JPH05323003A - Superconductive quantum interference element - Google Patents

Superconductive quantum interference element

Info

Publication number
JPH05323003A
JPH05323003A JP4128547A JP12854792A JPH05323003A JP H05323003 A JPH05323003 A JP H05323003A JP 4128547 A JP4128547 A JP 4128547A JP 12854792 A JP12854792 A JP 12854792A JP H05323003 A JPH05323003 A JP H05323003A
Authority
JP
Japan
Prior art keywords
coil
squid
input coil
superconducting
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4128547A
Other languages
Japanese (ja)
Inventor
Akihiko Kandori
明彦 神鳥
Koichi Yokozawa
宏一 横澤
Keiko Fukuda
恵子 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4128547A priority Critical patent/JPH05323003A/en
Publication of JPH05323003A publication Critical patent/JPH05323003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To operate a SQUID stably by forming a dumping resistor which is approximately the same size as that of the SQUID chip on the SQUID using a thin-film process technology. CONSTITUTION:N turn input coil 1 is provided on a superconductive ring 4 in a SQUID and a feedback modulation coil 6 is formed outside the input coil. A Josephson junction 5 is formed in the superconductive ring and a dumping resistor 2 is connected to the input coil 1 of the SQUID in parallel and then is formed between coil windings of the input coil 1. The dumping resistors are formed by molybdenum(Mo) or gold(Au) by the thin-film process technology. Resonance within the SQUID can be suppressed by connecting the input coil 1 to the dumping resistor 2 in parallel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、極微小磁場の測定、特
に生体磁場測定を目的とした磁場測定装置において使用
されるSQUID(超伝導量子干渉素子)に関し、その
入力コイルに並列に接続されるダンピング抵抗の形成、
配置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a SQUID (superconducting quantum interference device) used in a magnetic field measuring apparatus for measuring a very small magnetic field, particularly for measuring a biomagnetic field, which is connected in parallel to its input coil. Damping resistance,
Regarding placement.

【0002】[0002]

【従来の技術】SQUID(超伝導量子干渉素子)は磁
場を電圧に高感度に変換するデバイスである。SQUI
Dは高感度磁気センサとして磁場計測に使用されるだけ
でなく、ディジタル回路素子としても重要な役割を果た
している。これらの理由から、SQUIDの応用範囲と
しては生体磁気計測をはじめ、物性実験・電気精密計測
・地球物理・基礎物理理論の検証実験などがある。従
来、SQUID(超伝導量子干渉素子)内の浮遊容量と
入力コイル系が共振を起こし、SQUIDの動作上問題
になっていた。これまで、図7に示す回路図の構成のよ
うに入力コイル9または検出コイル10に並列にダンピ
ング抵抗11及びコンデンサ12を入れ共振を抑え、S
QUIDの動作を安定にしていた((ジャーナル・オブ
・ロウテンパレーチャ・フイジックス)J.Low Temp.Phy
s.68,3/4, p269 1987)。従来は抵抗を入力コイルに半田
付けで対処していた。
2. Description of the Related Art The SQUID (superconducting quantum interference device) is a device for converting a magnetic field into a voltage with high sensitivity. SQUI
D is not only used as a high-sensitivity magnetic sensor for magnetic field measurement, but also plays an important role as a digital circuit element. For these reasons, the application range of SQUID includes biomagnetic measurement, physical property experiment, electrical precision measurement, geophysics, and verification experiment of basic physical theory. Conventionally, the stray capacitance in the SQUID (superconducting quantum interference device) and the input coil system resonate, causing a problem in the operation of the SQUID. So far, as in the configuration of the circuit diagram shown in FIG. 7, a damping resistor 11 and a capacitor 12 are placed in parallel with the input coil 9 or the detection coil 10 to suppress resonance, and
Stabilized the operation of QUID ((Journal of Low Temperature Physics) J. Low Temp. Phy
s.68, 3/4, p269 1987). Conventionally, the resistance was soldered to the input coil.

【0003】[0003]

【発明が解決しようとする課題】多チャンネルからなる
磁場計測装置では、各SQUID上に抵抗を半田付けで
設置する場合、大きな面積が必要となり多数のチャンネ
ルを形成することが困難であった。また、系全体として
の熱容量も増大し、冷媒が溜りにくくなるという問題が
あった。本発明の目的は上記問題を解決するため、SQ
UID上に薄膜プロセス技術を用いてダンピング抵抗を
SQUIDチップ程度の大きさにして形成することにあ
る。即ち、発明の第1の目的は薄膜プロセス技術を用い
てダンピング抵抗をSQUIDと同じチップ上に形成、
配置し、この抵抗体のレイアウトを提供することにあ
る。また、第2の目的はダンピング抵抗の抵抗値を10
オーム以上1kオーム以下の大きさで可変に設定できる
ようにすることにある。また、各SQUIDチップで浮
遊容量がばらつくために、SQUID内の浮遊容量とイ
ンダクタンスとの共振条件が各SQUIDチップで異な
るという問題が生じ、各々のSQUIDチップで最適な
ダンピング抵抗値を設定しなければならない。そこで本
発明の第3の目的は、任意にダンピング抵抗値を選択で
きるようにすることである。
In a multi-channel magnetic field measuring apparatus, when a resistor is mounted on each SQUID by soldering, a large area is required and it is difficult to form a large number of channels. In addition, there is a problem that the heat capacity of the entire system is increased and the refrigerant is less likely to accumulate. The object of the present invention is to solve the above problems by using SQ.
The purpose is to form a damping resistor on the UID by using a thin film process technology so as to have a size of a SQUID chip. That is, the first object of the invention is to form a damping resistor on the same chip as the SQUID by using the thin film process technology.
Place and provide the layout of this resistor. The second purpose is to set the resistance value of the damping resistor to 10
The purpose is to be able to variably set the size from ohm to 1 k ohm. In addition, since the stray capacitance varies among the SQUID chips, there arises a problem that the resonance conditions of the stray capacitance and the inductance in the SQUID are different in each SQUID chip, and the optimum damping resistance value must be set in each SQUID chip. I won't. Therefore, a third object of the present invention is to allow the damping resistance value to be arbitrarily selected.

【0004】[0004]

【課題を解決するための手段】入力コイルと、この入力
コイルと磁気結合している超伝導リング、この超伝導リ
ングと磁気結合している帰還コイル、及び超伝導リング
にジョセフソン接合が構成されたSQUID(超伝導量
子干渉素子)において、入力コイルの超伝導リングの外
側に配置された部分の線間に抵抗体が入力コイルと並列
に接続して形成される。入力コイルは複数本巻で構成さ
れ、入力コイルの各巻線の間に複数個の抵抗体を形成す
る。あるいは入力コイルの最も内側にある巻線と最も外
側にある巻線との間に抵抗体を設ける。また、抵抗体が
入力コイルの超伝導リングの外側に直線状に形成され、
かつ抵抗体の往路と復路の線が同じ位置に形成され、抵
抗体が入力コイルと並列に接続される。抵抗体は入力コ
イルの超伝導リングの外側にある接続端子の近傍に複数
個独立に形成され、複数個の抵抗体の端部には接続端子
が形成される。抵抗体の抵抗値は10オーム以上かつ1
kオーム以下に設定され、抵抗体と直列にコンデンサが
接続される。本発明では、入力コイルに並列接続になる
ように、抵抗体を入力コイルの端子間に形成し、抵抗体
をSQUIDチップの外部に設け、抵抗体の長さや太さ
や厚さを調整することで抵抗値を10オーム以上1kオ
ーム以下に設定する。複数個の抵抗体をSQUIDチッ
プ上に形成しその抵抗体の接続を変えることで任意の抵
抗値を選択する。
A Josephson junction is formed in an input coil, a superconducting ring magnetically coupled to the input coil, a feedback coil magnetically coupled to the superconducting ring, and a superconducting ring. In the SQUID (superconducting quantum interference device), a resistor is formed in parallel with the input coil between the lines of the portion of the input coil arranged outside the superconducting ring. The input coil is composed of a plurality of windings, and a plurality of resistors are formed between the windings of the input coil. Alternatively, a resistor is provided between the innermost winding and the outermost winding of the input coil. Also, the resistor is formed linearly outside the superconducting ring of the input coil,
Moreover, the forward and return lines of the resistor are formed at the same position, and the resistor is connected in parallel with the input coil. A plurality of resistors are independently formed near the connection terminals outside the superconducting ring of the input coil, and connection terminals are formed at the ends of the plurality of resistors. The resistance value of the resistor is 10 ohms or more and 1
It is set below k ohms and a capacitor is connected in series with the resistor. In the present invention, the resistor is formed between the terminals of the input coil so as to be connected in parallel to the input coil, the resistor is provided outside the SQUID chip, and the length, thickness and thickness of the resistor are adjusted. The resistance value is set to 10 ohm or more and 1 k ohm or less. An arbitrary resistance value is selected by forming a plurality of resistors on the SQUID chip and changing the connection of the resistors.

【0005】[0005]

【作用】薄膜プロセス技術を用いることにより、ダンピ
ング抵抗をSQUIDチップと同程度の大きさまで小さ
くできる。また、ダンピング抵抗を入力コイルに並列に
接続するのでSQUID内の共振を抑えることができ、
SQUIDを安定に動作できる。
By using the thin film process technology, the damping resistance can be reduced to the same level as that of the SQUID chip. Moreover, since the damping resistor is connected in parallel to the input coil, resonance in the SQUID can be suppressed,
SQUID can operate stably.

【0006】[0006]

【実施例】本発明の実施例について以下説明する。図1
に基づいて第1の実施例について説明する。SQUID
は超伝導リング4の上にn回巻の入力コイル1が設けら
れており、この入力コイルの外側には帰還変調コイル6
が形成されている。また、超伝導リングにはジョセフソ
ン接合5が形成されている。以下説明に用いるSQUI
Dの図は全て上記の構造になっている。SQUIDの入
力コイル1に並列接続になるようにダンピング抵抗2
を、図1のように入力コイル1の巻線に至るまでの線間
上に形成する。このダンピング抵抗は薄膜プロセス技術
を用いて、モリブデン(Mo)または金(Au)によって形成す
る。以下述べる全ての実施例においてこの薄膜プロセス
技術を用いてダンピング抵抗を形成する。次に図2に基
づいて実施例2について説明する。n回巻の入力コイル
1の#1と#2の間・#2と#3の間・・・#(n−
1)と#nの間までの各巻線間に、図2のようにダンピ
ング抵抗2を(n−1)個形成している。ただし、図中
では階段式にダンピング抵抗を形成しているが、この構
造に限るものではない。また、ダンピング抵抗の構成数
も(n−1)個に限るものではなく、1個以上存在すれ
ばよい。次に図3に基づいて第3の実施例について説明
する。図3は、入力コイル部1の最も内側のコイル(#
1)と最も外側のコイル(#n)との間にダンピング抵
抗2を形成したものである。これも必ずしも、#1と#
nの間にダンピング抵抗を形成するものに限るものでは
ない。このダンピング抵抗2は超伝導リング4の層と入
力コイル1の層の間の層に形成することが望ましいが、
これに限るものではない。
EXAMPLES Examples of the present invention will be described below. Figure 1
The first embodiment will be described based on FIG. SQUID
Is provided with an n-turn input coil 1 on a superconducting ring 4, and a feedback modulation coil 6 is provided outside the input coil 1.
Are formed. Moreover, the Josephson junction 5 is formed in the superconducting ring. SQUI used in the following description
All the drawings in D have the above structure. Damping resistor 2 so that it is connected in parallel with SQUID input coil 1.
Is formed on the line between the windings of the input coil 1 as shown in FIG. The damping resistor is formed of molybdenum (Mo) or gold (Au) using a thin film process technology. Damping resistors are formed using this thin film process technique in all the examples described below. Second Embodiment Next, a second embodiment will be described based on FIG. Between # 1 and # 2 of n turns of input coil 1 Between # 2 and # 3 ... # (n-
(N-1) damping resistors 2 are formed between the windings between 1) and #n as shown in FIG. However, although the damping resistance is formed stepwise in the figure, it is not limited to this structure. Further, the number of damping resistors is not limited to (n-1), and one or more damping resistors may be provided. Next, a third embodiment will be described with reference to FIG. FIG. 3 shows the innermost coil (#
The damping resistor 2 is formed between 1) and the outermost coil (#n). This is also not always # 1 and #
It is not limited to the one that forms the damping resistance between n. The damping resistor 2 is preferably formed in a layer between the layer of the superconducting ring 4 and the layer of the input coil 1.
It is not limited to this.

【0007】次に図4に基づいて第4の実施例について
説明する。SQUIDの入力コイル1に並列接続になる
ようにダンピング抵抗2を、図4のように入力コイル1
の外部に直線状に形成し、このダンピング抵抗2の配線
によるインダクタンスが最小になるように、リング状に
ならずつまりループを描かないように往路と復路をなる
べく同じ線上に形成し接合部3によって入力コイル1に
接続する。ただし、図4では、図面の都合上、往路と復
路が離して表記している。また、超伝導リング4や帰還
変調コイル6とダンピング抵抗2との間の浮遊容量を避
けるため、他の配線と交叉せず、他の配線から十分遠い
所にダンピング抵抗2を配置する。また、このような構
造にすることで層構造にする必要が無いため薄膜プロセ
ス技術による作成を容易にすることができる。また、こ
のようにしてダンピング抵抗2を自由に長くできるた
め、容易に抵抗値を10オーム以上1kオーム以下に選
択して設定できる。次に図5に基づいて実施例5につい
て説明する。この実施例では図4の第4の実施例のダン
ピング抵抗2に直列にコンデンサ7を設ける。このコン
デンサは2枚の導体を極板にしたもので形成される。こ
のコンデンサを入れることにより、ダンピング抵抗2と
コンデンサ7とのRCハイパスフィルタ回路となり、ダ
ンピング抵抗から発生する熱雑音による雑音を低減でき
る。
Next, a fourth embodiment will be described with reference to FIG. The damping resistor 2 is connected in parallel to the input coil 1 of the SQUID, and the input coil 1 is connected as shown in FIG.
Of the damping resistor 2 is formed in a straight line outside, and the forward path and the return path are formed on the same line as much as possible so as not to form a ring, that is, to form a loop so that the inductance due to the wiring of the damping resistor 2 is minimized. Connect to input coil 1. However, in FIG. 4, for the convenience of the drawing, the outward path and the return path are separated. Further, in order to avoid the stray capacitance between the superconducting ring 4 and the feedback modulation coil 6 and the damping resistor 2, the damping resistor 2 is arranged at a position far away from other wiring without crossing other wiring. Further, with such a structure, it is not necessary to form a layered structure, so that it is possible to facilitate the production by the thin film process technique. Further, since the damping resistance 2 can be freely lengthened in this way, the resistance value can be easily selected and set to 10 ohm or more and 1 k ohm or less. Next, a fifth embodiment will be described based on FIG. In this embodiment, a capacitor 7 is provided in series with the damping resistor 2 of the fourth embodiment shown in FIG. This capacitor is formed by using two conductors as an electrode plate. By inserting this capacitor, an RC high-pass filter circuit including the damping resistor 2 and the capacitor 7 is formed, and noise due to thermal noise generated from the damping resistor can be reduced.

【0008】次に第6図に基づいて実施例6を説明す
る。入力コイル1に図のようにダンピング抵抗2を設け
る。この時、ダンピング抵抗の片側は共通になっており
図のようにその先には検出コイル取付け用の超伝導のボ
ンディングパットAが形成されている。また、ダンピン
グ抵抗の他方側には超伝導ボンディングパットa,b,
cが形成されている。検出コイルからのボンディングと
パットCからのボンディングをこのダンピング抵抗上の
パットa,b,cの何れかに接続することによって、任
意のダンピング抵抗を得ることができる。また、ダンピ
ング抵抗を取り付けたくない場合は、片側は前述したよ
うにパットAに取付け、もう片側は検出コイルからのボ
ンディングをパットCに直接接続するか、または、パッ
トBを経由してパットCに接続すればよい。また、ここ
で示したダンピング抵抗は必ずしもSQUIDチップ上
に形成されるものでなくてもよく、例えば、SQUID
取付け用の基板上に形成することもできる。
Next, a sixth embodiment will be described with reference to FIG. A damping resistor 2 is provided on the input coil 1 as shown in the figure. At this time, one side of the damping resistor is common, and a superconducting bonding pad A for attaching the detection coil is formed at the tip thereof as shown in the figure. On the other side of the damping resistor, the superconducting bonding pads a, b,
c is formed. By connecting the bonding from the detection coil and the bonding from the pad C to any one of the pads a, b and c on the damping resistance, an arbitrary damping resistance can be obtained. If you do not want to attach a damping resistor, attach one side to the pad A as described above and connect the bonding from the detection coil to the pad C directly on the other side, or to the pad C via the pad B. Just connect. Further, the damping resistor shown here does not necessarily have to be formed on the SQUID chip.
It can also be formed on a mounting substrate.

【0009】[0009]

【発明の効果】本発明により、SQUID内にダンピン
グ抵抗及びコンデンサを薄膜プロセス技術を用いて形成
することができ、従来、SQUIDの不安定動作の原因
であった、入力コイル系の浮遊容量とインダクタンスと
のLC共振を抑えることができ、SQUIDを安定に動
作することができる。
According to the present invention, the damping resistor and the capacitor can be formed in the SQUID by using the thin film process technology, and the stray capacitance and the inductance of the input coil system, which has been the cause of the unstable operation of the SQUID, have been heretofore known. The LC resonance with can be suppressed, and the SQUID can operate stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1である抵抗体の形成、配置を
示す平面図。
FIG. 1 is a plan view showing formation and arrangement of a resistor that is Embodiment 1 of the present invention.

【図2】本発明の実施例2である抵抗体の形成、配置を
示す平面図。
FIG. 2 is a plan view showing formation and arrangement of a resistor that is Embodiment 2 of the present invention.

【図3】本発明の実施例3である抵抗体の形成、配置を
示す平面図。
FIG. 3 is a plan view showing formation and arrangement of a resistor that is Embodiment 3 of the present invention.

【図4】本発明の実施例4である抵抗体の形成、配置を
示す平面図。
FIG. 4 is a plan view showing formation and arrangement of a resistor which is Embodiment 4 of the present invention.

【図5】本発明の実施例5である抵抗体の形成、配置を
示す平面図。
FIG. 5 is a plan view showing formation and arrangement of a resistor that is Embodiment 5 of the present invention.

【図6】本発明の実施例6である抵抗体の形成、配置を
示す平面図。
FIG. 6 is a plan view showing formation and arrangement of a resistor which is Embodiment 6 of the present invention.

【図7】SQUIDの動作を安定にするための従来例の
回路構成図。
FIG. 7 is a circuit configuration diagram of a conventional example for stabilizing the operation of SQUID.

【符号の説明】[Explanation of symbols]

1、9…入力コイル、2、11…ダンピング抵抗、3…
接合部、4…超伝導リング、5…ジョセフソン接合、6
…帰還変調コイル、7、12…コンデンサ、8…超伝導
ボンディングパット、10…検出コイル。
1, 9 ... Input coil, 2, 11 ... Damping resistance, 3 ...
Junction part, 4 ... Superconducting ring, 5 ... Josephson junction, 6
... Feedback modulation coil, 7, 12 ... Capacitor, 8 ... Superconducting bonding pad, 10 ... Detection coil.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】入力コイル、この入力コイルと磁気結合し
ている超伝導リング、この超伝導リングと磁気結合して
いる帰還コイル、及び前記超伝導リングにジョセフソン
接合が構成されたSQUID(超伝導量子干渉素子)に
おいて、前記入力コイルの前記超伝導リングの外側に配
置された部分の線間に抵抗体が前記入力コイルと並列に
接続して形成されたことを特徴とするSQUID(超伝
導量子干渉素子)。
1. An input coil, a superconducting ring magnetically coupled to the input coil, a feedback coil magnetically coupled to the superconducting ring, and a SQUID (super coil having a Josephson junction formed on the superconducting ring. SQUID (superconducting quantum interference device), wherein a resistor is formed between the lines of a portion of the input coil arranged outside the superconducting ring in parallel with the input coil. Quantum interference device).
【請求項2】入力コイル、この入力コイルと磁気結合し
ている超伝導リング、この超伝導リングと磁気結合して
いる帰還コイル、及び前記超伝導リングにジョセフソン
接合が構成されたSQUID(超伝導量子干渉素子)に
おいて、前記入力コイルが複数本巻で構成され、前記入
力コイルの各巻線の間に複数個の抵抗体が形成されたこ
とを特徴とするSQUID(超伝導量子干渉素子)。
2. An input coil, a superconducting ring magnetically coupled to the input coil, a feedback coil magnetically coupled to the superconducting ring, and a SQUID (super coil having a Josephson junction formed on the superconducting ring. SQUID (superconducting quantum interference device), wherein the input coil is composed of a plurality of windings, and a plurality of resistors are formed between the windings of the input coil.
【請求項3】入力コイル、この入力コイルと磁気結合し
ている超伝導リング、この超伝導リングと磁気結合して
いる帰還コイル、及び前記超伝導リングにジョセフソン
接合が構成されたSQUID(超伝導量子干渉素子)に
おいて、前記入力コイルが複数本巻で構成され、前記入
力コイルの最も内側にある巻線と最も外側にある巻線と
の間に抵抗体が設けられたことを特徴とするSQUID
(超伝導量子干渉素子)。
3. An input coil, a superconducting ring magnetically coupled to the input coil, a feedback coil magnetically coupled to the superconducting ring, and a SQUID (super coil having a Josephson junction formed on the superconducting ring. In the conduction quantum interference device), the input coil is composed of a plurality of windings, and a resistor is provided between the innermost winding and the outermost winding of the input coil. SQUID
(Superconducting quantum interference device).
【請求項4】入力コイル、この入力コイルと磁気結合し
ている超伝導リング、この超伝導リングと磁気結合して
いる帰還コイル、及び前記超伝導リングにジョセフソン
接合が構成されたSQUID(超伝導量子干渉素子)に
おいて、抵抗体が前記入力コイルの前記超伝導リングの
外側に直線状に形成され、かつ前記抵抗体の往路と復路
の線が同じ位置に形成され、前記抵抗体が前記入力コイ
ルと並列に接続されたことを特徴とするSQUID(超
伝導量子干渉素子)。
4. An input coil, a superconducting ring magnetically coupled to the input coil, a feedback coil magnetically coupled to the superconducting ring, and a SQUID (super coil having a Josephson junction formed on the superconducting ring. Conductive quantum interference device), a resistor is formed linearly outside the superconducting ring of the input coil, and the forward and return lines of the resistor are formed at the same position, and the resistor is the input. An SQUID (superconducting quantum interference device), which is connected in parallel with a coil.
【請求項5】入力コイル、この入力コイルと磁気結合し
ている超伝導リング、この超伝導リングと磁気結合して
いる帰還コイル、及び前記超伝導リングにジョセフソン
接合が構成されたSQUID(超伝導量子干渉素子)に
おいて、抵抗体が前記入力コイルの前記超伝導リングの
外側にある接続端子の近傍に複数個独立に形成され、前
記複数個の抵抗体の端部には接続端子が形成されたこと
を特徴とするSQUID(超伝導量子干渉素子)。
5. An input coil, a superconducting ring magnetically coupled to the input coil, a feedback coil magnetically coupled to the superconducting ring, and a SQUID (super coil having a Josephson junction formed on the superconducting ring. Conductive quantum interference device), a plurality of resistors are independently formed in the vicinity of the connection terminals outside the superconducting ring of the input coil, and connection terminals are formed at ends of the plurality of resistors. SQUID (superconducting quantum interference device) characterized by the above.
【請求項6】前記抵抗体と直列にコンデンサが接続され
たことを特徴とする請求項1から請求項5のいずれかに
記載のSQUID(超伝導量子干渉素子)。
6. The SQUID (superconducting quantum interference device) according to any one of claims 1 to 5, wherein a capacitor is connected in series with the resistor.
【請求項7】前記抵抗体の抵抗値が10オーム以上かつ
1kオーム以下であることを特徴とする請求項1から請
求項5のいずれかに記載のSQUID(超伝導量子干渉
素子)。
7. The SQUID (superconducting quantum interference device) according to claim 1, wherein the resistance value of the resistor is not less than 10 ohm and not more than 1 k ohm.
JP4128547A 1992-05-21 1992-05-21 Superconductive quantum interference element Pending JPH05323003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4128547A JPH05323003A (en) 1992-05-21 1992-05-21 Superconductive quantum interference element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4128547A JPH05323003A (en) 1992-05-21 1992-05-21 Superconductive quantum interference element

Publications (1)

Publication Number Publication Date
JPH05323003A true JPH05323003A (en) 1993-12-07

Family

ID=14987458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4128547A Pending JPH05323003A (en) 1992-05-21 1992-05-21 Superconductive quantum interference element

Country Status (1)

Country Link
JP (1) JPH05323003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854492A (en) * 1995-11-22 1998-12-29 Seiko Instruments Inc. Superconducting quantum interference device fluxmeter and nondestructive inspection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854492A (en) * 1995-11-22 1998-12-29 Seiko Instruments Inc. Superconducting quantum interference device fluxmeter and nondestructive inspection apparatus

Similar Documents

Publication Publication Date Title
JP2533428B2 (en) Highly symmetric DC SQUID system
US9476950B2 (en) Measuring instrument, electrical resistance elements and measuring system for measuring time-variable magnetic fields or field gradients
US5656937A (en) Low-noise symmetric dc SQUID system having two pairs of washer coils and a pair of Josephson junctions connected in series
US6169397B1 (en) Damped superconducting coil system having a multiturn, planar geometry superconducting coil and shunt resistors electrically connecting successive coil turns
CN102483444B (en) There is the SQUID of the coil being inductively couple to SQUID via mutual inductance
JPS61250577A (en) Measuring device for weak magnetic field
KR20000029928A (en) Magnetic current sensor
JPH11507436A (en) Composite superconducting quantum interference device and circuit
Mezzena et al. Sensitivity enhancement of Quantum Design dc superconducting quantum interference devices in two-stage configuration
US5053706A (en) Compact low-distortion squid magnetometer
JPS61250575A (en) Measuring device for weak magnetic field
JP3254162B2 (en) Superconducting quantum interference device
JPH05323003A (en) Superconductive quantum interference element
EP3345009B1 (en) Superconducting device and method of manufacturing a superconducting device
JPH06194433A (en) Magnetometer
US5453691A (en) Miniaturized squid module having an intermediate super conducting support for connecting squid input terminals to gradiometer wires
AU2018365717A1 (en) Magnetic field measuring element, magnetic field measuring device, and magnetic field measuring system
JPH1090381A (en) Magnetism detecting element
Cantor et al. First-order planar superconducting quantum interference device gradiometers with long baseline
Thomasson et al. High slew rate large bandwidth integrated dc SQUID magnetometer for NMR applications
JPH08220201A (en) Superconducting quantum interferometer
KR100235993B1 (en) A magnetometer using squid
JPH0697521A (en) Dc type superconducting quantum interference element
JPS63309876A (en) Multi-type dcsquid magnetometer
JP3001621B2 (en) Superconducting magnetometer