JPH0579215B2 - - Google Patents

Info

Publication number
JPH0579215B2
JPH0579215B2 JP63252658A JP25265888A JPH0579215B2 JP H0579215 B2 JPH0579215 B2 JP H0579215B2 JP 63252658 A JP63252658 A JP 63252658A JP 25265888 A JP25265888 A JP 25265888A JP H0579215 B2 JPH0579215 B2 JP H0579215B2
Authority
JP
Japan
Prior art keywords
base material
impregnated
laminate
resin liquid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63252658A
Other languages
Japanese (ja)
Other versions
JPH0299327A (en
Inventor
Atsuhiko Matsuda
Takeshi Onoda
Toyoji Matsunaga
Satoshi Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63252658A priority Critical patent/JPH0299327A/en
Priority to EP19890111478 priority patent/EP0347936A3/en
Priority to KR1019890008758A priority patent/KR910000355A/en
Publication of JPH0299327A publication Critical patent/JPH0299327A/en
Publication of JPH0579215B2 publication Critical patent/JPH0579215B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/48Endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1027Pressing using at least one press band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/48Endless belts
    • B29C2043/483Endless belts cooperating with a second endless belt, i.e. double band presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3425Printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a laminated sheet containing no air bubble and high in the content of a base material by a method wherein a base material is partially impregnated with a resin solution so as to leave both side end parts thereof and the impregnated base material is heated under pressure while the penetration of the partially impregnated resin solution throughout the base material is achieved using a double belt press having substantially equal pressure over the whole region to be pressed. CONSTITUTION:A resin solution is partially infiltrated in each of a plurality of base materials at the central part thereof almost uniformly in the width direction thereof without fully filling the gaps of each base material 1 while both side parts each of which is 1-5% with respect to total area of the base material in the width direction thereof are left not to be impregnated. A plurality of the long base materials impregnated with the curable resin solutions are superposed mutually to be formed into a laminate. This laminate is heated under pressure by a double belt press 11 having substantially equal pressure over the entire region to be pressed and the impregnated resin heated under pressure fills the voids of the base materials as wide as possible to form a laminated sheet.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、特に各種電気絶縁用、プリント基板
用等に好適な積層板を連続的に製造する方法に関
する。 〔従来の技術〕 クラフト紙などの長尺の基材に空〓を残すこと
なく熱硬化性樹脂液を充分含浸し、この含浸基材
を複数枚重ね合せ、加圧し、または加圧すること
なく加熱して樹脂液を硬化させて連続的に積層板
を製造することは従来より行われている。 しかし、これらの方法のうち、無加圧下での硬
化は基材間に熱硬化性樹脂層が形成されるほか、
得られる積層板中の基材の含量が相対的に低いも
のとなり、強度、剛性等の機械的特性に不足を来
す傾向にある。 このような基材含量の不足を解決するための方
策として前記のごとく空〓を残すことなく充分含
浸した含浸基材を複数枚重ね合せ、ダブルベルト
プレス等を用いて加圧硬化させる方法によれば、
基材含量を高め樹脂含量を減らすことが可能とな
るが、加圧時に含浸樹脂の大部分が基材から排出
されて周りの機械を汚し易い他、この排出量が膨
大であることから排出樹脂の回収が必要であるに
もかかわらずその作業が非常に困難である不都合
がある。 〔発明が解決しようとする課題〕 よつて、本発明にあつては、長尺の基材に熱硬
化性樹脂液を含浸し、この含浸基材の複数枚を重
ね合せてエンドレスベルトにより構成されるダブ
ルベルトプレスにより加熱加圧して、基材含量の
大きな積層板を得るに際し、加圧時に含浸樹脂液
の機器加圧面への排出がなく、かつ実質的に残存
気泡がなく、しかも基材含量の高い積層板を製造
する方法を提供することを目的とするものであ
る。 〔課題を解決するための手段〕 本発明では、長尺の基材に、本質的に乾燥工程
を必要とせず、かつ硬化反応過程で気体や液体等
の反応副生成物を実質的に発生しない熱硬化性樹
脂液を含浸させる含浸工程と、含浸された基材の
複数枚を重ね合わせて加熱加圧して樹脂液を硬化
させて一体化する加熱加圧工程を有する積層板の
連続製造方法において、前記含浸工程において
は、複数枚の基材の各々についてその基材の巾方
向の、全面積に対し片側各1%から5%の両側部
分を未含浸とし、中央部分において各基材の空〓
を全て満たすことなくほぼ均一に前記樹脂液を部
分含浸し、前記加熱加圧工程においては、加圧帯
全域にわたり実質的に均等な圧力を有する、エン
ドレスベルトにより構成されるダブルベルトプレ
スを用いて、前記部分的含浸の樹脂液の基材全体
への浸透を計りつつ、加熱加圧することにより、
上記課題を解決するようにした。 以下、本発明を詳細に説明する。 本発明でいう長尺の基材は、例えば長尺のガラ
ス繊維布、ガラス不織布等のガラス繊維系のも
の、クラフト紙、水酸化アルミニウム混抄紙、リ
ンター紙等のセルロース系繊維を主体とした紙、
石綿布等の無機質繊維系のシート状または帯状物
を指す。シート状基材として紙を用いる場合、含
浸性や品質上の観点から、風乾時の密度(かさ比
重)が0.3〜0.7g/c.c.であるようなセルロース繊
維を主体とした紙例えばクラフト紙が好ましい。 これら基材は、熱硬化性樹脂液で含浸させる前
にあらかじめメチロールメラミン、メチロールフ
エノール、メチロールグアナミン、N−メチロー
ル化合物等の処理剤を用い含浸乾燥処理を施すこ
とにより耐水性が向上しまた、吸湿性が少なくな
ることにより電気特性の向上が図れるので好まし
い。ここでの処理剤の付着量は基材(100重量部)
に対し通常5〜35重量部である。 また、本発明にいう本質的に乾燥工程を必要と
せず、かつ硬化反応過程で気体や液体等の反応副
生物を実質的に発生しない熱硬化性樹脂液とは、
従来公知の不飽和ポリエステル系樹脂、ジアリル
フタレート系樹脂、ビニルエステル系樹脂、エポ
キシアクリレート系樹脂の他、以下に説明する側
鎖二重結合型樹脂等をいい、これらは分子中に不
飽和基を有し、この不飽和基間においてまたは架
橋用ビニルモノマーを介して架橋される特徴を有
する樹脂であり、更にエポキシ樹脂も含まれる。 これら熱硬化性樹脂は基材に含浸時には粘性が
低い液状であり、基材に含浸後硬化させると基材
との結合性もよい特徴を有し、好適である。上記
側鎖二重結合型樹脂は架橋用ビニルモノマーと併
用することにより特に含浸性に秀れている。 上記側鎖二重結合型樹脂とは主鎖と側鎖とから
構成される重合体であつて、主鎖は官能基を有す
るビニルモノマー単位を含む幹ポリマーであり、
側鎖は該主鎖の官能基を介して構成されてなるラ
ジカル反応可能な炭素−炭素二重結合を有する枝
である樹脂をいい、側鎖二重結合型樹脂の主鎖を
構成するビニルモノマー単体とは官能基を有する
ビニルモノマー単位を必須単位とし、これに必要
に応じ官能基をもたないビニルモノマー単位を含
ませたものであり、これらが重合して主鎖が構成
される。上記必須単位を構成するモノマーとして
はアクリル酸、メタクリル酸、無水マレイン酸、
マレイン酸モノエステル等の官能基としてカルボ
キシル基を有するビニル単量体、グリシジルメタ
クリレート、グリシジルアクリレート等の官能基
としてグリシジル基を有するビニル単量体とその
他アリルアルコール、2−ヒドロキシエチルメタ
クリレート、2−ヒドロキシエチルアクリレー
ト、2−ヒドロキシプロピルアクリレート、N−
メチロールアクリルアミド等の官能基としてヒド
ロキシル基を有するビニル単量体等が代表的であ
り、特にアクリル酸およびメタクリル酸が最も好
適である。 またここで言うところの官能基を有するビニル
モノマー単位とは主鎖を重合により形成する場合
に活性な官能基として存在させる場合のほか、後
述の側鎖を予め該モノマーの官能基と反応させて
おいて重合させて主鎖を形成する場合の区別なく
側鎖を主鎖に形成せしめる役目をした官能基があ
る形のビニルモノマー単位を指す。 官能基を有しないビニルモノマーとしては、ス
チレン、α−メチルスチレン、クロロスチレン、
ビニルトルエン、塩化ビニル、塩化ビニリデン、
臭化ビニル、アクリロニトリル、エチレン、プロ
ピレン、ブタジエン、アクリル酸エステル、メタ
クリル酸エステル、酢酸ビニル、プロピオン酸ビ
ニル、マレイン酸ジエステル、エチルビニルベン
ゼン等が挙げられる。これらビニルモノマー単位
から構成される主鎖の重量平均分子量は5000ない
し400000であり、好適には10000ないし200000で
ある。この値は、側鎖の種類に対応させて適宜選
択される。この分子量はプリント基板用の積層板
あるいは電気絶縁用積層板としての物性が含浸性
に影響し、5000未満では硬化後の積層板の機械的
物性が不十分となり、逆に400000を越えると基材
への樹脂含浸性が劣り、いずれも好ましくない。
また主鎖中の官能基を有するモノマー単位の量は
側鎖の密度に関係し、側鎖間の硬化反応性に影響
するので適宜の比率が選ばれるが、主鎖1000g中
の側鎖密度は0.1〜2モルが好ましく、より好適
には0.4〜1.5モルである。この側鎖二重結合型樹
脂にいう側鎖とは、末端または中間に>C=C<
なる二重結合を有するもので、前期主鎖にその官
能基を介して技を構成しているものを指すが、側
鎖間に架橋ビニルモノマーによりラジカル反応に
より架橋を形成しうるものであれば適用しうる。 この側鎖二重結合型樹脂において上記主鎖を構
成する重合体に対して側鎖末端に二重結合を有す
る側鎖を導入する方法としては多様な方法を採用
しうる。幾つかの例を挙げれば次のようである。 (ア) 主鎖の官能基のカルボキシル基に対して、ビ
スフエノールのジグリシジルエーテル型エポキ
シ基のようなジエポキシ基を有する化合物の一
方のエポキシ基を反応させ、残るエポキシ基と
アクリル酸もしくはメタクリル酸を反応させ
る。 (イ) 主鎖の官能基のカルボキシル基と、グリシジ
ルアクリレートもしくはグリシジルメタクリレ
ートとをエステル反応させる。 (ウ) 主鎖の官能基のエポキシ基と、メタクリル酸
もしくはアクリル酸とをエステル反応させる。 (エ) ジイソシアネート化合物にヒドロキシエチル
(メタ)アクリレートを反応させ、モノイソシ
アネートを主成分としジイソシアネート化合物
をほとんど含まない反応物を作つておき、この
反応物に含まれるイソシアネートを主鎖ポリマ
ーの水酸基を反応させる。 例示した方法では主鎖の共重合を先に行つた
が、当然ながら予め側鎖を構成する反応を先に行
い、かかる単量体を最後に単独または共重合させ
ることにより側鎖末端にアクリロイル基もしくは
メタアクリロイル基を含む側鎖二重結合型樹脂を
製造してもよい。 また架橋用ビニルモノマーには、スチレン、ビ
ニルトルエン、クロロスチレン、アクリル酸メチ
ル、アクリル酸エチル、アクリル酸ブチル、アク
リル酸−2−エチルヘキシル、メタクリル酸メチ
ル、メタクリル酸エチル、メタクリル酸ブチル、
メタクリル酸ラウリル、メタクリル酸ベンジル、
マレイン酸ジブチル、マレイン酸ジオクチル、酢
酸ビニル、プロピオン酸ビニル、ジビニルベンゼ
ン等が包含される。これらの単量体は2種以上を
混合して用いてもよい。 なお基材への含浸に用いられる上記熱硬化性樹
脂液には必要によりハロゲン含有の難燃性付与成
分並びにリン酸エステル、三酸化アンチモンや水
酸化アルミニウム等の難燃化補助剤を加えて用い
ても良い。 またいずれの熱硬化性樹脂液を用いる場合に
も、その粘度は製造する積層板の使用目的や加圧
成形する際の圧力等に応じ適宜選択することがで
きるが、通常は25℃において0.05〜500ポワズ程
度が好適であり、500ポワズを超えると基材の含
浸性が悪く、得られる積層板中に気泡が残り易
い。また、0.05ポワズ未満であると含浸性は良い
が外部空気の侵入の影響を受け易い問題がある。 ついで、このような熱硬化性樹脂を用いて、前
記長尺の基材に対して部分的含浸が行われる。 すなわち、前記部分的含浸が、複数枚の基材の
各々についてその基材の巾方向の全面積に対し片
側各1%から5%の両側部分を未含浸とし、中央
部分において各基材の空〓の全て満たすことなく
ほぼ均一に前記樹脂液を部分含浸するものであ
る。基材としてクラフト紙を例示した場合、クラ
フト紙の空〓等は通常60〜70体積%(風乾時)で
あるが、この空〓率が例えば30〜45体積%程度
と、基材含浸部分のどの位置においてもなるよう
に基材の巾方向の中央部分にのみ含浸するもので
ある。未含浸部分が巾方向の全面積に対し片側1
%以下であると排出樹脂液が未含浸部基材に吸収
しきれず基材外部へまで排出され機器を汚染す
る。一方、5%以上は排出樹脂液の吸収に必要で
あるばかりでなく、基材の損失が大となつたり、
エンドレスベルトの巾が増大して装置費の上昇を
招き好ましくない。 これらの長尺基材への硬化樹脂液の含浸は、部
分塗布法、部分浸漬法等の公知の方法を適宜選択
して行われる。例えば、第1図および第2図に示
すように、複数の基材1…を送り出し、これに部
分塗布用ノズル2…を用いて、基材1の中央部分
のみに上述のように樹脂液を塗布して、基材1…
への部分的含浸を行い、第2図に示すように各各
の基材1において、中央部分の樹脂含浸部3と両
側部分の樹脂非含浸部4,4とを形成して含浸基
材5とする。 また、硬化性樹脂液の含浸量は、次工程のダブ
ルベルトプレスでの加圧時の圧力に関係し、その
圧力で基材外へ排出される過剰流動が発生せずか
つ得られる積層板に気泡が実質的に存在しないよ
うに調整され、ダブルベルトプレスでの加圧時に
基材積層物から両端未含浸部へ排出される樹脂液
量が製品積層板中の硬化樹脂量の3%以下、好ま
しくは1%以下となるようにすることが望まし
い。加圧時の圧力に対して適正量以下の含浸量で
あると得られる積層板中に気泡が残存し全体的な
白化現象を起こす。 このようにして硬化性樹脂液が含浸された長尺
の基材は、その複数枚が重ね合され、積層物とさ
れたのち、加圧帯全域にわたり実質的に均等な圧
力を有するダブルベルトプレスによつて加熱加圧
され含浸樹脂は基材の空〓を可及的に広く埋めて
積層板とされる。 本発明にいう加圧帯全域にわたり実質的に均等
な圧力を有するエンドレスベルトにより構成され
るダブルベルトプレスとは、例えば厚さ1mm程度
のステンレススチール製のエンドレスベルト状の
ものを上下に設置し、上下のベルト間に樹脂液含
浸基材をはさみ加熱加圧可能とするものであり、
加圧帯の圧力が実質的に均等となるような構造を
有するものである。具体的な例示をなすと、 (1) 上下のベルトをはさみ込みベルトに圧力を付
与するためのロール対を複数列配置した上、こ
のロール径が50mm以下でかつロールピツチとロ
ール径の比が1.2以下となるようにして相隣る
ロール間の圧力降下を小さくする方式のもの
で、ロールの位置は固定でもよく、あるいはエ
ンドレスベルトの上下に設けた加圧板と該エン
ドレスベルトとの間に配置され、該加圧板周囲
を公転しても良い。ロールの径が大きくなり、
ロール間隔があきすぎると基材にかかる圧力に
大きな波を生じ好ましくない。 (2) 上下のエンドレスベルトをはさみ込み、ベル
トに圧力を付与するための加圧板を配置した
上、潤滑を目的として加圧板とエンドレスベル
トの間に圧力媒体を圧入循環させる方式のも
の。 (3) 上下のエンドレスベルトをはさみ込んで圧力
媒体収納用の容器をもうけ、この容器の開口部
がエンドレスベルトと接し、圧力媒体が直接エ
ンドレスベルトを押圧する方式のものが挙げら
れ、圧力媒体収納式が加圧帯全域にわたつての
圧力差が小さく、特に好適である。 第1図に示すものは、この圧力媒体収納方式の
ダブルベルトプレスの例を示すものである。この
ダブルベルトプレス11はドラム12,12a
と、エンドレスベルト13,13と、加圧室14
と、高温の流体からなる圧力媒体15とから概略
構成され、圧力媒体供給装置16は、ポンプ17
とヒータ18とを配管パイプ19で接続してなる
ものである。ドラム12,12および12a,1
2aは含浸基材5…の進行方向に沿い、かつ互い
に逆方向に回転する上下一対のドラムからなり、
含浸基材5の片側に前後して並列された同方向に
回転するドラム12,12a間にはエンドレスベ
ルト13,13がそれぞれ緊張して掛けられてい
る。そしてこのエンドレスベルト13,13の背
後には、含浸基材5…に含浸された樹脂の硬化と
含浸基材5…の一体化に必要な熱と圧力をくわえ
るための圧力媒体15が充填される加圧室14が
設けられている。この加圧室14は任意形状の容
器であつて、その一構成面が上記エンドレスベル
ト13により構成されているもので、この加圧室
14内にはエンドレスベルト13より含浸状基材
5…に熱と圧力を加えるための圧力媒体15が圧
入されている。さらに加圧室14には圧力媒体1
5を圧入供給するポンプ17および圧力媒体15
を加熱する電気ヒータ等のヒータ18が配管パイ
プ19により配管されることにより構成された圧
力媒体供給装置16が配設されている。なおヒー
タ18はこの加圧室14に組み込まれていても良
い。圧力媒体15はこの圧力媒体供給装置16と
加圧室14との間をポンプ17により循環してい
て、加圧室14の外部より圧力媒体15の補給や
加圧および加熱が行えるようになつている。加圧
室14内の加熱は、ヒータ18で圧力媒体15を
加熱することにより間接的に行うことができる。
さらにエンドレスベルト13,13の走行に伴つ
て加圧室14外へ流出する量と同量の圧力媒体1
5がポンプ17によつて加圧室14内へ順次圧入
供給されるようになつており、加圧室14内の圧
力が一定に保たれるようになつている。そしてエ
ンドレスベルト13,13間に挟まれた含浸基材
5…は、加圧室14内に圧入された圧力媒体15
によつて加熱、加圧されて、含浸された樹脂液が
均一に拡がり空〓を埋めて硬化されるとともに一
体化される。圧力媒体15としてはダブルベルト
プレス11の運転条件下で流動性を示すものであ
ればどのような流体であつても良いが、これらを
例示すれば、ガス体としては空気または窒素等、
液体としては潤滑油、熱媒油やシリンダーオイル
等、ワツクスや低融点ポリマーとしてはポリエチ
レンワツクスやパラフイン等であり、低融点金属
としては半田やウツドメタル等である。 このダブルベルトプレスにおいてはいずれの方
式のものであつても、大きな圧力分布の存在、特
に進行方向での大きな脈動圧力の存在は、樹脂液
含浸基材内の気泡の選択的排出を困難とするだけ
でなく、圧力帯の中での空気の再侵入が起こりや
すくなり、さけるべきであり、例えば圧力の分布
は±50%以下で且つ±5Kg/cm2以下が好ましい。 また、適用される圧力は、使用される硬化性樹
脂液や基材の種類によつても異なるが、得られる
積層板中の基材含量を制御するため適宜選択され
る。通常、10Kg/cm2Gから100Kg/cm2Gであり、
好ましくは10Kg/cm2Gから50Kg/cm2Gである。圧
力が10Kg/cm2Gより低い場合、基材含量が増大し
にくいだけでなく、空気の排出効果が小さく、気
泡の混入した積層板となり易い。一方圧力が100
Kg/cm2Gより大であるのは、気泡の除去に不必要
であるばかりでなく、得られる積層板中の基材含
量が大きくなりすぎ、層間剥離等、強度低下を引
起し易い。 また、加熱加圧成形に用いられる温度は使用さ
れる熱硬化性樹脂液の種類や硬化触媒の種類等に
より変化するが通例50℃から200℃の範囲である。
50℃を下回る温度では硬化に要する時間が長すぎ
て不経済であり、200℃を越えると急激な硬化の
の進行により内部ヒズミの発生や、発泡等の問題
が生ずる。 このようなダブルベルトプレスによる加圧にあ
つては、熱硬化性樹脂液で部分的含浸がなされた
複数枚の基材の積層物中の樹脂液がその加圧によ
つて基材の未含浸部分に浸透してゆき、積層物厚
み方向に均一に含浸された状態となる。これは、
ダブルベルトプレス入口部において上記積層物中
で積層物の進行方向とは逆方向の大きな圧力勾配
が生じ、この圧力勾配が樹脂液の基材未含浸部分
への浸透、含浸を促進するとともに基材に残存す
る気泡と樹脂液との間での置換が促進されるため
と推定される。そして、置換された気泡の一部は
連続的に基材積層物中を進行方向とは逆方向に追
いやられ、加圧下にある積層物から排除されつづ
ける。また、気泡の一部は、積層物の巾方向にも
生ずる圧力勾配によつて積層物の両側縁部に追い
やられ、樹脂未含浸部に対して若干量の樹脂液の
排出とともに気泡が排除され、これによつて実質
的に気泡の存在しない積層板が得られる。そし
て、基材への熱硬化性樹脂液の含浸が部分的含浸
であることから、ダブルベルトプレスによる加圧
によつても、基材積層物からの樹脂液の排出を全
くなくすることができる。すなわち、得られる積
層板中の樹脂に相当する量の樹脂液だけを基材に
部分的に含浸せしめうるため、余分の樹脂液は、
加圧前から積層物中には存在しない状態とするこ
とが可能となるためである。樹脂液の排出がなけ
れば、ダブルベルトプレスにおいてこれを回収す
る必要はなく、またダブルベルトプレスを汚すこ
ともなくなり、ダブルベルトプレスの構造を単純
化することも可能である。したがつて、第2図に
示すように、加圧室14を通過した後の積層板で
は、樹脂含浸部3の幅よりも両側方向に拡がつた
樹脂硬化部6が形成され、樹脂非含浸部4よりも
幅の狭い樹脂非含浸でかつ非硬化の部分7,7が
樹脂硬化部6の両側に形成される。 このようにして得られた積層板中の基材含量
は、用いられる基材、熱硬化性樹脂液などの種
類、加圧条件等によつて異なるが、通常30重量%
から80重量%の範囲であり、例えば基材としてク
ラフト紙を用い、熱硬化性樹脂液として前述の側
鎖二重結合型樹脂を用いた場合では35〜65重量%
が好ましく、35重量%未満では積層板の機械的強
度、曲げ剛性が不足して好ましくなく、65重量%
を越えると層間剥離が生じ易くなるだけでなく、
打抜性、耐湿性の低下が生じるようになつて不都
合である。 一方、金属箔張積層板を製造するには含浸基材
の積層物の片面もしくは両面に基材の重ね合わせ
と同時または少しおくれて金属箔を重ね合せ、こ
れをダブルベルトプレスに供給することによつて
行われる。ここで用いられる金属箔としては印刷
回路板の用途を目的とした電解銅箔があり、これ
を用いることが耐蝕性、エツチング性、接着性の
観点より好ましいが、他に電解鉄箔、アルミニウ
ム箔も用いられる。 金属箔は厚み10〜100μmのものが通例使用され
る。 また、金属箔の接着面は接着性を向上する目的
で粗面化処理されていることがより好ましい。 金属箔と樹脂含浸基材との接着を効果的に達成
するためには、接着剤を用いることが好ましく、
接着剤としては、硬化過程で、不必要な反応副生
成物を発生しない、液状もしくは半流動体、すな
わち粘度にして好ましくは5000ポイズ以下である
ような接着剤が好適である。かかる観点から、例
えばエポキシ−アクリレート系接着剤、エポキシ
樹脂系接着剤、ポリイソシアネート系接着剤、も
しくはこれらの各種変性接着剤が好適である。エ
ポキシ系接着剤としては、ビスフエノールA型エ
ポキシ樹脂とポリアミド樹脂やアミン類の如き硬
化剤からなる混合物等が好適である。かかる接着
剤の導入により金属箔の接着強度に優れ、かつハ
ンダ耐熱性や電気絶縁性に優れた金属箔張積層板
を製造できる。 接着剤は金属箔に塗布した状態で使用する場
合、塗布後、60〜150℃で2〜7分間熱処理し、
半硬化状態まで予備硬化させても良い。接着剤は
積層板に同時に塗布して用いることもできる。接
着剤の塗膜の厚みは10〜100μm程度でよく、特に
20〜50μmが好適である。 本発明で得られる積層板の厚みは基材の種類、
熱硬化性樹脂液の組成、積層板の用途等により異
なるが通常0.5〜3.0mmが好適である。 〔実施例〕 以下、本発明を実施例によつて詳しく述べる
が、本発明の要旨を逸脱しない限り、これらの実
施例のみに限定されるものではない。 なお、この明細書を通して、温度は全て℃であ
り、部および%は特記しない限り重量基準であ
る。 (側鎖二重結合型樹脂の調製) 攪拌機、ガス導入管付き温度計、還流コンデン
サー、滴下ロートを具備したセパラブルフラスコ
(3000ml)にメタクリル酸(35g、0.41モル)、メ
チルエチルケトン(400g)、スチレンモノマー
(800g、7.7モル)、アゾビスイソブチロニトリル
(5.0g)ドデシルメルガプタン(12g)を仕込
み、窒素雰囲気下75〜80℃で10時間重合を行つ
た。ハイドロキノン(0.5g)を添加して重合を
禁止した。スチレンモノマーの重合率は76%、メ
タクリル酸の重合率は93%であり、重量平均分子
量約5万のスチレン−メタクリル酸共重合体を含
有するポリマー含有率が得られた。 また上記と同じ構成の別の反応装置に「エピコ
ート827」(エポキシ樹脂の商品名、油化シエルエ
ポキシ社製)(360g、1モル)、メタクリル酸
(138g、1.6モル)、ベンジルジメチルアミン
(1.2g)、パラベンゾキノン(0.12g)を仕込み、
120℃で窒素雰囲気下3時間反応させた。反応後
の酸価は殆どゼロとなり、不飽和基含有エポキシ
樹脂を含むビニル化試剤が得られた。先に調製し
たポリマー含有液を全量ビニル化試剤に加えて、
トリフエニルホスフイン(5g)、パラベンゾキ
ノン(0.10g)を添加して加熱し、沸点110℃に
おいてメチルエチルケトン溶媒を留出させ、同温
度で5時間反応させた。 反応後には、不飽和基含有エポキシ樹脂は反応
前の約15%になつた。スチレンモノマー(1000
g)を間欠的に添加しながら、30〜50mmHgで加
熱蒸発を続けた。留出液から検出されるメチルエ
チルケトンが0.1%以下となつたとき操作を終了
した。かくして得られた硬化性プレポリマーを含
む樹脂液は不揮発分52重量%より成る粘度6.12ポ
イズ(25℃)の黄褐色液であつた。 (実施例および比較例) 市販の長尺クラフト紙(秤量135g/m2、密度
0.49g/cm2)100重量部にN−メチロールメラミ
ン(日本カーバイド(株)製ニカレジンS−305)が
付着量20重量部となるよう含浸、乾燥させた処理
基材8枚を用い、硬化触媒を加えた上記側鎖二重
結合型樹脂液、不飽和ポリエステル樹脂液、エポ
キシ樹脂液を所定の方法及び量で連続的に含浸し
たのち、必要によりその最外層にエポキシ樹脂系
接着剤付の厚さ35μmの電解銅箔を積層し、第1
図に示すような圧力媒体収納式ダブルベルトプレ
スを用いて連続的に100℃で5分間加圧、加熱成
形し更に120℃で1時間後硬化して積層板並びに
片面銅張積層板を得た結果を第1表に示す。な
お、第1表中の「含浸法」の内、“部分的含浸(A)”
とは、8枚の基材の各々について全体に同程度に
熱硬化性樹脂を含浸するが、基材の巾方向に亘つ
てすべてを樹脂液で含浸するのではなく、両側端
部は未含浸の状態とするもので、塗布装置(スリ
ツトノズル)を用いたもの。“部分的含浸(B)”と
は、含浸時に基材を断面コ字状に湾曲することに
より基材のうち、中央部では空〓を完全に含浸
し、基材の両側部は樹脂液を全く含浸しないもの
を積層するもの。“完全含浸”とは8枚の基材全
部を浸漬法によつて完全に含浸したもの。なお、
いずれの部分含浸においても紙幅1070mmに対し、
1030mm幅に樹脂液を塗布含浸することにより行つ
た。
[Industrial Field of Application] The present invention relates to a method for continuously manufacturing a laminated board suitable for various electrical insulations, printed circuit boards, etc., in particular. [Conventional technology] A long base material such as kraft paper is sufficiently impregnated with a thermosetting resin liquid without leaving any voids, and multiple sheets of this impregnated base material are stacked one on top of the other and heated with or without pressure. It has been conventional practice to continuously manufacture laminates by curing resin liquid. However, among these methods, curing without pressure forms a thermosetting resin layer between the base materials, and
The content of the base material in the resulting laminate is relatively low, and mechanical properties such as strength and rigidity tend to be insufficient. As a measure to solve this problem of insufficient base material content, as described above, multiple sheets of impregnated base materials that have been sufficiently impregnated without leaving any voids are stacked one on top of the other, and are then cured under pressure using a double belt press or the like. Ba,
It is possible to increase the base material content and reduce the resin content, but most of the impregnated resin is discharged from the base material when pressurized, which tends to contaminate surrounding machinery, and the amount of discharged resin is large, so the discharged resin Although it is necessary to recover the waste, the task is extremely difficult. [Problems to be Solved by the Invention] Therefore, in the present invention, an endless belt is constructed by impregnating a long base material with a thermosetting resin liquid and stacking a plurality of sheets of this impregnated base material. When heating and pressurizing a laminate with a large base material content using a double belt press, there is no discharge of the impregnated resin liquid to the pressurized surface of the equipment during pressurization, there is virtually no residual air bubbles, and the base material content is high. It is an object of the present invention to provide a method for manufacturing a laminate with a high [Means for Solving the Problems] In the present invention, a long base material essentially does not require a drying process, and substantially does not generate reaction by-products such as gas or liquid during the curing reaction process. In a continuous manufacturing method for a laminate, which includes an impregnation step of impregnating a thermosetting resin liquid, and a heating and pressing step of stacking a plurality of impregnated base materials and heating and pressing them to harden the resin liquid and integrate them. In the impregnation step, both sides of each of the plurality of base materials in the width direction of the base material are left unimpregnated by 1% to 5% of the total area on each side, and the void of each base material is left unimpregnated in the center part. 〓
Partially impregnated with the resin liquid almost uniformly without completely filling the area, and in the heating and pressurizing step, a double belt press composed of an endless belt is used, which has a substantially uniform pressure over the entire area of the pressurizing zone. , by applying heat and pressure while measuring the penetration of the partially impregnated resin liquid into the entire base material,
I tried to solve the above problem. The present invention will be explained in detail below. The long base material as used in the present invention is, for example, a glass fiber-based material such as a long glass fiber cloth or a glass nonwoven fabric, or a paper mainly composed of cellulose fibers such as kraft paper, aluminum hydroxide mixed paper, or linter paper. ,
Refers to a sheet or band-like material made of inorganic fibers such as asbestos cloth. When using paper as a sheet-like base material, from the viewpoint of impregnability and quality, it is preferable to use paper mainly composed of cellulose fibers, such as kraft paper, with a density (bulk specific gravity) of 0.3 to 0.7 g/cc when air-dried. . These substrates are impregnated and dried before being impregnated with a thermosetting resin liquid using a treatment agent such as methylol melamine, methylol phenol, methylol guanamine, or N-methylol compound to improve their water resistance and moisture absorption. This is preferable because electrical properties can be improved by reducing the electrical properties. The amount of treatment agent applied here is the base material (100 parts by weight)
The amount is usually 5 to 35 parts by weight. Furthermore, the thermosetting resin liquid referred to in the present invention essentially does not require a drying step and does not substantially generate reaction by-products such as gas or liquid during the curing reaction process.
In addition to conventionally known unsaturated polyester resins, diallyl phthalate resins, vinyl ester resins, and epoxy acrylate resins, it refers to side chain double bond type resins described below, which have unsaturated groups in their molecules. This resin is characterized by being crosslinked between unsaturated groups or via a crosslinking vinyl monomer, and also includes epoxy resins. These thermosetting resins are suitable because they are in a liquid state with low viscosity when impregnated into a substrate, and have good bonding properties with the substrate when cured after being impregnated into the substrate. The side chain double bond type resin has particularly excellent impregnating properties when used in combination with a crosslinking vinyl monomer. The side chain double bond type resin is a polymer composed of a main chain and a side chain, and the main chain is a backbone polymer containing a vinyl monomer unit having a functional group,
The side chain refers to a resin that is a branch having a radically reactive carbon-carbon double bond formed through a functional group of the main chain, and the vinyl monomer that constitutes the main chain of the side chain double bond type resin. A simple substance is one in which a vinyl monomer unit having a functional group is an essential unit, and if necessary, a vinyl monomer unit not having a functional group is included therein, and these are polymerized to form a main chain. Monomers constituting the above essential units include acrylic acid, methacrylic acid, maleic anhydride,
Vinyl monomers having a carboxyl group as a functional group such as maleic acid monoester, glycidyl methacrylate, vinyl monomers having a glycidyl group as a functional group such as glycidyl acrylate, and other vinyl monomers such as allyl alcohol, 2-hydroxyethyl methacrylate, 2-hydroxy Ethyl acrylate, 2-hydroxypropyl acrylate, N-
Vinyl monomers having a hydroxyl group as a functional group such as methylol acrylamide are typical examples, and acrylic acid and methacrylic acid are particularly preferred. Furthermore, the vinyl monomer unit having a functional group as used herein refers to the case in which it exists as an active functional group when the main chain is formed by polymerization, as well as the case in which the side chain described below is reacted with the functional group of the monomer in advance. Refers to a type of vinyl monomer unit that has a functional group that serves to form a side chain into the main chain, regardless of whether it is polymerized to form the main chain. Vinyl monomers without functional groups include styrene, α-methylstyrene, chlorostyrene,
vinyltoluene, vinyl chloride, vinylidene chloride,
Examples include vinyl bromide, acrylonitrile, ethylene, propylene, butadiene, acrylic ester, methacrylic ester, vinyl acetate, vinyl propionate, diester maleate, and ethylvinylbenzene. The weight average molecular weight of the main chain composed of these vinyl monomer units is from 5,000 to 400,000, preferably from 10,000 to 200,000. This value is appropriately selected depending on the type of side chain. The physical properties of this molecular weight as a laminate for printed circuit boards or an electrically insulating laminate affect the impregnation properties; if it is less than 5,000, the mechanical properties of the laminate after curing will be insufficient, and if it exceeds 400,000, the substrate Both are unfavorable as they have poor resin impregnation properties.
In addition, the amount of monomer units having functional groups in the main chain is related to the density of the side chains and affects the curing reactivity between side chains, so an appropriate ratio is selected, but the density of side chains in 1000 g of the main chain is The amount is preferably 0.1 to 2 mol, more preferably 0.4 to 1.5 mol. The side chain referred to in this side chain double bond type resin means >C=C< at the end or in the middle.
It refers to those that have a double bond that forms a structure through the functional group in the main chain, but if a crosslink can be formed between the side chains by a radical reaction with a crosslinked vinyl monomer. applicable. Various methods can be employed to introduce a side chain having a double bond at the end of the side chain into the polymer constituting the main chain in this side chain double bond type resin. Some examples are as follows. (a) One epoxy group of a compound having a diepoxy group, such as the diglycidyl ether type epoxy group of bisphenol, is reacted with the carboxyl group of the main chain functional group, and the remaining epoxy group is reacted with acrylic acid or methacrylic acid. react. (a) The carboxyl group of the main chain functional group and glycidyl acrylate or glycidyl methacrylate are subjected to an ester reaction. (c) The epoxy group of the main chain functional group is subjected to an ester reaction with methacrylic acid or acrylic acid. (d) A diisocyanate compound is reacted with hydroxyethyl (meth)acrylate to create a reaction product that is mainly composed of monoisocyanate and contains almost no diisocyanate compound, and the isocyanate contained in this reaction product is reacted with the hydroxyl group of the main chain polymer. let In the exemplified method, the main chain was copolymerized first, but it goes without saying that the reaction to form the side chain is performed first, and these monomers are finally monopolymerized or copolymerized to form an acryloyl group at the end of the side chain. Alternatively, a side chain double bond type resin containing a methacryloyl group may be produced. In addition, crosslinking vinyl monomers include styrene, vinyltoluene, chlorostyrene, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate,
lauryl methacrylate, benzyl methacrylate,
Dibutyl maleate, dioctyl maleate, vinyl acetate, vinyl propionate, divinylbenzene and the like are included. These monomers may be used in combination of two or more. Furthermore, if necessary, a halogen-containing flame retardant imparting component and a flame retardant aid such as phosphoric acid ester, antimony trioxide, or aluminum hydroxide may be added to the thermosetting resin liquid used for impregnating the base material. It's okay. In addition, when using any thermosetting resin liquid, its viscosity can be appropriately selected depending on the purpose of use of the laminate to be manufactured, the pressure during pressure molding, etc., but it is usually 0.05 ~ 0.05 at 25 ° C. Approximately 500 poise is suitable; if it exceeds 500 poise, impregnating properties of the base material are poor and air bubbles are likely to remain in the resulting laminate. Moreover, if it is less than 0.05 poise, the impregnating property is good, but there is a problem that it is easily affected by the intrusion of external air. Then, the elongated base material is partially impregnated with such a thermosetting resin. That is, in the partial impregnation, 1% to 5% of both sides of each of the plurality of base materials are left unimpregnated with respect to the total area in the width direction of the base material, and the voids of each base material are left unimpregnated in the central part. 〓 is partially impregnated with the resin liquid almost uniformly without filling the entire area. When kraft paper is used as an example of a base material, the vacancy of kraft paper is usually 60 to 70% by volume (when air-dried), but this vacancy is, for example, about 30 to 45% by volume, and the impregnated portion of the base material is It impregnates only the central part of the base material in the width direction so that it can be impregnated at any position. The unimpregnated part is 1 on one side of the total area in the width direction.
% or less, the discharged resin liquid will not be completely absorbed by the unimpregnated base material and will be discharged to the outside of the base material, contaminating the equipment. On the other hand, 5% or more is not only necessary for absorbing the discharged resin liquid, but also causes a large loss of the base material.
This is undesirable because the width of the endless belt increases, leading to an increase in equipment costs. Impregnation of these long substrates with the cured resin liquid is carried out by appropriately selecting a known method such as a partial coating method or a partial dipping method. For example, as shown in FIGS. 1 and 2, a plurality of base materials 1 are sent out, and a partial coating nozzle 2 is used to apply the resin liquid to only the central portion of the base materials 1 as described above. Apply and base material 1...
As shown in FIG. 2, in each base material 1, a resin-impregnated part 3 in the center part and non-resin-impregnated parts 4, 4 on both sides are formed to form an impregnated base material 5. shall be. In addition, the amount of impregnation of the curable resin liquid is related to the pressure applied during the next process with the double belt press, and it is important to ensure that the pressure does not cause excessive flow to be discharged outside the base material and that the resulting laminate is Adjusted so that air bubbles are substantially absent, and the amount of resin liquid discharged from the base laminate to the unimpregnated portions at both ends when pressurized with a double belt press is 3% or less of the amount of cured resin in the product laminate; It is desirable that the amount is preferably 1% or less. If the amount of impregnation is less than the appropriate amount for the pressure at the time of pressurization, air bubbles will remain in the resulting laminate, causing an overall whitening phenomenon. The elongated base material impregnated with the curable resin liquid in this way is stacked together to form a laminate, and then pressed using a double belt press that applies substantially uniform pressure over the entire pressure zone. The impregnated resin is heated and pressurized to fill the voids in the base material as widely as possible to form a laminate. The double belt press according to the present invention, which is composed of an endless belt that exerts substantially uniform pressure over the entire pressure zone, is a double belt press in which endless belts made of stainless steel with a thickness of about 1 mm are installed above and below, for example. A base material impregnated with resin liquid is sandwiched between the upper and lower belts and can be heated and pressurized.
The structure is such that the pressure of the pressure band is substantially uniform. To give a specific example, (1) A plurality of rows of roll pairs are arranged to sandwich the upper and lower belts and apply pressure to the belts, and the roll diameter is 50 mm or less and the ratio of the roll pitch to the roll diameter is 1.2. This method reduces the pressure drop between adjacent rolls by doing the following: The rolls may be placed in fixed positions, or they may be placed between pressure plates installed above and below the endless belt and the endless belt. , may revolve around the pressure plate. The diameter of the roll increases,
If the distance between the rolls is too large, large waves will occur in the pressure applied to the substrate, which is undesirable. (2) A system in which the upper and lower endless belts are sandwiched, a pressure plate is placed to apply pressure to the belt, and a pressure medium is press-fitted and circulated between the pressure plate and the endless belt for the purpose of lubrication. (3) A container for storing pressure medium is created by sandwiching the upper and lower endless belts, and the opening of this container is in contact with the endless belt, and the pressure medium directly presses the endless belt. This formula is particularly suitable because the pressure difference across the entire pressure zone is small. What is shown in FIG. 1 is an example of this pressure medium storage type double belt press. This double belt press 11 has drums 12, 12a
, endless belts 13, 13, and pressurizing chamber 14
and a pressure medium 15 made of high-temperature fluid, and the pressure medium supply device 16 includes a pump 17
and a heater 18 are connected by a plumbing pipe 19. Drums 12, 12 and 12a, 1
2a consists of a pair of upper and lower drums that rotate in opposite directions to each other along the traveling direction of the impregnated base material 5;
Endless belts 13, 13 are tensioned between drums 12, 12a arranged in parallel on one side of the impregnated base material 5 and rotating in the same direction. A pressure medium 15 is filled behind the endless belts 13, 13 for applying the heat and pressure necessary for curing the resin impregnated into the impregnated base material 5 and integrating the impregnated base material 5. A pressurizing chamber 14 is provided. This pressurizing chamber 14 is a container of any shape, and one of its constituent surfaces is constituted by the endless belt 13. Inside this pressurizing chamber 14, an impregnated base material 5 is inserted from the endless belt 13. A pressure medium 15 for applying heat and pressure is press-fitted. Furthermore, the pressurizing chamber 14 has a pressure medium 1
5 and a pressure medium 15
A pressure medium supply device 16 is disposed in which a heater 18 such as an electric heater that heats the pressure medium is connected through a piping 19 . Note that the heater 18 may be incorporated into this pressurizing chamber 14. The pressure medium 15 is circulated between the pressure medium supply device 16 and the pressurizing chamber 14 by a pump 17, and the pressure medium 15 can be replenished, pressurized, and heated from outside the pressurizing chamber 14. There is. The inside of the pressurizing chamber 14 can be heated indirectly by heating the pressure medium 15 with the heater 18 .
Furthermore, the same amount of pressure medium 1 flows out of the pressurizing chamber 14 as the endless belts 13, 13 run.
5 is sequentially pressurized and supplied into the pressurizing chamber 14 by the pump 17, so that the pressure within the pressurizing chamber 14 is kept constant. The impregnated base material 5 sandwiched between the endless belts 13, 13 has a pressure medium 15 press-fitted into the pressurizing chamber 14.
The impregnated resin liquid spreads uniformly, fills the void, and is cured and integrated. The pressure medium 15 may be any fluid as long as it exhibits fluidity under the operating conditions of the double belt press 11. Examples of the gas medium include air, nitrogen, etc.
Examples of the liquid include lubricating oil, heat transfer oil, cylinder oil, etc., examples of the wax and low melting point polymer include polyethylene wax and paraffin, and examples of the low melting point metal include solder and wood metal. Regardless of the type of double belt press, the presence of a large pressure distribution, especially the presence of large pulsating pressure in the direction of movement, makes it difficult to selectively discharge air bubbles in the resin liquid-impregnated base material. In addition, re-intrusion of air into the pressure zone is likely to occur and should be avoided. For example, the pressure distribution is preferably ±50% or less and ±5 Kg/cm 2 or less. Further, the applied pressure varies depending on the curable resin liquid used and the type of base material, but is appropriately selected in order to control the base material content in the obtained laminate. Usually 10Kg/cm 2 G to 100Kg/cm 2 G,
Preferably it is 10Kg/cm 2 G to 50Kg/cm 2 G. When the pressure is lower than 10 Kg/cm 2 G, not only is it difficult to increase the base material content, but also the air evacuation effect is small and the laminate is likely to have air bubbles mixed in. On the other hand, the pressure is 100
If it is larger than Kg/cm 2 G, it is not only unnecessary for removing air bubbles, but also the base material content in the resulting laminate becomes too large, which tends to cause deterioration in strength such as delamination. Further, the temperature used for hot-press molding varies depending on the type of thermosetting resin liquid used, the type of curing catalyst, etc., but is generally in the range of 50°C to 200°C.
At temperatures below 50°C, the time required for curing is too long and is uneconomical; at temperatures above 200°C, curing progresses rapidly, causing problems such as internal distortion and foaming. When pressurized by such a double belt press, the resin liquid in the laminate of multiple base materials partially impregnated with thermosetting resin liquid is applied to the non-impregnated base materials by the pressure applied. It penetrates into the parts and becomes uniformly impregnated in the thickness direction of the laminate. this is,
At the inlet of the double belt press, a large pressure gradient occurs in the laminate in the opposite direction to the direction of travel of the laminate, and this pressure gradient promotes penetration and impregnation of the resin liquid into the unimpregnated portion of the base material, and This is presumed to be because the replacement between the bubbles remaining in the resin liquid and the resin liquid is promoted. A portion of the displaced air bubbles are then continuously driven through the base material laminate in a direction opposite to the traveling direction, and continue to be removed from the laminate under pressure. In addition, some of the air bubbles are driven to both side edges of the laminate by the pressure gradient that also occurs in the width direction of the laminate, and the air bubbles are removed as a small amount of resin liquid is discharged from the non-resin-impregnated area. , this results in a laminate substantially free of air bubbles. Furthermore, since the thermosetting resin liquid is partially impregnated into the base material, discharge of the resin liquid from the base material laminate can be completely eliminated even when pressurized by a double belt press. . In other words, since the base material can be partially impregnated with only the amount of resin liquid corresponding to the resin in the resulting laminate, the excess resin liquid is
This is because it becomes possible to make the state in which it does not exist in the laminate even before pressurization. If the resin liquid is not discharged, there is no need to collect it in the double belt press, and the double belt press will not be contaminated, and the structure of the double belt press can be simplified. Therefore, as shown in FIG. 2, in the laminate after passing through the pressurizing chamber 14, a resin cured part 6 is formed that is wider in both directions than the width of the resin-impregnated part 3, and Non-resin-impregnated and non-cured portions 7, 7, which are narrower than the portion 4, are formed on both sides of the resin-cured portion 6. The base material content in the laminate thus obtained varies depending on the base material used, the type of thermosetting resin liquid, pressing conditions, etc., but is usually 30% by weight.
For example, when kraft paper is used as the base material and the aforementioned side chain double bond type resin is used as the thermosetting resin liquid, the amount ranges from 35 to 65% by weight.
If it is less than 35% by weight, the mechanical strength and bending rigidity of the laminate will be insufficient, and if it is less than 65% by weight, it is undesirable.
Exceeding this not only makes delamination more likely to occur, but also
This is disadvantageous because punchability and moisture resistance deteriorate. On the other hand, in order to manufacture metal foil-clad laminates, metal foil is overlaid on one or both sides of the laminate of impregnated base materials at the same time or a little later than the overlapping of the base materials, and this is then fed to a double belt press. It is done by folding. The metal foil used here is electrolytic copper foil intended for use in printed circuit boards, and it is preferable to use this from the viewpoints of corrosion resistance, etching properties, and adhesion, but other metal foils include electrolytic iron foil and aluminum foil. is also used. Metal foil with a thickness of 10 to 100 μm is usually used. Moreover, it is more preferable that the adhesive surface of the metal foil is roughened for the purpose of improving adhesiveness. In order to effectively achieve adhesion between the metal foil and the resin-impregnated base material, it is preferable to use an adhesive.
The adhesive is preferably a liquid or semi-fluid adhesive that does not generate unnecessary reaction by-products during the curing process, that is, an adhesive that preferably has a viscosity of 5000 poise or less. From this viewpoint, for example, epoxy-acrylate adhesives, epoxy resin adhesives, polyisocyanate adhesives, or various modified adhesives thereof are suitable. As the epoxy adhesive, a mixture of a bisphenol A type epoxy resin and a curing agent such as a polyamide resin or amines is suitable. By introducing such an adhesive, it is possible to produce a metal foil-clad laminate that has excellent adhesion strength of metal foil, as well as excellent solder heat resistance and electrical insulation properties. When using the adhesive applied to metal foil, heat-treat it at 60-150℃ for 2-7 minutes after application.
It may be precured to a semi-cured state. The adhesive can also be applied to the laminate at the same time. The thickness of the adhesive film may be about 10 to 100 μm, especially
20-50 μm is suitable. The thickness of the laminate obtained by the present invention depends on the type of base material,
The thickness varies depending on the composition of the thermosetting resin liquid, the use of the laminate, etc., but it is usually 0.5 to 3.0 mm. [Examples] Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples unless it departs from the gist of the present invention. Throughout this specification, all temperatures are in degrees Celsius, and parts and percentages are by weight unless otherwise specified. (Preparation of side chain double bond type resin) Methacrylic acid (35 g, 0.41 mol), methyl ethyl ketone (400 g), and styrene were placed in a separable flask (3000 ml) equipped with a stirrer, a thermometer with a gas inlet tube, a reflux condenser, and a dropping funnel. Monomers (800 g, 7.7 mol), azobisisobutyronitrile (5.0 g) and dodecyl mergaptane (12 g) were charged, and polymerization was carried out at 75 to 80° C. for 10 hours under a nitrogen atmosphere. Hydroquinone (0.5g) was added to inhibit polymerization. The polymerization rate of styrene monomer was 76%, and the polymerization rate of methacrylic acid was 93%, and a polymer content containing a styrene-methacrylic acid copolymer having a weight average molecular weight of about 50,000 was obtained. In addition, in another reactor with the same configuration as above, "Epicote 827" (trade name of epoxy resin, manufactured by Yuka Ciel Epoxy Co., Ltd.) (360 g, 1 mol), methacrylic acid (138 g, 1.6 mol), benzyldimethylamine (1.2 g), parabenzoquinone (0.12g),
The reaction was carried out at 120° C. for 3 hours under a nitrogen atmosphere. After the reaction, the acid value became almost zero, and a vinylation reagent containing an epoxy resin containing an unsaturated group was obtained. Add the entire amount of the previously prepared polymer-containing liquid to the vinylization reagent,
Triphenylphosphine (5 g) and parabenzoquinone (0.10 g) were added and heated, the methyl ethyl ketone solvent was distilled off at a boiling point of 110°C, and the mixture was reacted at the same temperature for 5 hours. After the reaction, the content of the unsaturated group-containing epoxy resin was about 15% of that before the reaction. Styrene monomer (1000
While adding g) intermittently, heating evaporation was continued at 30-50 mmHg. The operation was terminated when the amount of methyl ethyl ketone detected in the distillate was 0.1% or less. The thus obtained resin liquid containing the curable prepolymer was a yellowish brown liquid with a viscosity of 6.12 poise (at 25°C) and a nonvolatile content of 52% by weight. (Examples and Comparative Examples) Commercially available long kraft paper (weighing 135 g/m 2 , density
Using 8 treated substrates impregnated with 100 parts by weight of N-methylolmelamine (Nicaresin S-305 manufactured by Nippon Carbide Co., Ltd.) to a coating amount of 20 parts by weight (0.49 g/cm 2 ) and dried, a curing catalyst was applied. After continuously impregnating the above-mentioned side chain double bond type resin liquid, unsaturated polyester resin liquid, and epoxy resin liquid in a predetermined manner and amount, the outermost layer is coated with an epoxy resin adhesive if necessary. Laminate electrolytic copper foil with a thickness of 35 μm, and
Using a pressure medium storage double belt press as shown in the figure, the material was continuously pressurized and heated at 100°C for 5 minutes, and then cured at 120°C for 1 hour to obtain a laminate and a single-sided copper-clad laminate. The results are shown in Table 1. In addition, among the "impregnation methods" in Table 1, "partial impregnation (A)"
This means that each of the eight base materials is impregnated with the thermosetting resin to the same extent as a whole, but the entire width of the base material is not impregnated with the resin liquid, and both ends are left unimpregnated. , using a coating device (slit nozzle). “Partial impregnation (B)” means that by curving the base material into a U-shaped cross section during impregnation, the center part of the base material is completely impregnated with resin liquid, and both sides of the base material are filled with resin liquid. A type of laminated material that is not impregnated at all. "Complete impregnation" means that all eight substrates are completely impregnated by the dipping method. In addition,
For any partial impregnation, for a paper width of 1070 mm,
This was done by coating and impregnating a 1030 mm width with resin liquid.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の積層板の連続
製造方法は、長尺の基材に、本質的に乾燥工程を
必要とせず、かつ硬化反応過程で気体や液体等の
反応副生成物を実質的に発生しない熱硬化性樹脂
液を含浸させる含浸工程と、含浸された基材の複
数枚を重ね合わせて加熱加圧して樹脂液を硬化さ
せて一体化する加熱加圧工程を有する積層板の連
続製造方法において、前記含浸工程においては、
前記樹脂液の基材への両側端部を残して部分的含
浸を行い、前記加熱加圧工程においては、加圧帯
全域にわたり実質的に均等な圧力を有するダブル
ベルトプレスを用いて、前記部分的含浸の樹脂液
の基材全体への浸透を計りつつ、加熱加圧するも
のであるので、ダブルベルトプレスによる加圧時
に含浸樹脂液の排出が全て両側端部に吸収される
ため汚染の問題が発生せず、かつ実質的に気泡が
存在せぬ基材含量の高い積層板を連続的に製造す
ることができる。
As explained above, the method for continuously manufacturing a laminate of the present invention essentially does not require a drying process and substantially eliminates reaction by-products such as gas and liquid during the curing reaction process. A laminate that has an impregnation process in which a thermosetting resin liquid that does not occur on a laminate plate is impregnated with a thermosetting resin liquid that does not generate heat, and a heating and pressing process in which multiple sheets of impregnated base materials are piled up and heated and pressed to harden the resin liquid and integrate them. In the continuous manufacturing method, in the impregnation step,
The resin liquid is partially impregnated into the base material leaving both side ends, and in the heating and pressing step, the part is impregnated using a double belt press having a substantially uniform pressure over the entire pressure zone. Since the method involves heating and pressurizing the impregnated resin liquid while measuring its penetration into the entire base material, there is a problem of contamination because all of the impregnated resin liquid discharged during pressurization with a double belt press is absorbed into both ends. It is possible to continuously produce a laminate with a high base material content that does not generate air bubbles and is substantially free of air bubbles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明で用いられる製
造装置の例を示す概略構成図である。 1……基材、2……部分塗布用ノズル、3……
樹脂含浸部、4……樹脂非含浸部、5……含浸基
材、11……ダブルベルトプレス。
FIGS. 1 and 2 are schematic configuration diagrams showing an example of a manufacturing apparatus used in the present invention. 1... Base material, 2... Nozzle for partial application, 3...
Resin-impregnated part, 4... Resin-non-impregnated part, 5... Impregnated base material, 11... Double belt press.

Claims (1)

【特許請求の範囲】 1 長尺の基材に、本質的に乾燥工程を必要とせ
ず、かつ硬化反応過程で気体や液体等の反応副生
成物を実質的に発生しない熱硬化性樹脂液を含浸
させる含浸工程と、含浸された基材の複数枚を重
ね合わせて加熱加圧して樹脂液を硬化させて一体
化する加熱加圧工程を有する積層板の連続製造方
法において、 前記含浸工程においては、複数枚の基材の各々
についてその基材の幅方向の全面積に対し片側各
1%から5%の両側部分を未含浸とし、中央部分
において各基材の空〓を全て満たすことなくほぼ
均一に前記樹脂液を部分含浸し、 前記加熱加圧工程においては、加圧帯全域にわ
たり実質的に均等な圧力を有する、エンドレスベ
ルトにより構成されるダブルベルトプレスを用い
て、前記部分的含浸の樹脂液の基材全体への浸透
を計りつつ、加熱加圧することにより樹脂液の基
材外への排出を無くすようにしたことを特徴とす
る積層板の連続製造方法。 2 積層板が金属箔を含浸された基材の複数枚と
同時に又は別工程にて重ね合わされてなる金属箔
張積層板である請求項1記載の積層板の連続製造
方法。 3 加圧帯全域にわたり実質的に均等な圧力を有
する、エンドレスベルトにより構成されるダブル
ベルトプレスが、該エンドレスベルトを一構成面
とする加圧室を有し、圧力媒体として流体を用い
るダブルベルトプレスである請求項1記載の積層
板の連続製造方法。 4 加熱加圧工程での圧力が10〜100Kg/cm2の範
囲である請求項1記載の積層板の連続製造方法。 5 基材が紙である請求項1記載の積層板の連続
製造方法。
[Scope of Claims] 1. A thermosetting resin liquid that essentially does not require a drying process and that does not substantially generate reaction by-products such as gas or liquid during the curing reaction process is applied to a long base material. In the continuous production method of a laminate, the method includes an impregnating step of impregnating the base material, and a heating and pressing step of stacking a plurality of impregnated base materials and heating and pressing them to cure and integrate the resin liquid, in which: For each of the plurality of base materials, 1% to 5% of each side of the total area in the width direction of the base material is left unimpregnated, and approximately 1% to 5% of each side of the base material is impregnated in the center without completely filling the voids of each base material. Partial impregnation is carried out uniformly with the resin liquid, and in the heating and pressing step, the partial impregnation is carried out using a double belt press constituted by an endless belt that has substantially uniform pressure over the entire pressure zone. A continuous manufacturing method for a laminate, characterized in that the resin liquid permeates into the entire base material and is heated and pressurized to prevent the resin liquid from being discharged outside the base material. 2. The continuous production method of a laminate according to claim 1, wherein the laminate is a metal foil-clad laminate formed by laminating a plurality of base materials impregnated with metal foil simultaneously or in a separate process. 3. A double belt press consisting of an endless belt that has a substantially uniform pressure over the entire pressure zone, has a pressurizing chamber with the endless belt as one constituent surface, and uses a fluid as a pressure medium. The continuous manufacturing method of a laminate according to claim 1, which is a press. 4. The continuous production method of a laminate according to claim 1, wherein the pressure in the heating and pressing step is in the range of 10 to 100 Kg/ cm2 . 5. The method for continuously manufacturing a laminate according to claim 1, wherein the base material is paper.
JP63252658A 1988-06-24 1988-10-06 Continuous preparation of laminated sheet Granted JPH0299327A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63252658A JPH0299327A (en) 1988-10-06 1988-10-06 Continuous preparation of laminated sheet
EP19890111478 EP0347936A3 (en) 1988-06-24 1989-06-23 Continuous production of laminated sheet
KR1019890008758A KR910000355A (en) 1988-06-24 1989-06-24 Continuous manufacturing method of laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63252658A JPH0299327A (en) 1988-10-06 1988-10-06 Continuous preparation of laminated sheet

Publications (2)

Publication Number Publication Date
JPH0299327A JPH0299327A (en) 1990-04-11
JPH0579215B2 true JPH0579215B2 (en) 1993-11-01

Family

ID=17240421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63252658A Granted JPH0299327A (en) 1988-06-24 1988-10-06 Continuous preparation of laminated sheet

Country Status (1)

Country Link
JP (1) JPH0299327A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5338208B2 (en) * 2008-09-02 2013-11-13 株式会社デンソー Method for producing substrate for printed circuit board
WO2012029275A1 (en) * 2010-09-01 2012-03-08 住友ベークライト株式会社 Method for manufacturing laminated sheet, and manufacturing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144151A (en) * 1980-04-11 1981-11-10 Kanegafuchi Chemical Ind Continuous manufacture of laminated board
JPS57117925A (en) * 1981-01-15 1982-07-22 Matsushita Electric Works Ltd Method and apparatus for impregnating resin into base material for laminated plate
JPS62212111A (en) * 1986-03-14 1987-09-18 Mitsubishi Rayon Eng Co Ltd Continuous pressurizing method
JPS63211045A (en) * 1987-02-27 1988-09-01 Toshiba Corp Portable electronic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144151A (en) * 1980-04-11 1981-11-10 Kanegafuchi Chemical Ind Continuous manufacture of laminated board
JPS57117925A (en) * 1981-01-15 1982-07-22 Matsushita Electric Works Ltd Method and apparatus for impregnating resin into base material for laminated plate
JPS62212111A (en) * 1986-03-14 1987-09-18 Mitsubishi Rayon Eng Co Ltd Continuous pressurizing method
JPS63211045A (en) * 1987-02-27 1988-09-01 Toshiba Corp Portable electronic equipment

Also Published As

Publication number Publication date
JPH0299327A (en) 1990-04-11

Similar Documents

Publication Publication Date Title
JPH0147297B2 (en)
JPS62179931A (en) Continuous manufacture of circuit board
CA1149275A (en) Continuous process for preparing reinforced resin laminates
US4557784A (en) Continuous process for producing a metal clad laminate
EP0347936A2 (en) Continuous production of laminated sheet
JPH0579215B2 (en)
JPS6217532B2 (en)
JPH0579214B2 (en)
WO1980002010A1 (en) Method of and device for continuously fabricating laminate
JPH026131A (en) Method and device for continuously manufacturing laminated board
JPH02143857A (en) Continuous manufacture of laminated sheet
JPH0286441A (en) Continuous manufacture of laminated board
JPH0382510A (en) Continuous manufacture of laminated sheet
JPH01286851A (en) Continuous manufacture of laminate
JPS6354543B2 (en)
JPH0542648A (en) Method for continuously producing laminate and device therefor
JPH01123733A (en) Manufacture of laminated sheet
JPH0558372B2 (en)
JPH01286848A (en) Continuous manufacture of laminate
JPH01286849A (en) Continuous manufacture of laminate
JPH01286850A (en) Continuous manufacture of laminate
JPH02235629A (en) Preparation of laminated sheet
JPH0673920B2 (en) Continuous manufacturing method of hard laminate for electric use
JPH08198982A (en) Production of laminate
JPH01286847A (en) Continuous manufacture of laminate