JPH0580034A - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector

Info

Publication number
JPH0580034A
JPH0580034A JP3268270A JP26827091A JPH0580034A JP H0580034 A JPH0580034 A JP H0580034A JP 3268270 A JP3268270 A JP 3268270A JP 26827091 A JP26827091 A JP 26827091A JP H0580034 A JPH0580034 A JP H0580034A
Authority
JP
Japan
Prior art keywords
color
defect
echo
display
defect echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3268270A
Other languages
Japanese (ja)
Inventor
Shigeru Igarashi
茂 五十嵐
Yukihiko Suzuki
由起彦 鈴木
Izumi Sato
泉 佐藤
Takashi Inoue
隆 井上
Koji Saito
興二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokimec Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP3268270A priority Critical patent/JPH0580034A/en
Publication of JPH0580034A publication Critical patent/JPH0580034A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To achieve improvements in a B mode color display and a color display by sampling and quantization signals of a defect echo reflected from a defect in a material to be inspected. CONSTITUTION:A defect echo which is reflected from a defect in a material by using an ultrasonic wave to be obtained with linear amplification thereof through a receiving circuit is stored into a line memory 9 once after the sampling and quantization thereof. The defect echo undergoes color classification, for example, by red, green, white and blue with a color discriminator circuit 10 comprising a comparator using a logarithmic conversion value of an echo level as threshold and one screen of frame images are formed to perform a B mode color display. Thus, color increases in a defect display thereby allowing the detection of the size of the defect in details and the defect echo is subjected to no level conversion thereby enabling color display quickly and economically.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は例えば被検材上を探触
子が走査して超音波を放射し内部の欠陥から反射された
欠陥エコーをBモードにてカラー表示して被検材の欠陥
検出を行う超音波探傷装置,特にカラー表示の改良に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention shows, for example, a defect echo reflected by an internal defect by scanning a probe with a probe and displaying the defect echo in color in B mode. The present invention relates to an ultrasonic flaw detector for detecting defects, and particularly to improvement of color display.

【0002】[0002]

【従来の技術】図6は被検材内欠陥の一例を示す断面
図,4は探触子,19は被検材,20は欠陥であり,被
検材19内には例えば表面からの距離が異なりまた大き
さも異る複数の欠陥20がある。被検材19表面に探触
子4を当接し超音波パルスの送受波により内部の欠陥検
出が行われる。
2. Description of the Related Art FIG. 6 is a cross-sectional view showing an example of a defect in a test material, 4 is a probe, 19 is a test material, and 20 is a defect. There are a plurality of defects 20 of different sizes and different sizes. The probe 4 is brought into contact with the surface of the material 19 to be inspected, and internal defects are detected by transmitting and receiving ultrasonic pulses.

【0003】図7は従来のAモード表示における欠陥エ
コー色区分の説明図,図7aは第1欠陥エコーの色区
分,超音波伝搬の距離を横軸,欠陥エコーレベルを縦軸
としたAモード表示におて,欠陥エコーは等しいレベル
間隔のたとえば赤,緑,白,青(背景)の4色により色
区分される。は第1欠陥エコーを示し,第1欠陥エコ
ーはエコーレベルが大きいので赤,緑,白,青(背
景)凡ての色区分に係わっている。図7bは第2欠陥エ
コーの色区分,は第2欠陥エコーを示し,Aモード表
示における第2欠陥エコーはエコーレベルにより緑,
白,青(背景)に係わる。図7cは第3欠陥エコーの色
区分,は第3欠陥エコーを示し,Aモード表示におけ
る第3欠陥エコーはエコーレベルが小さいので色区分
白,青(背景)に係わる。
FIG. 7 is an explanatory view of the defect echo color classification in the conventional A mode display, and FIG. 7A is the A mode with the first defect echo color classification, the ultrasonic wave propagation distance on the horizontal axis, and the defect echo level on the vertical axis. In the display, the defect echo is color-divided by four colors of red, green, white, and blue (background) at equal level intervals. Indicates the first defect echo. Since the first defect echo has a high echo level, it is related to all the color segments of red, green, white and blue (background). FIG. 7b shows the color classification of the second defect echo, indicates the second defect echo, the second defect echo in the A mode display is green according to the echo level,
It is related to white and blue (background). FIG. 7c shows the color segment of the third defect echo, is the third defect echo, and the third defect echo in the A mode display is related to the color segments white and blue (background) because the echo level is small.

【0004】図8は従来の欠陥表示の一例を示すBモー
ド図形,B型走査即ち探触子4が被検材19上を移動し
つつ欠陥検出を行い,探傷位置を横軸,超音波伝搬の距
離を縦軸とするBモードにて欠陥エコーが表示される。
各欠陥エコーはそのレベルに応じ上記赤,緑,白,青
(背景)のしきい値により色が弁別される。
FIG. 8 is a B-mode figure showing an example of conventional defect display, B-type scanning, that is, the defect detection is performed while the probe 4 is moving on the material to be inspected 19, and the flaw detection position is represented by the horizontal axis and ultrasonic wave propagation. The defect echo is displayed in the B mode with the distance of as the vertical axis.
The color of each defect echo is discriminated by the threshold values of red, green, white and blue (background) according to the level thereof.

【0005】第1欠陥エコーは中心部が赤,その周縁
部が緑,外周部が白,背景が青の4色にて表示され,第
2欠陥エコーは中心部が緑,周縁部が白,背景が青の
3色表示で,第3欠陥エコーは白,背景が青の2色表
示である。被検材19内の欠陥20はその大きさにより
区分されるカラーの種類ならびに表示寸法が決まり,且
つ被検材19内の欠陥20対応位置にカラー表示され
る。
The first defect echo is displayed in four colors: red at the center, green at the periphery, white at the periphery and blue at the background. The second defect echo is green at the center and white at the periphery. The background is displayed in three colors of blue, the third defect echo is displayed in white, and the background of two defects is displayed in blue. Defects 20 in the material 19 to be inspected are determined in color type and display size, and are displayed in color at positions corresponding to the defects 20 in the material to be inspected 19.

【0006】[0006]

【発明が解決しようとする課題】上記のような従来の超
音波探傷装置では,被検材19に向け超音波を放射し
て,被検材19内欠陥20から反射された欠陥エコー
は,直線増幅され通常Aモードにより超音波伝搬の距離
に応じた位置に欠陥20の大きさに比例したエコーレベ
ルにて表示される。欠陥評価は被検材19の底面エコー
に対する欠陥エコーの相互のレベルの割合による。
In the conventional ultrasonic flaw detector as described above, ultrasonic waves are radiated toward the material to be inspected 19, and the defect echo reflected from the defect 20 in the material to be inspected 19 is a straight line. It is amplified and is normally displayed by the A mode at an echo level proportional to the size of the defect 20 at a position corresponding to the distance of ultrasonic wave propagation. The defect evaluation is based on the ratio of the mutual level of the defect echo to the bottom echo of the test material 19.

【0007】上記欠陥エコーを等しいレベル間隔のしき
い値による色区分を行いBモードにてカラー表示する
と,欠陥20はその大きさに応じて第1欠陥エコーは
赤,緑,白,青の4色,第2欠陥エコーは緑,白,青
の3色,第3欠陥エコーは白,青2色にてカラー表示
される。
When the defect echo is color-displayed in the B mode by performing color division by thresholds having equal level intervals, the defect 20 has four defect echoes of red, green, white and blue depending on the size thereof. The color and the second defect echo are displayed in three colors of green, white and blue, and the third defect echo is displayed in two colors of white and blue.

【0008】しかし欠陥20の色区分のダイナミックレ
ンジを広くするためには,欠陥エコーを対数増幅器を介
してエコーレベルの対数変換を行い,上記色区分のしき
い値によって色を弁別すれば,欠陥の大きさがより詳細
に検出され,欠陥評価が正確に行える。しかし対数増幅
器を用いるので直線増幅に比べてコストが増加する。ま
た欠陥エコーレベルは対数変換されるので,Aモード表
示されるエコーレベルは欠陥20の大きさに比例しない
ので欠陥評価が正しくできない。
However, in order to widen the dynamic range of the color segment of the defect 20, the defect echo is subjected to logarithmic conversion of the echo level through a logarithmic amplifier and the color is discriminated by the threshold value of the color segment. The size of the defect is detected in more detail and defect evaluation can be performed accurately. However, since the logarithmic amplifier is used, the cost is increased as compared with the linear amplification. Further, since the defect echo level is logarithmically converted, the echo level displayed in the A mode is not proportional to the size of the defect 20, so that the defect cannot be evaluated correctly.

【0009】更に対数増幅を行うと雑音などの妨害信号
の影響が顕著になり欠陥検出に干渉する。また色区分を
対数関数以外の非直線特性に基づいて行うとき,これら
関数特性を備えた増幅器を用いるので迅速且つ容易に行
えないという問題点があった。
Further, if logarithmic amplification is performed, the influence of an interfering signal such as noise becomes remarkable, which interferes with defect detection. Further, when the color classification is performed based on the non-linear characteristic other than the logarithmic function, there is a problem that it cannot be performed quickly and easily because an amplifier having these functional characteristics is used.

【0010】この発明はかかる問題点を解決するために
なされたもので,欠陥エコーの直線増幅や任意関数によ
る色区分のしきい値設定が迅速且つ低コストにて行えカ
ラー表示に基づく欠陥評価が正しくでき,更にAモード
表示におけるエコーレベルが欠陥の大きさに比例する超
音波探傷装置を得ることを目的とする。
The present invention has been made to solve the above problems, and linear amplification of defect echoes and threshold setting of color classification by an arbitrary function can be performed quickly and at low cost, and defect evaluation based on color display can be performed. It is an object of the present invention to obtain an ultrasonic flaw detector which can be correctly performed and whose echo level in A mode display is proportional to the size of a defect.

【0011】[0011]

【課題を解決するための手段】この発明に係る超音波探
傷装置は,標本化の後量子化された欠陥エコーを格納す
るラインメモリと,欠陥エコーを所定関数に従うレベル
にて色区分するため区分毎のしきい値を設定する設定器
と,ラインメモリから読出された信号を区分する色毎の
しきい値と比較して欠陥エコーを色区分する色弁別回路
と,色区分された信号をカラー表示信号にレベル変換し
て順次格納し一画面分のフレーム画像を形成するフレー
ムメモリを設けたものである。
An ultrasonic flaw detector according to the present invention classifies a line memory for storing a quantized defect echo after sampling and a color classification for the defect echo at a level according to a predetermined function. A setter that sets the threshold value for each color, a color discrimination circuit that color-codes the defect echo by comparing the threshold value for each color that distinguishes the signal read from the line memory, and the color-coded signal A frame memory is provided for converting a level into a display signal and sequentially storing it to form a frame image for one screen.

【0012】[0012]

【作用】この発明においては,被検材内の欠陥から反射
された欠陥エコーは直線増幅器を用いた受信回路を経
て,標本化ならびに量子化されていったんラインメモリ
へ格納される。欠陥エコーはたとえば赤,緑,白,青
(背景)による色区分のため,上記エコーレベルの対数
変換値を各色のしきい値とする設定器を用いた複数の比
較器よりなる色弁別回路に加える。
In the present invention, the defect echo reflected from the defect in the material to be inspected is sampled and quantized through the receiving circuit using the linear amplifier, and is temporarily stored in the line memory. Since the defect echo is classified into red, green, white, and blue (background) colors, a color discrimination circuit including a plurality of comparators using a setter that uses the logarithmic conversion value of the echo level as a threshold value for each color is used. Add.

【0013】このとき対数変換されたしきい値を用いる
と,各色の区分範囲は非直線で赤,緑,白,青(背景)
の順に順次小さくなり,欠陥エコーは広いレベル範囲に
亙り色区分が詳細にできる。色区分された欠陥エコーは
カラーエンコーダを経て一画面分のフレーム画像を形成
するフレームメモリへ格納され,欠陥表示のカラーが増
し微小欠陥から大きな欠陥まで適切に色区分できてデイ
ジタル表示器へ明瞭に表示される。
At this time, when the logarithmically converted threshold value is used, the division range of each color is non-linear and is red, green, white, blue (background).
The defect echoes become smaller in order, and the defect echoes can be classified in detail over a wide level range. The color-separated defect echo is stored in the frame memory that forms a frame image for one screen through the color encoder, and the color of the defect display increases, and it is possible to appropriately color-separate from minute defects to large defects and clearly display it on the digital display. Is displayed.

【0014】受信回路には直線増幅器をまた設定器には
エコーレベルの関数変換値をしきい値としてカラー表示
するので,しきい値を変えるのみで各種色区分のカラー
表示が迅速且つ経済的にできる。また欠陥エコーはAモ
ード表示されるので底面エコーとの比較による欠陥評価
が正しく行える。更に受信回路には非直線増幅器を用い
ないので,雑音や妨害信号の干渉が抑制され欠陥検出が
容易にできる。
Since a linear amplifier is provided in the receiving circuit and a function set value of the echo level is displayed in color in the setter as a threshold value, color display in various color sections can be performed quickly and economically only by changing the threshold value. it can. Further, since the defect echo is displayed in the A mode, the defect can be correctly evaluated by comparison with the bottom echo. Furthermore, since no non-linear amplifier is used in the receiving circuit, interference of noise and interfering signals is suppressed and defect detection can be facilitated.

【0015】[0015]

【実施例】この発明の一実施例を添付図面を参照して詳
細に説明する。図1はこの発明の一実施例を示す要部ブ
ロック図,7はA/D変換回路,8はメモリへ格納する
データのアドレス指定ならびにデータの書込,読出しを
指定するメモリ制御器,9はラインメモリ,10は欠陥
エコーを色区分する色弁別回路,11は色区分のため各
色のしきい値を設定する設定器,12は色区分された信
号をカラー表示信号に変換するカラーエンコーダ,13
は一画面分のフレーム画像を形成するフレームメモリ,
15はデイジタル型の表示器,16は色赤を識別する第
1比較器,17は色緑を識別する第2比較器,18は色
白を識別する第3比較器を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a block diagram of an essential part showing an embodiment of the present invention, 7 is an A / D conversion circuit, 8 is a memory controller for designating address designation of data to be stored in a memory, and writing and reading of data, and 9 is a memory controller. A line memory, 10 is a color discriminating circuit for color-distributing a defect echo, 11 is a setter for setting a threshold value of each color for color discrimination, 12 is a color encoder for converting a color-discriminated signal into a color display signal, 13
Is a frame memory that forms a frame image for one screen,
Reference numeral 15 is a digital type display, 16 is a first comparator for identifying the color red, 17 is a second comparator for identifying the color green, and 18 is a third comparator for identifying the color white.

【0016】上記のように構成された超音波探傷装置に
おいては,被検材へ向け放射された超音波パルスによる
被検材内の欠陥から反射された欠陥エコーは,標本化さ
れた後A/D変換回路7にて量子化され,メモリ制御器
8の指令によりいったんラインメモリ9に格納される。
ラインメモリ9から読出された欠陥エコーは例えば赤,
緑,白,青(背景)に区分するため,3種類のしきい値
を個別に備えた比較器よりなる色弁別回路10へ加わ
る。
In the ultrasonic flaw detector constructed as described above, the defect echo reflected from the defect in the material to be inspected by the ultrasonic pulse radiated to the material to be inspected is sampled after A / It is quantized by the D conversion circuit 7 and temporarily stored in the line memory 9 according to a command from the memory controller 8.
The defect echo read from the line memory 9 is, for example, red,
In order to classify into green, white, and blue (background), it is added to the color discriminating circuit 10 including a comparator provided with three kinds of thresholds individually.

【0017】図2は欠陥エコーレベルとしきい値との相
関図,は折線近似による対数関数を示し,色区分を縦
軸,欠陥エコーレベルを横軸とすると,等レベル間隔を
なす色区分と対数関数との交点より,しきい値1…色
区分赤,しきい値2…色区分緑,しきい値3…色区分
白,以下背景…色区分青が決定される。
FIG. 2 is a correlation diagram between a defect echo level and a threshold value, shows a logarithmic function based on a polygonal line approximation, where the color segment is the ordinate and the defect echo level is the abscissa, the color segment and the logarithm at equal level intervals. From the intersection with the function, threshold value 1 ... color segment red, threshold value 2 ... color segment green, threshold value 3 ... color segment white, and hereinafter background ... color segment blue are determined.

【0018】図3はAモード表示における欠陥エコー色
区分の説明図,図3aは第1欠陥エコーの色区分,図3
bは第2欠陥エコーの色区分,図3cは第3欠陥エコー
の色区分を示し,しきい値としてエコーレベルの対数変
換値を用いることにより,第1欠陥エコーと第2欠陥
エコーの表示カラーは共に赤,緑,白,青(背景)の
4色に,また第3欠陥エコーの表示カラーは緑,白,
青(背景)に係わる。
FIG. 3 is an explanatory view of the defect echo color classification in the A mode display, and FIG. 3a is the color classification of the first defect echo, FIG.
FIG. 3b shows the color classification of the second defect echo, and FIG. 3c shows the color classification of the third defect echo. By using the logarithmic conversion value of the echo level as the threshold value, the display color of the first defect echo and the second defect echo is displayed. Are four colors of red, green, white, and blue (background), and the display colors of the third defect echo are green, white, and
Related to blue (background).

【0019】各色区分に対応するしきい値を設定器11
に設定する。しきい値1が係わる第1比較器16からは
色区分赤相当信号が,しきい値2が係わる第2比較器1
7からは色区分緑相当信号が,またしきい値3が係わる
第3比較器18からは色区分白相当信号がそれぞれ出力
される。各色区分相当信号はカラーエンコーダ12に加
わり表示カラーに対応した信号変換が行われる。
The threshold value corresponding to each color segment is set by the setter 11
Set to. The signal corresponding to the color segment red is output from the first comparator 16 associated with the threshold 1, and the second comparator 1 associated with the threshold 2.
7 outputs a color-corresponding green equivalent signal, and a third comparator 18 associated with the threshold value 3 outputs a color-corresponding white equivalent signal. The signal corresponding to each color segment is added to the color encoder 12 and signal conversion corresponding to the display color is performed.

【0020】カラーエンコーダ12出力信号はメモリ制
御器8からのX軸とY軸方向のアドレスならびに書込み
指令を受けてフレームメモリ13へ順次格納され,一画
面分のフレーム画像を形成し,その後読出されて表示器
15へカラー表示される。このとき欠陥エコーについて
は対数関数などによるレベル変換を行わないので,被検
材内の欠陥の大きさに正しく比例する。
The output signal of the color encoder 12 is sequentially stored in the frame memory 13 in response to the addresses and write commands in the X-axis and Y-axis directions from the memory controller 8, forms a frame image for one screen, and is then read out. Are displayed in color on the display unit 15. At this time, since the level of the defect echo is not converted by a logarithmic function or the like, it is directly proportional to the size of the defect in the test material.

【0021】図4は欠陥表示の一例を示すBモード図
形,被検材の探傷位置ならびに超音波伝搬の距離の該当
位置に,各欠陥はエコーレベルとしきい値との関連よ
り,第1欠陥エコーと第2欠陥エコーは赤,緑,
白,青(背景)の4色,第3欠陥エコーは緑,白,青
(背景)3色にて,欠陥の大きさに応じた表示寸法でカ
ラー表示される。欠陥の表示カラーが増加するので欠陥
の大きさが正確に検出できる。色区分は対数関数以外の
非直線関数により行うとき,当該非直線関数を用いてし
きい値を決定し同様に欠陥エコーのカラー表示が行え
る。
FIG. 4 shows a B-mode figure showing an example of defect display, a flaw detection position of a material to be inspected, and a position corresponding to the ultrasonic wave propagation distance. And the second defect echo is red, green,
The four colors of white and blue (background) and the third defect echo are displayed in three colors of green, white, and blue (background) in color according to the size of the defect. Since the display color of the defect is increased, the size of the defect can be accurately detected. When the color classification is performed by a non-linear function other than the logarithmic function, the threshold value is determined by using the non-linear function, and the color display of the defect echo can be similarly performed.

【0022】図5はこの発明に係る超音波探傷装置の一
例を示すブロック図,4,7,8,9,10,11,1
2,13,15,19,20は上記実施例と同一であ
り,1は時間の基準パルスを発生するクロック回路,2
は超音波放射のタイミング信号を発生するタイミング回
路,3はパルス回路,6はアナログ信号を周期的に標本
化し標本値を保持するサンプルホールド回路,14はB
モード表示を制御する駆動回路を示している。
FIG. 5 is a block diagram showing an example of the ultrasonic flaw detector according to the present invention, 4, 7, 8 , 9, 10 , 11, 11.
2, 13, 15, 19 and 20 are the same as those in the above embodiment, 1 is a clock circuit for generating a time reference pulse, 2
Is a timing circuit for generating a timing signal for ultrasonic radiation, 3 is a pulse circuit, 6 is a sample hold circuit for periodically sampling analog signals and holding sample values, and 14 is B
The drive circuit which controls mode display is shown.

【0023】上記のように構成された超音波探傷装置に
おいては,クロック回路1のクロック回路1のクロック
に同期して放射された超音波による被検材19内の欠陥
20からの反射による時系列のアナログ信号は,受信回
路5を経てサンプルホールド回路6へ加えられる。アナ
ログ信号はクロックの周期にて標本化され,標本値はA
/D変換回路7にて量子化して,メモリ制御器8の指令
によりラインメモリ9へいったん格納される。
In the ultrasonic flaw detector constructed as described above, the time series of reflection from the defect 20 in the material 19 to be inspected by the ultrasonic waves emitted in synchronization with the clock of the clock circuit 1 of the clock circuit 1. The analog signal of 1 is applied to the sample hold circuit 6 via the receiving circuit 5. The analog signal is sampled at the clock cycle, and the sampled value is A
It is quantized by the / D conversion circuit 7 and temporarily stored in the line memory 9 according to a command from the memory controller 8.

【0024】つぎに欠陥エコーの量子化信号は色弁別回
10へ加わり,設定器11による各色しきい値と比較
器にて比較され色信号たとえば赤,緑,白,青(背景)
に区別される。色区分された欠陥エコーはカラーエンコ
ーダ12を経て赤,緑,白毎にフレームメモリ13へ順
次格納され,一画面分のフレーム画像を形成する。上記
画像信号は各色毎に駆動回路14により表示器15へ表
示される。表示器15としては例えば画素単位に動作制
御が行われるマトリクス型LCDよりなる液晶デイスプ
レイを用いてデイジタル表示を行う。
Next, the quantized signal of the defect echo is applied to the color discrimination circuit 10 and compared with each color threshold value by the setter 11 by the comparator to obtain color signals such as red, green, white and blue (background).
To be distinguished. The color-separated defect echoes are sequentially stored in the frame memory 13 for each of red, green, and white through the color encoder 12 to form a frame image for one screen. The image signal is displayed on the display 15 by the drive circuit 14 for each color. As the display unit 15, for example, a liquid crystal display including a matrix type LCD whose operation is controlled on a pixel-by-pixel basis is used to perform digital display.

【0025】被検材19内の欠陥20はその大きさによ
り色区分ならびに表示寸法が決定しBモードにてカラー
表示される。更にカラー表示を赤,緑,白,青(背景)
以外の多色にて行うためには,液晶表示における赤,
緑,白各色の階調数を増加しこれを制御することにより
実現できる。
The defect 20 in the material 19 to be inspected is color-displayed in the B mode in which the color classification and the display size are determined by its size. In addition, the color display is red, green, white, and blue (background).
In order to perform multi-color other than,
This can be achieved by increasing the number of gradations for each color of green and white and controlling this.

【0026】本発明においては受信回路5において欠陥
エコーレベルの関数変換を行わず,しきい値を色区分に
従う値とすることにより所望のカラー表示が容易に実現
できる。欠陥表示のカラーが増加するので微小欠陥から
大きな欠陥まで適切に色区分され明瞭に表示できる。受
信回路5には非直線増幅器を用いないのでコストが低下
し,またエコーレベルは欠陥の大きさに比例するので,
Aモード表示において欠陥の大きさが正しく評価でき
る。
In the present invention, the desired color display can be easily realized by not performing the function conversion of the defect echo level in the receiving circuit 5 and setting the threshold value to a value according to the color classification. Since the color of defect display is increased, it is possible to clearly display by appropriately color-dividing from small defects to large defects. Since the non-linear amplifier is not used in the receiving circuit 5, the cost is reduced, and the echo level is proportional to the size of the defect.
The size of the defect can be correctly evaluated in the A mode display.

【0027】[0027]

【発明の効果】この発明は以上説明したとおり,標本化
の後量子化された欠陥エコーを色区分するためしきい値
を設定する設定器と,上記しきい値により欠陥エコーを
色区分する色弁別回路ならびに一画面分の画像を形成す
るフレームメモリを設ける簡単な構造により,欠陥表示
のカラーが増加し微小欠陥から大きな欠陥まで適切に色
区分して明瞭に表示できる。受信回路は欠陥エコーレベ
ルの関数変換を行わないのでカラー表示が簡易に行え
る。また対数増幅器などを用いないので経済的に行え
る。エコーレベルは欠陥の大きさに比例し欠陥の評価が
正しく行えるという効果がある。
As described above, according to the present invention, a setter for setting a threshold value for color-distributing a quantized defect echo after sampling and a color for color-defining a defect echo by the threshold value. With a simple structure that includes a discrimination circuit and a frame memory that forms an image for one screen, the color of defect display is increased, and it is possible to clearly display by appropriately color-coding from small defects to large defects. Since the receiving circuit does not perform function conversion of the defect echo level, color display can be easily performed. Moreover, since it does not use a logarithmic amplifier, it can be economically performed. The echo level is proportional to the size of the defect and has the effect that the defect can be evaluated correctly.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す要部ブロック図FIG. 1 is a block diagram of essential parts showing an embodiment of the present invention.

【図2】欠陥エコーレベルとしきい値との相関図FIG. 2 is a correlation diagram between a defect echo level and a threshold value.

【図3】Aモード表示における欠陥エコー色区分の説明
図 aは第1欠陥エコーの色区分 bは第2欠陥エコーの色区分 cは第3欠陥エコーの色区分
FIG. 3 is an explanatory view of defect echo color classification in A mode display. A is a first defect echo color classification, b is a second defect echo color classification, and c is a third defect echo color classification.

【図4】欠陥表示の一例を示すBモード図形FIG. 4 is a B-mode figure showing an example of defect display.

【図5】この発明に係る超音波探傷装置の一例を示すブ
ロック図
FIG. 5 is a block diagram showing an example of an ultrasonic flaw detector according to the present invention.

【図6】被検材内の欠陥の一例を示す断面図FIG. 6 is a cross-sectional view showing an example of a defect in a test material.

【図7】従来のAモード表示における欠陥エコー色区分
の説明図 aは第1欠陥エコーの色区分 bは第2欠陥エコーの色区分 cは第3欠陥エコーの色区分
FIG. 7 is an explanatory view of defect echo color classification in a conventional A-mode display: a is a first defect echo color classification, b is a second defect echo color classification, and c is a third defect echo color classification.

【図8】従来の欠陥表示の一例を示すBモード図形FIG. 8 is a B-mode graphic showing an example of a conventional defect display.

【符号の説明】[Explanation of symbols]

7 A/D変換回路 8 メモリ制御器 9 ラインメモリ10 色弁別回路 11 設定器 12 カラーエンコーダ 13 フレームメモリ 16 第1比較器 17 第2比較器 18 第3比較器7 A / D conversion circuit 8 Memory controller 9 Line memory 10 Color discrimination circuit 11 Setting device 12 Color encoder 13 Frame memory 16 First comparator 17 Second comparator 18 Third comparator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 隆 東京都大田区南蒲田2丁目16番46号 株式 会社トキメツク内 (72)発明者 斉藤 興二 東京都大田区南蒲田2丁目16番46号 株式 会社トキメツク内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Inoue 2-16-46 Minami Kamata, Ota-ku, Tokyo Within Tokimetsuku Co., Ltd. (72) Kouji Saito 2-16-46 Minami-Kamata, Ota-ku, Tokyo Stock company Tokimetuku

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検材内の欠陥から反射された時系列の
欠陥エコーを離散的な時間にて標本化の後量子化してデ
イジタル表示器へBモードにてカラー表示する超音波探
傷装置において,標本化の後量子化された欠陥エコーを
格納するラインメモリと,上記欠陥エコーを所定関数に
従うレベルにて色区分するため区分毎のしきい値を設定
する設定器と,上記ラインメモリから読出された信号を
区分する色毎のしきい値と比較して欠陥エコーを色区分
する色弁別回路と,上記色区分された信号をカラー表示
信号にレベル変換して順次格納し一画面分のフレーム画
像を形成するフレームメモリとを備えたことを特徴とす
る超音波探傷装置。
1. An ultrasonic flaw detector for displaying a time-series defect echo reflected from a defect in a material to be inspected in discrete time, quantizing it, and color-displaying it in B mode on a digital display. , A line memory for storing the quantized defect echo after sampling, a setter for setting a threshold value for each color in order to color-code the defect echo at a level according to a predetermined function, and read from the line memory A color discriminating circuit for color-distributing the defective echo by comparing the threshold value for each color for discriminating the divided signal, and level-converting the color-divided signal into a color display signal and sequentially storing the frame for one screen. An ultrasonic flaw detector, comprising: a frame memory for forming an image.
【請求項2】 関数は対数関数である請求項1記載の超
音波探傷装置。
2. The ultrasonic flaw detector according to claim 1, wherein the function is a logarithmic function.
【請求項3】 色区分は赤,緑,白,青の4色である請
求項1記載の超音波探傷装置。
3. The ultrasonic flaw detector according to claim 1, wherein the color classification is four colors of red, green, white and blue.
JP3268270A 1991-09-19 1991-09-19 Ultrasonic flaw detector Pending JPH0580034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3268270A JPH0580034A (en) 1991-09-19 1991-09-19 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3268270A JPH0580034A (en) 1991-09-19 1991-09-19 Ultrasonic flaw detector

Publications (1)

Publication Number Publication Date
JPH0580034A true JPH0580034A (en) 1993-03-30

Family

ID=17456236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3268270A Pending JPH0580034A (en) 1991-09-19 1991-09-19 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPH0580034A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058967A1 (en) * 1998-05-12 1999-11-18 Kawasaki Steel Corporation Method and device for displaying signal generated by measurement probe
JP2006132987A (en) * 2004-11-02 2006-05-25 Olympus Corp Ultrasonic flaw detector
KR100607079B1 (en) * 2004-10-29 2006-08-02 한국전력공사 Linearity checking tool for ultrasonic examination instrument
JP2008008827A (en) * 2006-06-30 2008-01-17 Ryoden Shonan Electronics Kk Ultrasonic probe and ultrasonic flaw detection device
JP2010156617A (en) * 2008-12-26 2010-07-15 Marktec Corp Eddy current flaw detection method and eddy current flaw detector
JP2019526814A (en) * 2016-11-29 2019-09-19 ワルトシラ フィンランド オサケユキチュア Ultrasonic quality control using filtered image data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119981A (en) * 1976-04-01 1977-10-07 Tokyo Keiki Kk Displaying devie for ultrasonic flaw detector
JPS5651660A (en) * 1979-09-29 1981-05-09 Nukem Gmbh Method of and apparatus for processing wide band signal having large dynamic range
JPH02129544A (en) * 1988-11-09 1990-05-17 Toshiba Corp Ultrasonic flaw detecting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119981A (en) * 1976-04-01 1977-10-07 Tokyo Keiki Kk Displaying devie for ultrasonic flaw detector
JPS5651660A (en) * 1979-09-29 1981-05-09 Nukem Gmbh Method of and apparatus for processing wide band signal having large dynamic range
JPH02129544A (en) * 1988-11-09 1990-05-17 Toshiba Corp Ultrasonic flaw detecting device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058967A1 (en) * 1998-05-12 1999-11-18 Kawasaki Steel Corporation Method and device for displaying signal generated by measurement probe
AU759780B2 (en) * 1998-05-12 2003-05-01 Kawasaki Steel Corporation Method and device for displaying signal generated by measurement probe
US6777931B1 (en) 1998-05-12 2004-08-17 Kawasaki Steel Corporation Method of displaying signal obtained by measuring probe and device therefor
KR100607079B1 (en) * 2004-10-29 2006-08-02 한국전력공사 Linearity checking tool for ultrasonic examination instrument
JP2006132987A (en) * 2004-11-02 2006-05-25 Olympus Corp Ultrasonic flaw detector
JP4646599B2 (en) * 2004-11-02 2011-03-09 オリンパス株式会社 Ultrasonic flaw detector
JP2008008827A (en) * 2006-06-30 2008-01-17 Ryoden Shonan Electronics Kk Ultrasonic probe and ultrasonic flaw detection device
JP2010156617A (en) * 2008-12-26 2010-07-15 Marktec Corp Eddy current flaw detection method and eddy current flaw detector
JP2019526814A (en) * 2016-11-29 2019-09-19 ワルトシラ フィンランド オサケユキチュア Ultrasonic quality control using filtered image data
US11506635B2 (en) 2016-11-29 2022-11-22 Wärtsilä Finland Oy Ultrasonic quality control using filtered image data

Similar Documents

Publication Publication Date Title
KR0171606B1 (en) Ultrasonic inspection and imaging instrument
US4953405A (en) Ultrasonic measuring apparatus for measuring a predetermined boundary surface inside an object
EP0204000A1 (en) Ultrasonic diagnostic apparatus
CA1130438A (en) Video a-trace display system for ultrasonic diagnostic system
JPH0580034A (en) Ultrasonic flaw detector
US4951141A (en) Method of determining the transmission function of a video camera
US6441775B1 (en) Radar device, similar device, and received data write method
US4261040A (en) Method and apparatus for the analysis of scanned data
US4470702A (en) Equivalent tone region detecting device
US6071241A (en) Ultrasound color flow display optimization by adjustment of threshold using sampling
US4916535A (en) Method of non-destructive quality inspection of materials and videomonitor realizing this method
JPS6037894B2 (en) acoustic image display device
EP0599335A2 (en) Cylindrical container inner surface tester
JP2980437B2 (en) Ultrasonic flaw detector
JPS57153258A (en) Ultrasonic flaw detector
JP3930129B2 (en) Surface inspection method and apparatus
JPH07225223A (en) Method and device for recording ultrasonic flaw detection wave form
JP2006132987A (en) Ultrasonic flaw detector
JPH10239027A (en) Film thickness measuring device
SU855391A1 (en) Method of measuring area of objects
US6331888B1 (en) Method and apparatus for surface inspection
SU1608565A2 (en) Converter of magnetic fields to flaw detector
CN111929361A (en) Ultrasonic detection auxiliary recording method
JPS58129248A (en) Image display for ultrasonic flaw detection
JPH0332736B2 (en)