JPH0579927A - Optical measuring method for stress - Google Patents

Optical measuring method for stress

Info

Publication number
JPH0579927A
JPH0579927A JP24152091A JP24152091A JPH0579927A JP H0579927 A JPH0579927 A JP H0579927A JP 24152091 A JP24152091 A JP 24152091A JP 24152091 A JP24152091 A JP 24152091A JP H0579927 A JPH0579927 A JP H0579927A
Authority
JP
Japan
Prior art keywords
stress
electronic camera
gauge
photoelastic
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24152091A
Other languages
Japanese (ja)
Inventor
Yoshio Mitarai
良夫 御手洗
Koji Oshima
孝二 大嶋
Keiji Yamaguchi
啓二 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP24152091A priority Critical patent/JPH0579927A/en
Publication of JPH0579927A publication Critical patent/JPH0579927A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To dispense with the wiring between a sensor detecting the stress strain of a structure and a measuring instrument and automate measurement. CONSTITUTION:Polarizing plates 3, 7 and 1/4 wavelength plates 4, 8 are fitted to an electronic camera 1 and a light source 6 respectively so that the light elastic effect of light elastic gauges 21, 21... stuck to the structure can be observed. The action of the electronic camera 1 is controlled by a computer 11. The RGB signals of the electronic camera 1 are stored in a frame memory 14, and the hue coordinates of the light elastic gauges 21, 21... on a screen are calculated by the computer 11. The strain quantity and stress are calculated via the displacement quantity of the light elastic gauges 21 from the hue coordinates of the reference color and stored in a memory device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は応力測定方法に関する
ものであり、構造物の応力ひずみを光学的に測定する応
力測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stress measuring method, and more particularly to a stress measuring method for optically measuring stress strain of a structure.

【0002】[0002]

【従来の技術】従来、構造物の応力ひずみの測定にはス
トレインゲージが使用されている。この方法は、測定す
る構造物の表面にストレインゲージを貼付け、ストレイ
ンゲージの両端子間の電気抵抗の変化を測定し、ひずみ
量に換算するものである。
2. Description of the Related Art Conventionally, strain gauges have been used to measure stress and strain of structures. In this method, a strain gauge is attached to the surface of a structure to be measured, a change in electric resistance between both terminals of the strain gauge is measured, and the strain amount is converted.

【0003】[0003]

【発明が解決しようとする課題】前述したストレインゲ
ージによる応力測定方法は、測定器とストレインゲージ
とを電線にて接続するので、測定点が多数ある場合は、
電線の数量も増大し、配線工事及び管理が煩雑となる。
そこで、配線工事を不要とし、データを自動的に収集し
て資材の削減及び省力化を図るために解決すべき技術的
課題が生じてくるのであり、本発明はこの課題を解決す
ることを目的とするものである。
In the stress measuring method using the strain gauge described above, since the measuring instrument and the strain gauge are connected by the electric wire, if there are many measuring points,
The number of wires also increases, and wiring work and management become complicated.
Therefore, there is a technical problem to be solved in order to eliminate the wiring work and automatically collect the data to reduce the material and save the labor, and the present invention aims to solve the problem. It is what

【0004】[0004]

【課題を解決するための手段】この発明は、上記目的を
達成するために提案するものであり、応力測定対象物の
表面に光弾性ゲージを貼付し、該光弾性ゲージへ偏光板
の通過光を照射し、その反射光を偏光板を通して電子カ
メラで捉え、前記電子カメラのRGB信号を演算処理装
置に入力し、演算処理装置によって前記RGB信号の変
化量を光弾性ゲージのひずみ量に換算し、前記ひずみ量
から応力を求める応力の光学的測定方法、及び上記電子
カメラ等の撮影装置及び演算処理装置の動作を制御装置
によってプログラム制御し、自動的に応力測定を行う応
力の光学的測定方法を提供するものである。
The present invention is proposed in order to achieve the above object, and a photoelastic gauge is attached to the surface of an object to be stress-measured, and light passing through a polarizing plate is applied to the photoelastic gauge. The reflected light is captured by an electronic camera through a polarizing plate, the RGB signals of the electronic camera are input to an arithmetic processing device, and the amount of change in the RGB signal is converted into a strain amount of the photoelastic gauge by the arithmetic processing device. , An optical stress measuring method for obtaining stress from the strain amount, and a stress optical measuring method for automatically controlling the stress by automatically controlling the operation of the photographing device and the arithmetic processing device such as the electronic camera by a controller. Is provided.

【0005】[0005]

【作用】光弾性ゲージへ偏光板を通過した光を照射し、
その反射光を偏光板を通じて電子カメラで観察すれば、
光弾性ゲージのひずみ量によって光弾性ゲージの色相が
変化する。偏光板の回転角度によっても色相は変化し、
偏光回転角度の変位を知ることによって光弾性ゲージの
ひずみ量を測定できる。電子カメラの出力信号の色相も
光弾性ゲージの色相変化に伴って変化し、演算処理装置
は、RGB信号の色相座標から光弾性ゲージのひずみ量
を算出する演算手段によってひずみ量を求め、求められ
たひずみ量から光弾性ゲージが貼着された部位の応力が
測定される。
[Function] Irradiates the photoelastic gauge with light that has passed through the polarizing plate,
If you observe the reflected light with an electronic camera through a polarizing plate,
The hue of the photoelastic gauge changes depending on the strain amount of the photoelastic gauge. The hue changes depending on the rotation angle of the polarizing plate,
The strain amount of the photoelastic gauge can be measured by knowing the displacement of the polarization rotation angle. The hue of the output signal of the electronic camera also changes in accordance with the hue change of the photoelastic gauge. The stress at the portion where the photoelastic gauge is attached is measured from the strain amount.

【0006】請求項2記載の発明は、上述した作用に加
えて電子カメラや光源等の撮影装置と演算装置の動作は
制御装置によって制御され、設定したプログラムに従っ
て自動的に測定と演算処理が行われる。
According to a second aspect of the present invention, in addition to the above-described operation, the operations of the photographing device such as an electronic camera and a light source and the operation device are controlled by the control device, and the measurement and the operation processing are automatically performed according to the set program. Be seen.

【0007】[0007]

【実施例】以下、この発明の一実施例を図に従って説明
する。図1に於て1は静止画像撮影用の所謂フロッピー
カメラ若しくはビデオカメラ等の電子カメラであり、画
像信号をRGB信号として出力できるものである。電子
カメラ1はオートフォーカス機構を内蔵し、ズームレン
ズ2の先端に偏光板3と1/4波長板4が装着され、電動
機構5によってズーミングと偏光板3の回転とを行うこ
とができる。電子カメラ1の上部にはスポットライト等
の光源6を取付け、光源6の前面に偏光板7と1/4波長
板8を装着する。電子カメラ1はモータ駆動の電動パン
ヘッド9に装着され、垂直並びに水平方向へ首振り自在
である。電動パンヘッド9は制御装置10を内蔵し、後
述するコンピュータ11からの命令によってパン動作を
制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 1 denotes an electronic camera such as a so-called floppy camera or video camera for still image shooting, which can output an image signal as an RGB signal. The electronic camera 1 has a built-in autofocus mechanism, a polarizing plate 3 and a 1/4 wavelength plate 4 are attached to the tip of the zoom lens 2, and an electric mechanism 5 can perform zooming and rotation of the polarizing plate 3. A light source 6 such as a spotlight is attached to the upper part of the electronic camera 1, and a polarizing plate 7 and a 1/4 wavelength plate 8 are attached to the front surface of the light source 6. The electronic camera 1 is mounted on an electric pan head 9 driven by a motor, and can swing freely vertically and horizontally. The electric pan head 9 has a control device 10 built-in, and controls a pan operation according to a command from a computer 11 described later.

【0008】電子カメラ1が出力するRGB信号は、ビ
デオカメラ入力装置12のA/Dコンバータ13によっ
てディジタル信号に変換され、画像情報としてフレーム
メモリ14に書き込まれる。書き込まれた画像情報はモ
ニターCRT15の画面上に再現されるとともに、コン
ピュータ11により演算処理されて色相座標が求めら
れ、演算結果をCRT16にグラフィック表示或は数値
表示することができる。コンピュータ11への指示はキ
ーボート17並びにマウス18によって入力し、電動パ
ンヘツド9の位置制御、電子カメラ1のオン/オフ並び
にズーミング、偏光板3の回転、光源6のオン/オフ等
を全てコンピュータ11から行い、制御信号をRS−2
32Cインタフェース(図示せず)を介してケーブル1
9,20により電子カメラ1と電動パンヘッド9の夫々
の制御装置1a,10へ入力する。
The RGB signals output from the electronic camera 1 are converted into digital signals by the A / D converter 13 of the video camera input device 12 and written in the frame memory 14 as image information. The written image information is reproduced on the screen of the monitor CRT 15, and the computer 11 performs arithmetic processing to obtain hue coordinates, and the arithmetic result can be displayed graphically or numerically on the CRT 16. Instructions to the computer 11 are inputted by the keyboard 17 and the mouse 18, and the position control of the electric pan head 9, the turning on / off and zooming of the electronic camera 1, the rotation of the polarizing plate 3 and the turning on / off of the light source 6 are all performed from the computer 11. And control signal RS-2
Cable 1 via 32C interface (not shown)
Inputs are made to the respective control devices 1a and 10 of the electronic camera 1 and the electric pan head 9 by means of 9 and 20.

【0009】21,21…はトンネル覆工体等の構造物
の表面に貼付けた光弾性ゲージである。光弾性ゲージ2
1,21…は通常幅1cm、長さ5cm、厚さ5〜6m
mであり、長さ方向の両端部を接着剤で構造物(図示せ
ず)に貼着しておく。次に、構造物の応力ひずみ量の測
定手順を図2のフローチャートを参照して説明する。先
ず、測定の前段階として、予め対象構造物と同一の材料
に光弾性ゲージ21を貼付け、光源からの光を偏光板を
通過させて光弾性ゲージ21に投射する。そして、光弾
性ゲージ21の反射光を電子カメラ1で捉え、モニター
CRT15に表示する。光弾性ゲージ21は、応力が作
用していない状態では紫色を呈するが、測定点に貼付け
た時点で紫色を呈していないときは、キーボード17の
操作によって電子カメラ1の制御装置1aへ制御信号を
出力し、偏光板3を回転させて画面上の光弾性ゲージ2
1が紫色に見えるようにする。このときの偏光板3の回
動位置を基準角度としてコンピュータ11に記憶させ
る。その後に、対象物へ一定の応力を付加してひずみを
発生させると、画面上の光弾性ゲージ21の色が変化す
る。このときの光弾性ゲージ21の画像エリアのRGB
入力信号の色相ベクトル座標と応力ひずみ量とを記憶
し、応力を数段階替えてデータを収集する。そして、コ
ンピュータ11の演算によって応力並びにひずみ量と色
相座標との対応表を生成し、これをコンピュータ11の
記憶装置へ対応テーブルとして格納しておく(10
1)。
21 are photoelastic gauges attached to the surface of a structure such as a tunnel lining body. Photoelastic gauge 2
1,21 ... are usually 1 cm wide, 5 cm long, 5-6 m thick
m, and both ends in the length direction are attached to a structure (not shown) with an adhesive. Next, the procedure for measuring the amount of stress strain of a structure will be described with reference to the flowchart of FIG. First, as a pre-measurement step, the photoelastic gauge 21 is attached in advance to the same material as the target structure, and the light from the light source is passed through the polarizing plate and projected onto the photoelastic gauge 21. Then, the reflected light of the photoelastic gauge 21 is captured by the electronic camera 1 and displayed on the monitor CRT 15. The photoelastic gauge 21 exhibits a purple color when no stress is applied, but when it does not exhibit a purple color when it is attached to the measurement point, a control signal is sent to the control device 1a of the electronic camera 1 by operating the keyboard 17. Output and rotate the polarizing plate 3 to rotate the photoelastic gauge 2 on the screen.
Make 1 appear purple. The turning position of the polarizing plate 3 at this time is stored in the computer 11 as a reference angle. After that, when a certain stress is applied to the object to generate strain, the color of the photoelastic gauge 21 on the screen changes. RGB of the image area of the photoelastic gauge 21 at this time
The hue vector coordinates of the input signal and the stress strain amount are stored, and the stress is changed in several stages to collect data. Then, a correspondence table of stress and strain amounts and hue coordinates is generated by the calculation of the computer 11, and this is stored in the storage device of the computer 11 as a correspondence table (10
1).

【0010】また、電子カメラ1を測定場所に設置し、
キーボード17或はマウス15によって電動パンヘッド
9と電子カメラ1の電動機構5を操作して、図1に示す
光弾性ゲージ21,21…のうちの任意のものをモニタ
ーCRT15の画面に所定の拡大率で写し出す。画面に
写し出された光弾性ゲージ21の色が紫色でない場合
は、偏光板3を回転させて紫色の色相座標と一致させ
る。そして、このときの電動パンヘッド9、電動機構
5、偏光板3の夫々の制御量をコンピュータ11に記憶
させる。この作業を全ての光弾性ゲージ21,21…に
対して行う(102)。
In addition, the electronic camera 1 is installed at the measurement location,
By operating the electric pan head 9 and the electric mechanism 5 of the electronic camera 1 with the keyboard 17 or the mouse 15, any one of the photoelastic gauges 21, 21, ... Shown in FIG. 1 is enlarged to a predetermined size on the screen of the monitor CRT 15. Project at a rate. When the color of the photoelastic gauge 21 projected on the screen is not purple, the polarizing plate 3 is rotated to match the hue coordinate of purple. Then, the control amounts of the electric pan head 9, the electric mechanism 5, and the polarizing plate 3 at this time are stored in the computer 11. This operation is performed for all the photoelastic gauges 21, 21, ... (102).

【0011】そして、コンピュータ11へ各光弾性ゲー
ジ21,21…の計測順序と計測時刻のプログラムを入
力する(103)。その後に処理の実行を開始させれ
ば、コンピュータ11は所定の時刻に電子カメラ1と光
源6を起動させ、電動パンヘッド9を制御する。そし
て、プログラムによって指定された光弾性ゲージ21に
電子カメラ1の光軸を一致させて所定のズーム操作を行
い、撮影された画像信号をフレームメモリ14に記憶さ
せる。そして、記憶された画像信号中の所定の画像エリ
アの色相座標を演算し、記憶装置に書き込まれている対
応テーブルから色相座標に対応するひずみ量及び応力を
読出し、これを測定データとして記憶装置に書き込む
(104)。
Then, the program of the measuring order and the measuring time of each photoelastic gauge 21, 21, ... Is inputted to the computer 11 (103). When the execution of the process is started thereafter, the computer 11 activates the electronic camera 1 and the light source 6 at a predetermined time and controls the electric pan head 9. Then, the optical axis of the electronic camera 1 is made to coincide with the photoelastic gauge 21 designated by the program, and a predetermined zoom operation is performed to store the captured image signal in the frame memory 14. Then, the hue coordinate of a predetermined image area in the stored image signal is calculated, the strain amount and the stress corresponding to the hue coordinate are read from the correspondence table written in the storage device, and this is stored in the storage device as measurement data. Write (104).

【0012】前述した作業は計測プログラムに従って終
了まで順次遂行され、各測定点の色相座標、ひずみ及び
応力のデータが蓄積される。計測終了後若しくは計測中
にコンピュータに記憶されたデータをCRT16に表示
させたり、プリンタ装置からハードコピーとして取り出
すことができる(105)。また、遠隔のコンピュータ
室へデータをオンライン送信して、多数の現場のデータ
を集中的に処理及び管理することもできる(106)。
The above-described work is sequentially performed until the end according to the measurement program, and the data of the hue coordinate, strain and stress of each measurement point is accumulated. After the measurement is completed or during the measurement, the data stored in the computer can be displayed on the CRT 16 or can be taken out from the printer as a hard copy (105). It is also possible to send data online to a remote computer room to centrally process and manage data at multiple sites (106).

【0013】また、応力算出の方法としては、以下に述
べる方法でもよい。先ず、偏光板3の回転量と色相座標
の変化との対応テーブルをコンピュータ11に設定して
おく。そして、入力されたRGB信号の色相座標を求
め、対応テーブルによって基準である紫色の色相座標か
らの偏光板の回転量Nを求める。回転量Nから次式によ
ってひずみεと応力σが求められる。
The stress calculation method may be the following method. First, the correspondence table between the rotation amount of the polarizing plate 3 and the change of the hue coordinate is set in the computer 11. Then, the hue coordinate of the input RGB signal is obtained, and the rotation amount N of the polarizing plate from the purple hue coordinate which is the reference is obtained from the correspondence table. From the rotation amount N, the strain ε and the stress σ can be obtained by the following equations.

【0014】[0014]

【数1】 このように、自動的に多量の測定データを収集してデー
タ処理及び管理を行うことができるとともに、キーボー
ド操作によって随時任意に測定することができる。尚、
測定機器の構成や応力の算出方法等は本実施例に限定さ
れず、種々の変更が可能であり、この発明がそれらの改
変されたものに及ぶことは当然である。
[Equation 1] As described above, it is possible to automatically collect a large amount of measurement data, perform data processing and management, and perform arbitrary measurement at any time by operating the keyboard. still,
The configuration of the measuring device, the method of calculating the stress, and the like are not limited to the present embodiment, and various modifications can be made, and it goes without saying that the present invention extends to those modified.

【0015】[0015]

【発明の効果】この発明は、上記一実施例に於て詳述し
たように、構造物の応力並びにひずみを光学的に測定す
るので、対象構造物と計測装置との間が無線化され、配
線工事が不要となり、資材と労力が削減される。また、
測定作業を自動的に行うので危険区域の応力計測作業を
無人化でき、事故の虞れを解消できる。更に、長時間に
亘る計測作業の労力が著しく軽減されて多量のデータを
処理することができ、省力化に著しい効果を発揮する。
As described in detail in the above-mentioned one embodiment, the present invention optically measures the stress and strain of the structure, so that the structure between the target structure and the measuring device is made wireless. Wiring work is unnecessary, and materials and labor are reduced. Also,
Since the measurement work is automatically performed, the stress measurement work in the dangerous area can be unmanned and the risk of an accident can be eliminated. Further, the labor of measurement work for a long time can be remarkably reduced, a large amount of data can be processed, and a remarkable effect can be exerted on labor saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】応力測定機器の構成図。FIG. 1 is a block diagram of a stress measuring device.

【図2】応力測定のプロセスを示すフローチャート。FIG. 2 is a flowchart showing a stress measurement process.

【符号の説明】[Explanation of symbols]

1 電子カメラ 3,7 偏光板 4,8 1/4波長板 6 光源 11 コンピュータ 14 フレームメモリ 21 光弾性ゲージ 1 Electronic Camera 3,7 Polarizing Plate 4,8 1/4 Wave Plate 6 Light Source 11 Computer 14 Frame Memory 21 Photoelastic Gauge

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 応力測定対象物の表面に光弾性ゲージを
貼付し、該光弾性ゲージへ偏光板の通過光を照射し、そ
の反射光を偏光板を通して電子カメラで捉え、前記電子
カメラのRGB信号を演算処理装置に入力し、演算処理
装置によって前記RGB信号の変化量を光弾性ゲージの
ひずみ量に換算し、前記ひずみ量から応力を求める応力
の光学的測定方法。
1. A photoelastic gauge is attached to the surface of an object to be stress-measured, the photoelastic gauge is irradiated with light passing through a polarizing plate, and the reflected light is captured by an electronic camera through the polarizing plate. A method for optically measuring stress by inputting a signal to an arithmetic processing unit, converting the amount of change of the RGB signals into a strain amount of a photoelastic gauge by the arithmetic processing unit, and obtaining stress from the strain amount.
【請求項2】 上記電子カメラ等の撮影装置及び演算処
理装置の動作を制御装置によってプログラム制御し、自
動的に応力測定を行う請求項1記載の応力の光学的測定
方法。
2. The optical stress measuring method according to claim 1, wherein the operation of the photographing device such as the electronic camera and the arithmetic processing device is program-controlled by a control device to automatically perform stress measurement.
JP24152091A 1991-09-20 1991-09-20 Optical measuring method for stress Withdrawn JPH0579927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24152091A JPH0579927A (en) 1991-09-20 1991-09-20 Optical measuring method for stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24152091A JPH0579927A (en) 1991-09-20 1991-09-20 Optical measuring method for stress

Publications (1)

Publication Number Publication Date
JPH0579927A true JPH0579927A (en) 1993-03-30

Family

ID=17075569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24152091A Withdrawn JPH0579927A (en) 1991-09-20 1991-09-20 Optical measuring method for stress

Country Status (1)

Country Link
JP (1) JPH0579927A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047501A (en) * 2007-08-17 2009-03-05 Ricoh Co Ltd Optical strain measuring element, device, system, and method
JP2011101624A (en) * 2009-11-11 2011-05-26 Microbio Corp Anaerobic bacterium-culturing kit, anaerobic bacterium-inspecting device and method for inspecting anaerobic bacterium
JP2011163896A (en) * 2010-02-09 2011-08-25 Tokyo Institute Of Technology Optical strain gauge, optical strain measurement apparatus, and optical strain measurement method
WO2011152123A1 (en) * 2010-06-03 2011-12-08 ヤマハ発動機株式会社 Residual stress measurement device and residual stress measurement method
US9897496B2 (en) 2014-04-14 2018-02-20 Fujifilm Corporation Stress measuring method, stress measuring member, and stress measuring set
JP2021192056A (en) * 2016-12-22 2021-12-16 スリーエム イノベイティブ プロパティズ カンパニー Sheet and structure deformation evaluation article

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047501A (en) * 2007-08-17 2009-03-05 Ricoh Co Ltd Optical strain measuring element, device, system, and method
JP2011101624A (en) * 2009-11-11 2011-05-26 Microbio Corp Anaerobic bacterium-culturing kit, anaerobic bacterium-inspecting device and method for inspecting anaerobic bacterium
JP2011163896A (en) * 2010-02-09 2011-08-25 Tokyo Institute Of Technology Optical strain gauge, optical strain measurement apparatus, and optical strain measurement method
WO2011152123A1 (en) * 2010-06-03 2011-12-08 ヤマハ発動機株式会社 Residual stress measurement device and residual stress measurement method
JP2011252839A (en) * 2010-06-03 2011-12-15 Yamaha Motor Co Ltd Residual stress measurement device and residual stress measurement method
US9897496B2 (en) 2014-04-14 2018-02-20 Fujifilm Corporation Stress measuring method, stress measuring member, and stress measuring set
JP2021192056A (en) * 2016-12-22 2021-12-16 スリーエム イノベイティブ プロパティズ カンパニー Sheet and structure deformation evaluation article

Similar Documents

Publication Publication Date Title
JPH07311610A (en) Coordinate system setting method using visual sensor
JP2004506389A (en) Method and apparatus for externally calibrating a camera via a graphical user interface
JPH0579927A (en) Optical measuring method for stress
WO2001023938A1 (en) Microscope image observing system, method for controlling the same, and computer-readable recorded medium on which control program is recorded
JP2012061587A (en) Teaching system of robot
JPH05196432A (en) Measuring equipment for three-dimensional coordinates
JPH0882505A (en) Calibration method of camera parameter and measuring method of object position
JPH01291380A (en) Analyzing method for crack image
JPH09174468A (en) Robot teaching device
JPH0454628A (en) Image display device
JP3205183B2 (en) Teaching device
JP2003203216A (en) Image measuring device part program generating device and image forming device part program generating program
JPH03201105A (en) Visual correction positioning device
JP2937918B2 (en) Image measuring device
JPH11201738A (en) Display magnifying power changing method of work image and image measuring device
WO2021177564A1 (en) Ultrasonic imaging apparatus comprising integrated controller and method for operating same
JPH07117403B2 (en) Robot visual coordinate calibration method and system
JP2888368B2 (en) Position measuring device
JP3804529B2 (en) Subject distance display device
JPH05301195A (en) Camera position slippage detecting method in visual sensor
JP3853500B2 (en) Edge detection method and image measuring apparatus
JPH0750668Y2 (en) Adjustment and inspection device for pointer type meters
JPS6062778A (en) Method for designating specific point of original in picture input scanner
JPH02281380A (en) Position measuring and plotting device
JPS63253214A (en) Measuring method for shape of body to be measured

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203