0005】[0005]

【発明が解決しようとする課題】 ところで、以上のよ
うな従来のSQUID用プローブの構造では、大気から
の熱が銅線54を介して大量に液体ヘリウムに伝わり、
特に多チャンネル化した場合にはヘリウムの蒸発量が極
めて多くなるという問題がある。また、支持体51内を
蒸発したヘリウムガスが通るため、信号線たる銅線54
が振動し、ノイズの原因ともなる。
By the way, in the structure of the conventional SQUID probe as described above, a large amount of heat from the atmosphere is transferred to the liquid helium through the copper wire 54,
In particular, when the number of channels is increased, the amount of helium vaporized becomes extremely large. Further, since the evaporated helium gas passes through the inside of the support body 51, the copper wire 54 serving as a signal wire
May vibrate and cause noise.

【0006】本発明はこのような問題点を一挙に解決す
ることを目的としてなされたものである。
The present invention has been made for the purpose of solving such problems at once.

【0007】[0007]

【課題を解決するための手段】 本発明のSQUID用
プローブでは、支持体を細長いプリント配線板によって
形成するとともに、SQUID素子と計測回路を接続す
る信号線を、このプリント配線板上の薄膜導体により形
成し、かつ、この薄膜導体を、プリント配線板上で層状
のツイストペア構造としている。ここで、層上のツイス
トペア構造は、2層の導体薄膜の間に絶縁層を介在させ
て、その絶縁層の適宜箇所にコンタクトホールを穿った
もの、および、プリント配線板を絶縁層としてその表裏
にそれぞれ1層づつ導体薄膜を形成して、プリント配線
板の適宜箇所にスルーホールを穿ったものを含む。
In the SQUID probe of the present invention, the support is formed by an elongated printed wiring board, and the signal line connecting the SQUID element and the measurement circuit is formed by a thin film conductor on the printed wiring board. The thin film conductor is formed and has a layered twisted pair structure on the printed wiring board. Here, the twisted pair structure on a layer is one in which an insulating layer is interposed between two conductive thin films and contact holes are drilled at appropriate places on the insulating layer, and a printed wiring board is used as an insulating layer on the front and back sides. A conductive thin film is formed on each of the above, and through holes are formed at appropriate places on the printed wiring board.

【0008】[0008]

【作用】 導体薄膜は銅線よりもその断面積がはるかに
小さく、しかも、支持体自体の断面積も小さくなり、液
体ヘリウムの蒸発量が抑ええられる。また、信号線は基
板上に固定して形成されるので、ヘリウムガスの通過に
よる振動も抑えられ、ノイズが低減する。
The cross-sectional area of the conductor thin film is much smaller than that of the copper wire, and the cross-sectional area of the support itself is also small, so that the evaporation amount of liquid helium can be suppressed. Further, since the signal line is fixedly formed on the substrate, vibration due to passage of helium gas is suppressed and noise is reduced.

【0009】[0009]

【実施例】 図1は本発明実施例の外観斜視図である。
SQUIDリング、入力コイルおよび変調コイルが形成
されたSQUID素子は、従来と同様に磁気シールド筒
2内に収容されているとともに、この磁気シールド筒2
は細長いプリント配線板1の先端に固着されている。こ
の磁気シールド筒2の更に先端にはピックアップコイル
3が固着されている。
Embodiment FIG. 1 is an external perspective view of an embodiment of the present invention.
The SQUID element in which the SQUID ring, the input coil and the modulation coil are formed is housed in the magnetic shield tube 2 as in the conventional case, and the magnetic shield tube 2 is also provided.
Is fixed to the tip of the elongated printed wiring board 1. A pickup coil 3 is fixed to the tip of the magnetic shield tube 2.

【0010】プリント配線板1には、SQUID素子と
計測回路(図示せず)とを接続する合計6本の信号線
が、それぞれ導体薄膜配線4によって形成され、これら
は3組のツイストペアを形成している。すなわち、SQ
UIDリングの両端から、バイアス電流を印加するため
の一対の信号線と、SQUIDリングの出力電圧を取り
出すための一対の信号線とが引き出され、また、変調コ
イルの両端からは計測回路に接続される一対の信号線が
引き出されている。そして、これらの各対がプリント配
線板1上で相互にツイストペアを形成しているわけであ
る。
On the printed wiring board 1, a total of six signal lines connecting the SQUID element and a measuring circuit (not shown) are formed by the conductor thin film wirings 4, and these form three twisted pairs. ing. That is, SQ
A pair of signal lines for applying a bias current and a pair of signal lines for extracting the output voltage of the SQUID ring are drawn out from both ends of the UID ring, and are connected to a measurement circuit from both ends of the modulation coil. A pair of signal lines are drawn out. Then, each of these pairs forms a twisted pair on the printed wiring board 1.

【0011】図2は導体薄膜配線4によるツイストペア
の構成例である。この例では、プリント配線板1の表面
に図示のような互いに平行に所定方向に傾斜したパター
ンの複数の下層導体41・・41を形成するとともに、そ
の上方に絶縁膜42を形成し、その絶縁膜42の上に、
下層導体41と逆向きに傾斜した複数の平行な上層導体
43・・43を形成して、各下層導体41・・41と上層導
体43・・43の両端部を、絶縁膜42を貫通するコンタ
クトホール44・・44によって相互に接続した構造とし
ている。
FIG. 2 shows an example of the structure of a twisted pair formed by the conductor thin film wiring 4. In this example, on the surface of the printed wiring board 1, a plurality of lower layer conductors 41 are formed in a pattern parallel to each other and inclined in a predetermined direction as shown in the drawing, and an insulating film 42 is formed above the lower layer conductors 41. On the membrane 42,
A contact is formed by forming a plurality of parallel upper layer conductors 43, ... 43 inclined in the opposite direction to the lower layer conductor 41, and penetrating the insulating film 42 at both ends of each lower layer conductor 41. The holes 44 are connected to each other by the holes 44.

【0012】そして、プリント配線板1の先端部には、
図3に拡大斜視図で示すように各導体薄膜配線4とSQ
UID素子の各部とを接続するためのソケット部5が設
けられており、SQUID素子側との接続を容易として
いる。更に、この実施例のプローブでは、図4にピック
アップコイル3とデュワー瓶Dの底部近傍の拡大図斜視
図を示すように、ピックアップコイル3の先端面に凹部
31が形成されているとともに、デュワー瓶Dの底部に
は突起6が形成されており、プローブのデュワー瓶D内
での位置決めは、凹部31と突起6の嵌め合いによって
行われるようになっている。凹部31は例えば円筒形の
孔であり、突起6は上端部が半球形の円柱形となってお
り、上方からプローブを差し込んだときには、当初に突
起6の半球形部分の先端が凹部31内に入り込んでプロ
ーブを定位置に案内するような構造となっている。な
お、この場合、ピックアップコイル3を構成する材料
と、突起6を構成する材料の熱膨張係数を考慮し、プロ
ーブの動作温度である極低温下で突起6が凹部31内で
がたつかない寸法にする必要がある。
At the tip of the printed wiring board 1,
As shown in the enlarged perspective view of FIG. 3, each conductor thin film wiring 4 and SQ
A socket portion 5 for connecting each portion of the UID element is provided to facilitate connection with the SQUID element side. Further, in the probe of this embodiment, as shown in the enlarged perspective view of the pickup coil 3 and the bottom of the dewar bottle D in FIG. 4, a concave portion 31 is formed on the tip surface of the pickup coil 3 and the dewar bottle is formed. A protrusion 6 is formed on the bottom of D, and positioning of the probe in the Dewar bottle D is performed by fitting the recess 31 and the protrusion 6. The concave portion 31 is, for example, a cylindrical hole, and the protrusion 6 has a columnar shape with an upper end portion having a hemispherical shape. When the probe is inserted from above, the tip of the hemispherical portion of the protrusion 6 is initially in the concave portion 31. The structure is such that it enters and guides the probe to a fixed position. In this case, in consideration of the thermal expansion coefficients of the material forming the pickup coil 3 and the material forming the protrusions 6, the protrusions 6 do not rattle in the recess 31 at an extremely low temperature, which is the operating temperature of the probe. Need to

【0013】この位置決め方法によれば、ピックアップ
コイル3のデュワー瓶D内での位置が常に一定となり、
再現性良く位置決めできる。すなわち、従来のデュワー
瓶Dの上端部においてフランジF部でプローブを位置決
め固定する方法では、固定の仕方や支持体の収縮等の種
々の原因により、最先端部のピックアップコイルの位置
が一定とはならず再現性の点で問題があったが、上記の
位置決め方法ではピックアップコイル3そのものの位置
が突起6によって規制されることになり、位置の再現性
が向上する。
According to this positioning method, the position of the pickup coil 3 in the Dewar bottle D is always constant,
Positioning can be performed with good reproducibility. That is, in the conventional method of positioning and fixing the probe at the flange F portion at the upper end portion of the Dewar bottle D, the position of the pickup coil at the most distal end is not constant due to various causes such as the fixing method and contraction of the support. However, there was a problem in terms of reproducibility, but in the above positioning method, the position of the pickup coil 3 itself is regulated by the projection 6, and the reproducibility of position is improved.

【0014】以上の本発明実施例において特に注目すべ
き点は、デュワー瓶D内のSQUID素子と外部の計測
回路とがプリント配線板1上の導体薄膜配線4によって
接続され、この導体薄膜配線4は従来の銅線による信号
線に比してその断面積が格段に小さく、しかも、このプ
リント配線板1も従来の筒状の支持体に比してその断面
積を大幅に小さくできる点と、導体薄膜によるツイスト
ペア構造はフォトリソグラフィーの手法によってその各
ループ面積を正確に揃えることが可能である点であり、
これにより、大気からの熱の流入が大幅に少なくなると
ともに、磁場が各信号線に及ぼす影響を小さくすること
ができる。
In the above-mentioned embodiment of the present invention, the point to be particularly noted is that the SQUID element in the Dewar bottle D and the external measuring circuit are connected by the conductor thin film wiring 4 on the printed wiring board 1, and the conductor thin film wiring 4 Has a remarkably small cross-sectional area as compared with a conventional signal line made of copper wire, and this printed wiring board 1 can have a remarkably small cross-sectional area as compared with a conventional tubular support. The twisted pair structure with a conductive thin film is that it is possible to accurately align each loop area by the method of photolithography,
As a result, the inflow of heat from the atmosphere is significantly reduced, and the influence of the magnetic field on each signal line can be reduced.

【0015】なお、以上の実施例では、導体薄膜配線4
によるツイストペア構造を、プリント配線板1上で絶縁
膜を挟んだ2層構造によって得ているが、絶縁膜を用い
ず、プリント配線板1の表裏に導体をパターニングし
て、これらをプリント配線板1に穿ったスルーホールに
よって相互に接続する構造とすることができる。また、
導体薄膜配線4によるツイストペアパターンは上記の実
施例に限られることなく、任意のパターンとすることが
できることは勿論である。
In the above embodiment, the conductor thin film wiring 4
Although the twisted pair structure is obtained by a two-layer structure in which an insulating film is sandwiched on the printed wiring board 1, a conductor is patterned on the front and back of the printed wiring board 1 without using the insulating film, and these are printed. The structure may be such that they are connected to each other by a through hole drilled in the. Also,
The twisted pair pattern formed by the conductor thin film wiring 4 is not limited to the above-mentioned embodiment, and can be any pattern.

【0016】[0016]

【発明の効果】 以上説明したように、本発明によれ
ば、先端にピックアップコイルおよびSQUID素子を
固着し、基部が計測回路に接続されるSQUID用プロ
ーブにおいて、SQUID素子等の支持体をプリント配
線板によって形成するとともに、このプリント配線板に
は、SQUID素子と計測回路を接続するための信号線
としての導体薄膜配線を施し、しかもこの導体薄膜配線
をツイストペア構造としているので、従来の筒上の支持
体と銅線による信号線を用いたプローブに比して、信号
線の断面積が大幅に小さくなる上、支持体の断面積も小
さくなるので、大気からの熱導入による液体ヘリウムの
蒸発を格段に少なくすることができ、特に多チャンネル
化の際に予想される膨大な液体ヘリウムの蒸発を抑える
ことが可能となった。
As described above, according to the present invention, in the SQUID probe in which the pickup coil and the SQUID element are fixed to the tip and the base is connected to the measurement circuit, the support such as the SQUID element is printed wiring. In addition to being formed by a board, this printed wiring board is provided with a conductor thin film wiring as a signal line for connecting the SQUID element and the measurement circuit, and further, this conductor thin film wiring has a twisted pair structure. Compared to a probe that uses a signal line made of a support and a copper wire, the cross-sectional area of the signal line is significantly smaller and the cross-sectional area of the support is also smaller, so the evaporation of liquid helium due to heat introduction from the atmosphere The amount of liquid helium can be significantly reduced, and in particular, it is possible to suppress the enormous vaporization of liquid helium that is expected in the case of multiple channels.

【0017】また、導体薄膜配線によるツイストペア構
造は、フォトリソクラフィーの手法を用いて形成される
から、μmオーダーの精度で位置合わせが可能であり、
各ループの面積を極めて正確なものとすることができ
る。ツイストペア構造は磁場により誘起される電流を隣
接するループで相殺することを目的とするものであるか
ら、本発明の構成により、従来の銅線を撚ったツイスト
ペアに比して磁場の影響の削減効果は著しく向上する。
Further, since the twisted pair structure formed by the conductor thin film wiring is formed by using the photolithography method, the alignment can be performed with an accuracy of the order of μm.
The area of each loop can be very accurate. Since the twisted pair structure is intended to cancel the current induced by the magnetic field in the adjacent loops, the configuration of the present invention reduces the influence of the magnetic field as compared to the conventional twisted pair twisted copper wire. The effect is significantly improved.

【0018】更に、信号線をプリント配線板上での導体
配線とすることにより、ヘリウムガスの蒸発による信号
線のふらつきが防止され、デバイスのノイズも減少す
る。
Further, by forming the signal line as a conductor wiring on the printed wiring board, fluctuation of the signal line due to evaporation of helium gas is prevented, and noise of the device is also reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明実施例の外観斜視図FIG. 1 is an external perspective view of an embodiment of the present invention.

【図2】 その導体薄膜配線4によるツイストペア構造
の一例の説明図
FIG. 2 is an explanatory view of an example of a twisted pair structure by the conductor thin film wiring 4.

【図3】 本発明実施例のプリント配線板1の先端部の
拡大斜視図
FIG. 3 is an enlarged perspective view of a front end portion of the printed wiring board 1 according to the embodiment of the present invention.

【図4】 同じく本発明実施例のピックアップコイル3
とデュワー瓶Dの底部近傍の拡大斜視図
FIG. 4 is also a pickup coil 3 according to the embodiment of the present invention.
And enlarged perspective view near the bottom of Dewar bottle D

【図5】 従来のSQUID用プローブの使用状態を示
す縦断面図
FIG. 5 is a vertical cross-sectional view showing a usage state of a conventional SQUID probe.

【符号の説明】[Explanation of symbols]

1・・・・プリント配線基板 2・・・・磁気シールド筒 3・・・・ピックアップコイル 31・・・・凹部 4・・・・導体薄膜配線 41・・・・下層導体 42・・・・絶縁膜 43・・・・上層導体 44・・・・コンタクトホール 5・・・・ソケット 6・・・・突起 D・・・・デュワー瓶 1 ... Printed wiring board 2 ... Magnetic shield cylinder 3 ... Pickup coil 31 ... Recess 4 ... Conductor thin film wiring 41 ... Lower conductor 42 ... Insulation Membrane 43 ・ ・ ・ ・ Upper layer conductor 44 ・ ・ ・ ・ Contact hole 5 ・ ・ ・ ・ Socket 6 ・ ・ ・ ・ Protrusion D ・ ・ ・ ・ Dewar bottle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 支持体の先端部にピックアップコイルお
よびSQUID素子が固着され、かつ、その支持体に沿
って上記SQUID素子と計測回路を接続するための信
号線を備えたプローブにおいて、上記支持体が細長いプ
リント配線板によって形成されているとともに、上記信
号線はこのプリント配線板上の薄膜導体により形成さ
れ、かつ、この薄膜導体は、上記プリント配線板上で層
状のツイストペア構造となっていることを特徴とするS
QUID用プローブ。
1. A probe having a pickup coil and an SQUID element fixed to the tip of a support, and a signal line for connecting the SQUID element and a measurement circuit along the support, wherein the support is provided. Is formed of an elongated printed wiring board, the signal line is formed of a thin film conductor on the printed wiring board, and the thin film conductor has a layered twisted pair structure on the printed wiring board. Characterized by S
QUID probe.
JP3239166A 1991-09-19 1991-09-19 Probe for squid Pending JPH0580137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3239166A JPH0580137A (en) 1991-09-19 1991-09-19 Probe for squid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3239166A JPH0580137A (en) 1991-09-19 1991-09-19 Probe for squid

Publications (1)

Publication Number Publication Date
JPH0580137A true JPH0580137A (en) 1993-04-02

Family

ID=17040714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3239166A Pending JPH0580137A (en) 1991-09-19 1991-09-19 Probe for squid

Country Status (1)

Country Link
JP (1) JPH0580137A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219314A (en) * 1996-02-08 1997-08-19 Oki Densen Kk Fpc inductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219314A (en) * 1996-02-08 1997-08-19 Oki Densen Kk Fpc inductor

Similar Documents

Publication Publication Date Title
JP5669832B2 (en) Measuring instrument, electric resistance element and measuring system for measuring time-varying magnetic field or magnetic field gradient
EP0147655B1 (en) Miniature squid susceptometer
US4761611A (en) Apparatus for measuring weak magnetic fields having a DC-SQUID array and gradiometer array
JP2893714B2 (en) Thin film type SQUID magnetometer and biomagnetism measuring device using the same
US5142229A (en) Thin-film three-axis magnetometer and squid detectors for use therein
JP3093135B2 (en) Planar solenoid and SQUID magnetometer using planar solenoid
EP0492262B1 (en) A multichannel device for measurement of weak spatially and temporally varying magnetic fields
US6154026A (en) Asymmetric planar gradiometer for rejection of uniform ambient magnetic noise
US5625290A (en) Complex superconducting quantum interference device and circuit
JPH1048303A (en) Detecting coil-integrated squid
JPS61250575A (en) Measuring device for weak magnetic field
US5349291A (en) Superconducting magnetic sensor having a cryostat for improved sensitivity of magnetic detection
JPH0580137A (en) Probe for squid
US4590426A (en) Bzz and Byz sense loop geometries for cylindrical tensor gradiometer loop structures
US11137455B2 (en) Magnetic field measuring element, magnetic field measuring device, and magnetic field measuring system
JPH04214684A (en) Squid
Cantor et al. First-order planar superconducting quantum interference device gradiometers with long baseline
JPH08220201A (en) Superconducting quantum interferometer
JPH05297093A (en) Magnetic sensor
JPS62187267A (en) Measuring instrument for superconducting magnetic field
Narashimhan et al. SQUID microsusceptometry in applied magnetic fields
JP4081834B2 (en) Chip carrier for superconducting circuit chip and measuring apparatus using the same
JPH05323003A (en) Superconductive quantum interference element
JPH0499979A (en) Squid fluxmeter
Donaldson et al. An integrated thin film gradiometer based on a dc SQUID