JPH0579606U - Pilot operated pressure reducing valve - Google Patents
Pilot operated pressure reducing valveInfo
- Publication number
- JPH0579606U JPH0579606U JP1853792U JP1853792U JPH0579606U JP H0579606 U JPH0579606 U JP H0579606U JP 1853792 U JP1853792 U JP 1853792U JP 1853792 U JP1853792 U JP 1853792U JP H0579606 U JPH0579606 U JP H0579606U
- Authority
- JP
- Japan
- Prior art keywords
- main valve
- valve
- pressure
- inner peripheral
- peripheral surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Fluid Pressure (AREA)
Abstract
(57)【要約】
【目的】 パイロット作動式減圧弁において、1次側圧
力の変動があった場合でも、2次側圧力への影響を出来
るだけ少なくすることを目的とする。
【構成】 主弁内周面4cに摺動する下部蓋ガイド部3
aと主弁4との摺動隙間4dを、主弁座内周面2bに摺
動可能に嵌装された主弁4との摺動隙間2cより大きく
し、四フッ化エツレン樹脂などの耐熱合成樹脂製シール
材24で前記主弁内周面4c及びガイド部3a間を密封
すると共に、主弁4には、連通孔4bを設けて、主弁4
と下部蓋3によって隔離形成されるバランス室25に2
次側流体圧力を導入する構造。
(57) [Summary] [Purpose] The purpose of the pilot operated pressure reducing valve is to minimize the effect on the secondary pressure even if there is a fluctuation in the primary pressure. [Constitution] Lower lid guide portion 3 sliding on the inner peripheral surface 4c of the main valve
The sliding gap 4d between a and the main valve 4 is made larger than the sliding gap 2c between the main valve 4 slidably fitted to the inner peripheral surface 2b of the main valve seat, and heat resistance of tetrafluoroethylene resin etc. A sealing material 24 made of synthetic resin seals between the inner peripheral surface 4c of the main valve and the guide portion 3a, and the main valve 4 is provided with a communication hole 4b.
2 in the balance chamber 25, which is separated and formed by the lower lid 3 and
Structure that introduces the secondary fluid pressure.
Description
【0001】[0001]
本考案は、流体を所望の圧力に減圧保持するパイロット作動式減圧弁に関する ものである。 The present invention relates to a pilot operated pressure reducing valve for keeping a fluid at a desired pressure under reduced pressure.
【0002】[0002]
従来のパイロット作動式減圧弁について図4に基づき説明する。図において、 1は流入路1aと流出路1bを備えた弁箱、2は主弁座であって、該主弁座2の 側壁には流体通路を形成する連通用孔2aが穿設されており、流入路1aと流出 路1bの連通部分で前記弁箱1に螺着されている。3は弁箱1の底部に螺着され た下部蓋、4は前記主弁座2の内周面2bに摺動可能に嵌装された主弁であって 、該主弁4は、その下側に配設されたスプリング5によって常時上方へ移動すべ く付勢されることにより上端面4aが主弁座2に着座するよう位置決めされる習 性(閉弁習性)を有すると同時に、上記連通穴2aを閉鎖するようになっている 。6は主弁座2の上方において弁箱1に嵌装されたシリンダ、7は該シリンダ6 内を上下方向に沿って摺動自在に嵌装されたピストンであって、該ピストン7の 下端面から突出しているピストンロッド7aは、シリンダ6の底壁を進退自在に 貫通して主弁4の上端面4aに当接するようになっている。 A conventional pilot operated pressure reducing valve will be described with reference to FIG. In the figure, 1 is a valve box having an inflow passage 1a and an outflow passage 1b, 2 is a main valve seat, and a side wall of the main valve seat 2 is provided with a communication hole 2a for forming a fluid passage. And is screwed to the valve box 1 at the communicating portion between the inflow passage 1a and the outflow passage 1b. Reference numeral 3 is a lower lid screwed to the bottom of the valve box 1, and 4 is a main valve slidably fitted on the inner peripheral surface 2b of the main valve seat 2. The upper end surface 4a is positioned so that the upper end surface 4a is seated on the main valve seat 2 by always being biased to move upward by the spring 5 arranged on the side (valve closing habit), and at the same time, the above communication is performed. The hole 2a is closed. 6 is a cylinder fitted in the valve housing 1 above the main valve seat 2, 7 is a piston fitted in the cylinder 6 slidably in the vertical direction, and the lower end surface of the piston 7 A piston rod 7a protruding from the cylinder 6 penetrates the bottom wall of the cylinder 6 so as to move back and forth and contacts the upper end surface 4a of the main valve 4.
【0003】 また、8は弁箱1の上端面に図示しないボルト等によって固着されている上部 蓋であって、該上部蓋8の上部に前記主弁4の軸方向と直交する方向にねじ穴8 aとダイヤフラム室8bが形成されている。9は前記ねじ穴8aに螺着されてい て中心に貫通穴9aが形成されているパイロット弁座、10は貫通穴9aの一方 の開口を開閉するように作動する円錐状のパイロット弁、11はパイロット弁室 11aの蓋、12はパイロット弁10を弾圧してパイロット弁座9へ着座せしめ るスプリング、13はストレーナである。Reference numeral 8 denotes an upper lid fixed to the upper end surface of the valve box 1 by a bolt or the like (not shown). The upper lid 8 has a screw hole in a direction orthogonal to the axial direction of the main valve 4. 8a and a diaphragm chamber 8b are formed. Reference numeral 9 denotes a pilot valve seat which is screwed into the screw hole 8a and has a through hole 9a formed in the center thereof. 10 is a conical pilot valve which operates to open and close one opening of the through hole 9a. The lid of the pilot valve chamber 11a, 12 is a spring that pressurizes the pilot valve 10 to seat it on the pilot valve seat 9, and 13 is a strainer.
【0004】 さらに、14はダイヤフラム室8bの周縁部に固着せしめた調節スプリング1 5を保持するための保護筒、16は調節ねじ17に担持されたスプリング受、1 8は固定用のナット、19は上部蓋8と保護筒14とによって挟持・固定されて いてダイヤフラム受20を介して調節スプリング15の弾力により図において左 方移動(湾曲)習性が付与されているダイヤフラムである。Further, 14 is a protective cylinder for holding the adjusting spring 15 fixed to the peripheral portion of the diaphragm chamber 8 b, 16 is a spring receiver carried by an adjusting screw 17, 18 is a fixing nut, 19 Is a diaphragm which is sandwiched and fixed by the upper lid 8 and the protective cylinder 14 and is given a habit of moving to the left (curving) in the figure by the elasticity of the adjusting spring 15 via the diaphragm receiver 20.
【0005】 そして、21は上記流入路1aとパイロット弁室11aとを連通する1次側流 体通路、22はパイロット弁10によって流量が制御された1次側流体をピスト ン7の一端部に形成されたピストン室7aに導入せしめる制御用1次側流体通路 、23は上記流出路1bとダイヤフラム室8bとを連通する2次側流体圧力検出 用穴(以下、単に検出用穴という)である。Reference numeral 21 denotes a primary side fluid passage that connects the inflow passage 1 a and the pilot valve chamber 11 a, and 22 denotes a primary side fluid whose flow rate is controlled by the pilot valve 10 to one end of the piston 7. The control-use primary side fluid passage 23, which is introduced into the formed piston chamber 7a, is a secondary side fluid pressure detection hole (hereinafter, simply referred to as a detection hole) which communicates the outflow passage 1b with the diaphragm chamber 8b. ..
【0006】 このように構成されたパイロット作動式減圧弁においては、先ず、パイロット 弁10に対してパイロット弁室11a内の1次側流体(蒸気)の圧力P1 及びス プリング12の弾力が図中、右方向に作用して、パイロット弁10の摺動部10 aが常にダイヤフラム19に当接しているから、ダイヤフラム19の動きはこの 摺動部10aを介してパイロット弁10へ右方から伝達される。In the pilot-operated pressure reducing valve configured as described above, first, the pressure P1 of the primary fluid (steam) in the pilot valve chamber 11a and the elasticity of the spring 12 with respect to the pilot valve 10 are shown in the figure. , The sliding portion 10a of the pilot valve 10 is always in contact with the diaphragm 19 by acting in the right direction. Therefore, the movement of the diaphragm 19 is transmitted to the pilot valve 10 from the right side through the sliding portion 10a. It
【0007】 一方、調節スプリング15の弾力により左方移動(湾曲)習性が付与されてい るダイヤフラム19はダイヤフラム室8b内の2次側流体の圧力P2 によって右 方向の押圧力を受ける。そして、これら両押圧力の差によってダイヤフラム19 が湾曲作動し、パイロット弁10を開き、所望の開度に開弁保持して静止する。 なお、パイロット弁10の開度は、調節ねじ17を操作して調節スプリング15 の弾力を変化させることにより、適宜調節することができる。On the other hand, the diaphragm 19, which is given the habit of moving to the left (curving) by the elasticity of the adjusting spring 15, receives a pressing force in the right direction by the pressure P2 of the secondary fluid in the diaphragm chamber 8b. Then, the diaphragm 19 is bent due to the difference between these two pressing forces, the pilot valve 10 is opened, and the pilot valve 10 is opened and maintained at a desired opening degree and stands still. The opening of the pilot valve 10 can be appropriately adjusted by operating the adjusting screw 17 to change the elasticity of the adjusting spring 15.
【0008】 このようにして、パイロット弁10によって制御されてピストン室7aに流入 した制御用1次側流体はピストン7に対して下方向に押圧するが、この力はピス トン7の下面に作用する2次側流体の圧力P2 に抗して、主弁4の上端面4aに 作用する2次側流体の圧力P2 と共に主弁4の開弁力となる。一方、1次側流体 の圧力P1 とスプリング5の弾力とは主弁4に対して上方向に作用して閉弁力と なる。In this way, the primary fluid for control, which is controlled by the pilot valve 10 and flows into the piston chamber 7 a, presses the piston 7 downward, but this force acts on the lower surface of the piston 7. It acts as a valve opening force of the main valve 4 together with the pressure P2 of the secondary fluid acting on the upper end surface 4a of the main valve 4 against the pressure P2 of the secondary fluid. On the other hand, the pressure P1 of the primary fluid and the elastic force of the spring 5 act upward on the main valve 4 to become a valve closing force.
【0009】 主弁4は、この様な開弁力と閉弁力とが釣り合う位置に静止して、2次側流体 の圧力P2 を一定に維持するように作動するが、この主弁4の開度、即ち2次側 流体の圧力P2 の大小は、制御用1次側流体の圧力によって決定される。 また、この決定された2次側流体の圧力P2 は検出用穴23を介してダイヤフ ラム室8bへフィードバックされ、これによりパイロット弁10の開弁力が調節 スプリング15に設定された所定の大きさになるように制御用1次側流体の圧力 が制御される。The main valve 4 stops at such a position where the valve opening force and the valve closing force are balanced and operates so as to keep the pressure P2 of the secondary fluid constant. The opening degree, that is, the magnitude of the pressure P2 of the secondary fluid is determined by the pressure of the control primary fluid. Further, the determined pressure P2 of the secondary fluid is fed back to the diaphragm chamber 8b through the detection hole 23, whereby the valve opening force of the pilot valve 10 is set to a predetermined magnitude set in the adjusting spring 15. The pressure of the primary fluid for control is controlled so that
【0010】[0010]
蒸気用のパイロット作動式減圧弁は末端機器の蒸気使用量が変化しても、これ らに供給する流体圧力を一定に保つように機能し、設定した目標圧力に対して僅 かな制御偏差で自動的に圧力制御を行う。しかし、減圧弁に与えられる外乱とし ては、使用量変化だけでなく、減圧弁に供給される1次側蒸気圧力の変化もある 。例えば、ボイラで発生させた蒸気を減圧弁を含めて多数の機器が使用するが、 蒸気の総使用量によっては一時的にボイラから送られる蒸気圧力が大幅に変動す ることがある。この時にも、減圧弁は制御している2次側圧力が変動すると、弁 開度を変更させて制御を行うが、一般的には1次側圧力変化1kgf/cm2 に対して 2次側圧力が 0.1kgf/cm2 程度は変動してしまう。The pilot-operated pressure reducing valve for steam functions to keep the fluid pressure supplied to these even if the steam usage of the end equipment changes, and automatically with a slight control deviation with respect to the set target pressure. Pressure control. However, the disturbance applied to the pressure reducing valve is not only the change in the amount used, but also the change in the primary-side steam pressure supplied to the pressure reducing valve. For example, the steam generated in the boiler is used by many devices including the pressure reducing valve, but the steam pressure sent from the boiler may fluctuate significantly depending on the total amount of steam used. Even at this time, when the pressure on the secondary side that is being controlled by the pressure reducing valve fluctuates, control is performed by changing the valve opening. Generally, however, when the primary side pressure change is 1 kgf / cm 2 , the secondary side is changed. The pressure fluctuates about 0.1 kgf / cm 2 .
【0011】 機器の用途によって、精密な蒸気圧力が必要な場合があるが、この様な時、従 来は減圧弁を直列に2台使用して2段減圧とし、1段目の減圧弁で1次側圧力の 変動を吸収することにより、2段目の減圧弁の入口圧力変動を出来るだけ僅かな ものに抑え、精密な一定圧力を保って供給していた。Depending on the application of the equipment, precise vapor pressure may be required. In such a case, conventionally, two pressure reducing valves were used in series to reduce the pressure to two stages, and the first pressure reducing valve was used. By absorbing the fluctuation of the primary side pressure, the fluctuation of the inlet pressure of the second-stage pressure reducing valve was suppressed to as small as possible, and the pressure was maintained while maintaining a precise constant pressure.
【0012】 本考案はかかる実情に鑑み、1次側圧力の変動があった場合でも、2次側圧力 への影響を出来るだけ少なくすることを目的とする。In view of the above situation, it is an object of the present invention to minimize the influence on the secondary pressure even when the primary pressure fluctuates.
【0013】[0013]
パイロット作動式減圧弁においては、上述した如く、1次側流体圧力P1 とス プリング5の弾力とが主弁4に対して上方向に作用して閉弁力となる。即ち、1 次側流体圧力P1 は、主弁の下面に作用し、その上方向への作用力は、弁座2の 出口内周面2dの内径面積をAとすると、 作用力=A×(1次側圧力−2次側圧力) となる。この理論から、Aが小さければ小さい程、主弁4への作用力は小さいこ とが判る。即ち、Aを出来るだけ小さくすれば、1次側流体圧力が例え変動して も主弁4に作用する閉弁力はそれ程変化せず、制御している2次側圧力への影響 を抑えることができる。然し、単純にAを小さくすると、減圧弁の最大流量が制 約されると云う別の問題が惹起する。 In the pilot operated pressure reducing valve, as described above, the primary side fluid pressure P1 and the elastic force of the spring 5 act upward on the main valve 4 to form a valve closing force. That is, the primary side fluid pressure P1 acts on the lower surface of the main valve, and its acting force in the upward direction is given by the acting force = A × (, where A is the inner diameter area of the outlet inner peripheral surface 2d of the valve seat 2). (Primary pressure-secondary pressure). From this theory, it can be seen that the smaller A is, the smaller the acting force on the main valve 4 is. That is, if A is made as small as possible, the valve closing force acting on the main valve 4 does not change so much even if the primary side fluid pressure fluctuates, and the influence on the secondary side pressure being controlled is suppressed. You can However, simply reducing A causes another problem that the maximum flow rate of the pressure reducing valve is restricted.
【0014】 そこで、本考案は、主弁座内周面に主弁を摺動可能に嵌装し、該主弁内周面に も下部蓋のガイド部を摺動可能に嵌装すると共に、該摺動隙間を、前記主弁座内 周面と主弁の摺動隙間より大きくし、四フッ化エチレン樹脂などの耐熱合成樹脂 製シール材で前記主弁内側及びガイド部間を密封し、更に主弁に連通孔を設けて 主弁と下部蓋によって形成隔離されるバランス室に2次側圧力を導入する構造と したものである。Therefore, in the present invention, the main valve is slidably fitted to the inner peripheral surface of the main valve seat, and the guide portion of the lower lid is slidably fitted to the inner peripheral surface of the main valve. The sliding gap is made larger than the sliding gap between the inner peripheral surface of the main valve seat and the main valve, and a sealant made of a heat-resistant synthetic resin such as tetrafluoroethylene resin is used to seal the inside of the main valve and the guide portion. Further, the main valve is provided with a communication hole to introduce the secondary side pressure into the balance chamber formed and isolated by the main valve and the lower lid.
【0015】[0015]
本考案は上述のように構成されているので、この弁箱1に流入した1次側流体 が主弁4を閉弁方向に押上げる不均衡力は、主弁座内径と主弁内側のシール・摺 動径(この摺動径の面積をBとする)で構成される円輪部の断面積に発生する。 従って、1次側流体圧力の主弁4に対する上方向への作用力は、図2において、 作用力=(A−B)×(1次側圧力−2次側圧力) となり、主弁内周面4cのシール・摺動径(面積はB)を主弁座出口2d内径( 面積はA)に接近した寸法とすることにより、前記不平衡力を大幅に削減するこ とができ、1次側流体圧力の圧力変動に伴う主弁を閉弁方向に押上げる不均衡力 の変化が減少し、その結果、減圧弁が制御している2次側圧力の変化を最小限に 止めることが可能となる。 Since the present invention is configured as described above, the unbalanced force by which the primary fluid flowing into the valve box 1 pushes the main valve 4 in the valve closing direction is caused by the inner diameter of the main valve seat and the seal inside the main valve. -It occurs in the cross-sectional area of the circular ring part that is composed of the sliding diameter (the area of this sliding diameter is B). Therefore, the acting force of the primary side fluid pressure in the upward direction on the main valve 4 is as follows: acting force = (A−B) × (primary side pressure−secondary side pressure) By setting the seal / sliding diameter (area B) of the surface 4c close to the inner diameter of the main valve seat outlet 2d (area A), the unbalanced force can be greatly reduced and the primary Changes in the unbalanced force that pushes the main valve toward the valve closing direction due to pressure fluctuations in the side fluid pressure are reduced, and as a result, changes in the secondary pressure controlled by the pressure reducing valve can be minimized. Becomes
【0016】 また、主弁座内周面2bに主弁4を摺動可能に嵌装し、更に、この主弁内周面 四cには下部蓋ガイド部が摺動するが、後者の摺動隙間4dは主弁座内周面2b と主弁4との摺動隙間2cより大きいため、主弁4が上下作動する際には、主弁 4を減圧弁垂直中心軸と同芯に保持するための摺動・ガイド作用は専ら主弁座内 周面2bと主弁4との金属面同士の摺動によってのみ行われ、主弁内周面4cと 下部蓋ガイド部3a面との金属同士が接触することがない。従って、耐熱合成樹 脂製シール材24でこの主弁内周面2bと下部蓋ガイド3a間の摺動隙間を密封 しているが、この面が金属面同士の摺動によって損傷し密封性が劣化する心配は ない。The main valve 4 is slidably mounted on the inner peripheral surface 2b of the main valve seat, and the lower lid guide portion slides on the inner peripheral surface 4c of the main valve. Since the dynamic clearance 4d is larger than the sliding clearance 2c between the inner peripheral surface 2b of the main valve seat and the main valve 4, the main valve 4 is held concentric with the vertical center axis of the pressure reducing valve when the main valve 4 moves up and down. The sliding / guide action for moving is performed only by sliding the metal surfaces of the inner surface 2b of the main valve seat and the main valve 4, and the metal of the inner surface 4c of the main valve and the surface of the lower lid guide portion 3a. There is no contact between them. Therefore, the heat-resistant synthetic resin sealing material 24 seals the sliding gap between the inner peripheral surface 2b of the main valve and the lower lid guide 3a. There is no worry of deterioration.
【0017】[0017]
以下、本考案によるパイロット作動式減圧弁構造の1実施例について、図2に 基づき説明する。符号は従来例を示した図4における部材と同一の部材について は同一符号を付した。4は主弁座2の内周面2bに摺動可能に嵌装された主弁で あって、該主弁4の下側に配設されたスプリング5の弾圧によって常時上方へ移 動すべく付勢されており、この付勢により上端面4aが主弁座2に着座するよう 位置決めされる習性(閉弁習性)を有すると同時に、主弁座2の側壁に穿設され て流体通路を形成している連通用穴2aを閉鎖するようになっている。 An embodiment of the pilot operated pressure reducing valve structure according to the present invention will be described below with reference to FIG. The same reference numerals are given to the same members as those in FIG. 4 showing the conventional example. Reference numeral 4 denotes a main valve which is slidably fitted on the inner peripheral surface 2b of the main valve seat 2, and which is always moved upward by the elastic force of a spring 5 arranged below the main valve 4. The upper end surface 4a is biased so that the upper end surface 4a is positioned so as to be seated on the main valve seat 2 (valve closing behavior), and at the same time, the side wall of the main valve seat 2 is bored to form a fluid passage. The formed communication hole 2a is closed.
【0018】 この主弁4の下部内周面4cには四フッ化エチレン樹脂などの耐熱合成樹脂製 のシール材24を配設し、主弁4の上部には2次側に連通する連通孔4bが穿設 されている。3は弁箱1の底部に螺着された下部蓋である。この下部蓋3の底部 中央から立設された円筒状のガイド部3aが主弁4の内周面4cに摺動可能に嵌 装されており、前記シール材24によって1次側流体圧力から隔離されたバラン ス室25を形成している。また、下部蓋ガイド部3aと主弁4の内周面4cの摺 動隙間4dは、主弁座の内周面2bと主弁4との摺動隙間2cより大きくしてあ る。A seal member 24 made of a heat-resistant synthetic resin such as tetrafluoroethylene resin is provided on the lower inner peripheral surface 4c of the main valve 4, and a communication hole communicating with the secondary side is provided on the upper part of the main valve 4. 4b is drilled. Reference numeral 3 is a lower lid screwed to the bottom of the valve box 1. A cylindrical guide portion 3a, which is erected from the center of the bottom portion of the lower lid 3, is slidably fitted on the inner peripheral surface 4c of the main valve 4, and is isolated from the primary side fluid pressure by the sealing material 24. To form a balanced chamber 25. The sliding gap 4d between the lower lid guide portion 3a and the inner peripheral surface 4c of the main valve 4 is larger than the sliding gap 2c between the inner peripheral surface 2b of the main valve seat and the main valve 4.
【0019】 図3は、本考案によるパイロット作動式減圧弁と、従来式のパイロット作動式 減圧弁と用い比較実験した結果を示したもので、1次側圧力3kgf/cm2 の時、2 次側圧力を2kgf/cm2 に設定した場合の1次側蒸気圧力の変化に対する減圧弁の 2次側圧力変動特性を示す。1次側圧力が3kgf/cm2 から10kgf/cm2 に7kgf/ cm2 上昇した時に、従来減圧弁では0.7kgf/cm2 変動して1.3kgf/cm2 にな ったが、本考案による減圧弁では0.1kgf/cm2 以下の僅かな圧力変動しか生ぜ ず1.9kgf/cm2 以上を維持できた。FIG. 3 shows the results of a comparative experiment using the pilot operated pressure reducing valve according to the present invention and a conventional pilot operated pressure reducing valve. When the primary pressure is 3 kgf / cm 2 , the secondary pressure is The following shows the secondary side pressure fluctuation characteristics of the pressure reducing valve with respect to changes in the primary side steam pressure when the side pressure is set to 2 kgf / cm 2 . When the primary pressure is 7 kgf / cm 2 increased to 10 kgf / cm 2 from 3 kgf / cm 2, in the conventional vacuum valve has been Tsu name to 1.3kgf / cm 2 0.7kgf / cm 2 fluctuates, the present invention The pressure reducing valve according to No. 2 produced only a slight pressure fluctuation of 0.1 kgf / cm 2 or less and could maintain 1.9 kgf / cm 2 or more.
【0020】[0020]
本考案によるパイロット作動式減圧弁は、上記のように構成されているので、 弁箱1に流入した1次側流体は主弁4の内周面4cのシール材24で遮断され主 弁4の下方に設けられたバランス室25には連通孔4bを通して2次側流体圧力 が導入される。これにより、1次側流体圧力が主弁4を閉弁方向に押上げる不平 衡力は、弁座内径(面積A)と主弁内周のシール・摺動径(面積B)で構成され る円輪部面積に発生するが、主弁4内側のシール・摺動径を、弁座出口内径に接 近した寸法とすることにより、前記不平衡力を大幅に削減することができる。従 って、1次側流体圧力の変動に伴う主弁4を閉弁方向に押上げる不平衡力の変化 は減少し、減圧弁が制御している2次側流体圧力への変動影響を最小限に止める ことができる。 Since the pilot operated pressure reducing valve according to the present invention is configured as described above, the primary fluid flowing into the valve box 1 is blocked by the sealing material 24 on the inner peripheral surface 4c of the main valve 4, The secondary side fluid pressure is introduced into the balance chamber 25 provided below through the communication hole 4b. As a result, the unbalanced force of the primary side fluid pressure pushing the main valve 4 toward the valve closing direction consists of the inner diameter of the valve seat (area A) and the seal / sliding diameter of the inner circumference of the main valve (area B). Although it occurs in the area of the circular ring portion, the imbalance force can be significantly reduced by making the seal / sliding diameter inside the main valve 4 close to the inner diameter of the valve seat outlet. Therefore, the change in the unbalanced force that pushes up the main valve 4 in the valve closing direction due to the fluctuation of the primary fluid pressure is reduced, and the fluctuation effect on the secondary fluid pressure controlled by the pressure reducing valve is minimized. It can be stopped for as long as possible.
【0021】 上述のように本考案のパイロット作動式減圧弁によれば、減圧弁に供給される 1次側蒸気圧力の変化が大きくても精密な一定圧力を供給することが可能となり 、蒸気使用量の変化及び1次側蒸気圧力の変化に対しても設定した圧力に対して 僅かな制御偏差で自動的に圧力制御を行う理想的な蒸気用のパイロット作動式減 圧弁を製作することができる。As described above, according to the pilot operated pressure reducing valve of the present invention, it is possible to supply a precise constant pressure even if there is a large change in the primary side steam pressure supplied to the pressure reducing valve. It is possible to manufacture an ideal pilot operated decompression valve for steam that automatically controls the pressure with a slight control deviation against the set pressure even when the amount changes and the primary side steam pressure changes. ..
【0022】 また、主弁のガイド・摺動面とシール・摺動面を分離し、シール・摺動面が金 属接触しないからシールの密閉性を損なうことがなく長期間の使用に耐えること ができる。更に、設備費用が高価で、設置スペースが大きい二段減圧方式は不要 となる。In addition, the guide / sliding surface of the main valve is separated from the seal / sliding surface, and since the seal / sliding surface does not come into metal contact, the sealing performance of the seal is not impaired and it can withstand long-term use. You can In addition, the equipment cost is high and the two-stage depressurization method that requires a large installation space is not required.
【図1】本考案によるパイロット作動式減圧弁の1実施
例を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing an embodiment of a pilot operated pressure reducing valve according to the present invention.
【図2】主弁部構成を示す要部拡大縦断面図である。FIG. 2 is an enlarged vertical cross-sectional view of a main part showing the configuration of a main valve part.
【図3】1次側流体圧力の変化に対する減圧弁の2次側
流体圧力の変動を示す特性図である。FIG. 3 is a characteristic diagram showing fluctuations in the secondary side fluid pressure of the pressure reducing valve with respect to changes in the primary side fluid pressure.
【図4】従来のパイロット作動式減圧弁の縦断面図であ
る。FIG. 4 is a vertical cross-sectional view of a conventional pilot operated pressure reducing valve.
1 弁箱 2 主弁座 2a 導通孔 2b 内周面 2c 摺動隙間 2d 出口内周面 3 下部蓋 3a ガイド部 4 主弁 4a 上端面 4b 連通孔 4c 内周面 4d 摺動隙間 5 スプリング 6 シリンダ 7 ピストン 8 上部蓋 9 パイロット弁座 9a 貫通穴 10 パイロット弁 11 蓋 12 スプリング 13 ストレーナ 14 保護筒 15 調節スプリング 19 ダイヤフラム 20 ダイヤフラム受 21 1次側流体通路 22 制御用1次側流体通路 23 2次側流体圧力検出用穴 24 シール材 25 バランス室 P1 1次側流体圧力 P2 2次側流体圧力 1 valve box 2 main valve seat 2a conduction hole 2b inner peripheral surface 2c sliding gap 2d outlet inner peripheral surface 3 lower lid 3a guide part 4 main valve 4a upper end surface 4b communication hole 4c inner peripheral surface 4d sliding gap 5 spring 6 cylinder 7 Piston 8 Upper lid 9 Pilot valve seat 9a Through hole 10 Pilot valve 11 Lid 12 Spring 13 Strainer 14 Protective cylinder 15 Adjusting spring 19 Diaphragm 20 Diaphragm receiver 21 Primary fluid passage 22 Control primary fluid passage 23 Secondary side Fluid pressure detection hole 24 Seal material 25 Balance chamber P1 Primary side fluid pressure P2 Secondary side fluid pressure
Claims (1)
成する孔を有する主弁座を備え、パイロット弁によって
制御された1次側流体圧力により主弁の開閉を制御し得
るピストンを備えた蒸気用パイロット作動式減圧弁にお
いて、主弁座内周面に主弁を摺動可能に嵌装し、該主弁
内周面にも下部蓋のガイド部を摺動可能に嵌装すると共
に、該摺動隙間を、前記主弁座内周面と主弁の摺動隙間
より大きくし、四フッ化エチレン樹脂などの耐熱合成樹
脂製シール材で前記主弁内側及びガイド部間を密封し、
更に主弁に連通孔を設けて主弁と下部蓋によって形成隔
離されるバランス室に2次側圧力を導入する構造とした
ことを特徴とするパイロット作動式減圧弁。1. A piston having a main valve seat having a hole forming a fluid passage for communication with the main valve and a side wall thereof, the opening / closing of the main valve being controlled by a primary side fluid pressure controlled by a pilot valve. In the provided pilot operated pressure reducing valve for steam, the main valve is slidably fitted to the inner peripheral surface of the main valve seat, and the guide portion of the lower lid is also slidably fitted to the inner peripheral surface of the main valve. At the same time, the sliding gap is made larger than the sliding gap between the inner peripheral surface of the main valve seat and the main valve, and the inside of the main valve and the guide portion are sealed with a heat-resistant synthetic resin sealing material such as tetrafluoroethylene resin. Then
Further, the pilot operated pressure reducing valve is characterized in that a communication hole is provided in the main valve to introduce a secondary side pressure into a balance chamber formed and isolated by the main valve and a lower lid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1853792U JPH0579606U (en) | 1992-03-31 | 1992-03-31 | Pilot operated pressure reducing valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1853792U JPH0579606U (en) | 1992-03-31 | 1992-03-31 | Pilot operated pressure reducing valve |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0579606U true JPH0579606U (en) | 1993-10-29 |
Family
ID=11974381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1853792U Pending JPH0579606U (en) | 1992-03-31 | 1992-03-31 | Pilot operated pressure reducing valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0579606U (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4527184Y1 (en) * | 1966-08-16 | 1970-10-21 | ||
JPH02123406A (en) * | 1988-11-02 | 1990-05-10 | Fushiman Kk | Pressure control valve |
-
1992
- 1992-03-31 JP JP1853792U patent/JPH0579606U/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4527184Y1 (en) * | 1966-08-16 | 1970-10-21 | ||
JPH02123406A (en) * | 1988-11-02 | 1990-05-10 | Fushiman Kk | Pressure control valve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9218006B2 (en) | Thermostatic mixing valve | |
US3211174A (en) | Pressure relief or blowdown valve | |
EP2166423B1 (en) | Balanced fluid valve | |
US3631891A (en) | Silent valve | |
US9200716B2 (en) | Self aligning valve plug | |
US4565209A (en) | Pressure regulating valve with feedback control | |
US3293992A (en) | Fluid actuator | |
US9279516B2 (en) | Fluid regulator with balancing system | |
US4274433A (en) | Packed plug for a fluid valve | |
CA2885747C (en) | Self-aligning valve plug | |
US7806136B2 (en) | Wafer-type direct-acting valve | |
US4151979A (en) | Diaphragm valve having a Belleville-spring assembly | |
EP3532745B1 (en) | Spring seat vibration damper apparatus for use with pressure regulators | |
JPH0579606U (en) | Pilot operated pressure reducing valve | |
JPH07111125B2 (en) | Steam control valve | |
NL8503446A (en) | STEERING VALVE. | |
US20040168724A1 (en) | Gas pressure reduction valve | |
KR100826044B1 (en) | Liquid control valve | |
US3032056A (en) | Regulating valve | |
US3351087A (en) | Device for controlling the rate of flow of fluids | |
JPH03388A (en) | Valve operated by medium handled thereby | |
GB2060139A (en) | Control Valve | |
JPH04405Y2 (en) | ||
JP2020056430A (en) | Diaphragm valve and flow rate control device | |
US2679259A (en) | Differential fluid pressure responsive bellows type valve |