JPH0578812A - Formation of film - Google Patents

Formation of film

Info

Publication number
JPH0578812A
JPH0578812A JP3241679A JP24167991A JPH0578812A JP H0578812 A JPH0578812 A JP H0578812A JP 3241679 A JP3241679 A JP 3241679A JP 24167991 A JP24167991 A JP 24167991A JP H0578812 A JPH0578812 A JP H0578812A
Authority
JP
Japan
Prior art keywords
low temperature
film
laser
alloy
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3241679A
Other languages
Japanese (ja)
Other versions
JP3042072B2 (en
Inventor
Michiyoshi Yamamoto
道好 山本
Kunio Enomoto
邦夫 榎本
Keiichi Urashiro
慶一 浦城
Yasukata Tamai
康方 玉井
Koichi Kurosawa
孝一 黒沢
Kinya Aota
欣也 青田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3241679A priority Critical patent/JP3042072B2/en
Publication of JPH0578812A publication Critical patent/JPH0578812A/en
Application granted granted Critical
Publication of JP3042072B2 publication Critical patent/JP3042072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To withstand corrosion by low-temp. sensitizing and to prevent the stress corrosion racking during an operation period by thermally spraying a highly corrosion resistant alloy at a low temp. on the surface of an Fe- and Ni-based alloy member and irradiating the resulted film with a laser, thereby reforming the film. CONSTITUTION:The highly corrosion resistant alloy consisting of the Fe- and Ni-base alloy is thermally sprayed by a low-temp. thermal spraying device 13 on the surface of a member 10 consisting of the Fe- and Ni-base alloy, such as structural members of an atomic power plant deteriorated with age to form the low-temp. thermally sprayed film 12. This film 12 is thermally sprayed with a laser by a laser irradiation device 15 to melt the surface part. This molten part is thereafter resolidified at 10<4> to 10<6> deg. C/S cooling rate. The surface reformed layer 14 consisting of a molten and solidified layer of a cell structure having the inter-cell spacing in a 0.2 to 2.0mum range is formed in this way. The structure in the atomic reactor, etc., are repaired in this way and the stress corrosion resistance cracking in weld heat affected zones is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は腐食環境に接するオース
テナイト系ステンレス鋼やニッケル基合金等の耐食性向
上に係り、特に高温高圧水に接する軽水炉プラントの構
造材溶接部の耐応力腐食割れ性向上に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of corrosion resistance of austenitic stainless steel, nickel base alloy, etc. in contact with corrosive environment, and particularly to improvement of stress corrosion cracking resistance of structural material welds of light water reactor plant in contact with high temperature and high pressure water. ..

【0002】[0002]

【従来の技術】軽水炉圧力容器境界部のようなオーステ
ナイト系ステンレス鋼溶接部では、その溶接熱影響部に
おいてCr炭化物の粒界析出が生じ、鋭敏化と呼ばれる
現象が発生する。炉内の腐食環境下では、鋭敏化による
粒界近傍のCr欠乏層の形成が応力腐食割れの原因とな
り得ると言われており、その対策が急がれている。
2. Description of the Related Art In an austenitic stainless steel welded portion such as a boundary portion of a light water reactor pressure vessel, grain boundary precipitation of Cr carbide occurs in the weld heat affected zone, and a phenomenon called sensitization occurs. In a corrosive environment in a furnace, it is said that the formation of a Cr-deficient layer in the vicinity of grain boundaries due to sensitization may cause stress corrosion cracking, and countermeasures for it are urgently needed.

【0003】この様な溶接部の応力腐食割れを防止する
ために表面改質によって腐食に関係する部材の表面部の
みを脱鋭敏化する方法がとられており、高エネルギービ
ームを照射することによって部材表面の鋭敏化部を溶体
化温度以上に加熱し、脱鋭敏化を図る方法が考案されて
いる。エネルギー源は急熱急冷の熱サイクルによって冷
却過程での炭化物の析出の抑止が可能な事や、大気中で
の施工が可能な事からレーザビームが有力視されてい
る。
In order to prevent such stress corrosion cracking of the welded portion, a method of desensitizing only the surface portion of the member related to corrosion by surface modification is adopted, and by irradiating with a high energy beam. A method has been devised for desensitization by heating the sensitized portion on the surface of the member to a temperature above the solution temperature. A laser beam is considered to be an important energy source because it can suppress the precipitation of carbides during the cooling process by a thermal cycle of rapid heating and rapid cooling and can be installed in the atmosphere.

【0004】公知例としては、特開昭60−165323号,特
開昭61−52315号,特開昭61−96025号公報に記載のよう
に部材表面を溶体化温度以上に加熱する事例や、特開昭
61−177325号公報に記載のように表面を再溶融する事例
がある。いずれも鋭敏化部材の表面部に析出している炭
化物を加熱によって固溶し、その後の急冷によって炭化
物の析出を抑止する事で脱鋭敏化させる事例である。ま
た、特開昭63−53210号公報では、微細なフェライトを
表面部に形成させる事の可能なステンレス鋼の成分範囲
で照射エネルギーの定量的制御によって0.5μm 以下
の粒径を持つフェライトをステンレス鋼の表面部に形成
させて耐応力腐食割れ性の改善例を公知としている。
Known examples include heating of the surface of the member to a temperature above the solution temperature as described in JP-A-60-165323, JP-A-61-52315 and JP-A-61-96025. JPA
There is a case where the surface is remelted as described in JP 61-177325. In each case, the carbide precipitated on the surface of the sensitizing member is dissolved to form a solid solution by heating, and the rapid cooling thereafter suppresses the precipitation of the carbide, thereby desensitizing the material. Further, in Japanese Patent Laid-Open No. 63-53210, ferrite having a grain size of 0.5 μm or less is stainless steel by quantitative control of irradiation energy within the composition range of stainless steel capable of forming fine ferrite on the surface. An example of improving the stress corrosion cracking resistance by forming it on the surface of steel is known.

【0005】更に、近年、新しい防食溶射システムとし
て、ア−ク溶射ガンをもちいた防食コ−ティングが開発
されつつある。例えば、防食管理、Vol.35,N
o.2,1991別冊に見られるように、粗面形成剤を
塗布した後、亜鉛,Al、およびそれらの合金を低温に
て、鋼板に溶射する方法が検討されつつある。
Further, in recent years, as a new anticorrosion spraying system, an anticorrosion coating using an arc spray gun is being developed. For example, anticorrosion management, Vol. 35, N
o. 2, 1991, a method of spraying zinc, Al, and alloys thereof onto a steel sheet at a low temperature after applying a surface roughening agent is under study.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術は表面改
質後の鋭敏化対策について配慮がなされておらず、表面
改質を施した材料の高耐食性の維持の点で問題があっ
た。例えば軽水炉プラントはその有効利用のため長寿命
化を図る方向であり、30〜40年の稼働期間が想定さ
れている。従って、プラントにおいて約288℃の高温
高圧水に接する部材は、溶接熱影響部等の脱鋭敏化のた
めの改質処理を施した後も、尚288℃で40年以上に
さらされ続けられるため低温鋭敏化についても十分な配
慮が必要である。この点前述の公知例に見られる従来技
術では表面改質直後の耐食性は大幅に向上するものの上
記の様な低温鋭敏化環境下における改質部の耐久性は考
慮されていない。原子力プラント実機の補修作業は非常
に手間と経費がかかるものであり、稼働期間中の補修作
業を考慮した場合補修回数は少ない方が望ましい、すな
わち、低温鋭敏化に対する改質部の耐久性は長い方がコ
スト面からも望ましい。
The above-mentioned prior art does not consider measures against sensitization after surface modification, and has a problem in maintaining high corrosion resistance of the surface-modified material. For example, a light water reactor plant tends to have a long service life for its effective use, and an operating period of 30 to 40 years is assumed. Therefore, the parts that come into contact with high-temperature and high-pressure water at approximately 288 ° C in the plant will continue to be exposed at 288 ° C for over 40 years even after being subjected to the modification treatment for desensitization of the weld heat affected zone. It is necessary to give sufficient consideration to low temperature sensitization. In this respect, in the prior art shown in the above-mentioned known example, although the corrosion resistance immediately after the surface modification is significantly improved, the durability of the modified part under the low temperature sensitization environment as described above is not considered. The repair work of the actual nuclear plant is very time-consuming and expensive, and considering the repair work during the operation period, it is desirable that the number of repairs is small, that is, the durability of the reforming section against the low temperature sensitization is long. It is preferable from the viewpoint of cost.

【0007】また、特開昭63−53210 号公報に記載され
ている公知例では、フェライトを生成させてフェライト
粒径から照射条件を定めているが、本発明者等は「フェ
ライト粒径が上記公知例の定める範囲内であっても照射
エネルギーが高い場合低温鋭敏化の影響で粒界腐食割れ
が発生し、また、オーステナイト単相であっても微細な
セル組織に改質する事により、低温鋭敏化の条件下でも
粒界腐食割れが発生しない」との知見を得るに至った。
Further, in the known example described in Japanese Patent Laid-Open No. 63-53210, ferrite is generated and the irradiation condition is determined from the ferrite grain size. Intergranular corrosion cracking occurs under the influence of low-temperature sensitization when the irradiation energy is high even within the range determined by known examples, and even if the austenite single phase is modified to a fine cell structure, low temperature It has been found that intergranular corrosion cracking does not occur even under sensitized conditions. "

【0008】さらに、高耐食性Fe,Ni合金を低温溶
射し、その後、レーザ照射することにより均質な防食皮
膜を形成出来る事をみいだした。
Further, it has been found that a homogeneous anticorrosion coating can be formed by spraying a high corrosion resistant Fe, Ni alloy at a low temperature and then irradiating with a laser.

【0009】本発明の目的は改質処理後の低温鋭敏化に
よる腐食に耐え、稼働期間中の応力腐食割れを防止でき
る表面改質処理方法を提供することにある。
An object of the present invention is to provide a surface modification treatment method capable of withstanding corrosion due to low temperature sensitization after the modification treatment and preventing stress corrosion cracking during the operation period.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、オーステナイト系のFe−Cr−Ni合金の表面部
にレーザビームを照射し、照射エネルギー密度が0.0
05J/μm〜0.05J/μmの範囲内に制御し、冷
却速度が104℃/s〜106℃/sの範囲内で、表面部
にセル間隔が0.2〜2.0μmの範囲にあるセル組織を
形成することによって、当該合金の耐食性を向上させた
ものである。また、オーステナイト系のFe−Cr−N
i合金の表面部にパルスレーザビームを照射し、冷却速
度が104 ℃/s〜106℃/s の範囲内で、表面部にセ
ル間隔が0.2〜2.0μmの範囲にあるセル組織を形成
することによって、当該合金の耐食性を向上させたもの
である。
In order to achieve the above object, a laser beam is applied to the surface of an austenitic Fe-Cr-Ni alloy so that the irradiation energy density is 0.0.
Controlled within the range of 05 J / μm to 0.05 J / μm, the cooling rate is within the range of 10 4 ° C / s to 10 6 ° C / s, and the cell spacing is within the range of 0.2 to 2.0 μm on the surface portion. The corrosion resistance of the alloy is improved by forming the cell structure in (1). In addition, austenitic Fe-Cr-N
A cell in which the surface portion of the i alloy is irradiated with a pulsed laser beam, the cooling rate is in the range of 10 4 ° C / s to 10 6 ° C / s, and the cell interval is in the range of 0.2 to 2.0 µm on the surface portion. By forming a structure, the corrosion resistance of the alloy is improved.

【0011】更に、経年劣化した構造材料に対して、適
切な予防保全の補修を行なうためには、既存の構造物に
悪影響を与えること無く、耐食性皮膜を形成すること
が、必要である。このために、新しい高耐食性Fe,N
i合金を低温溶射し、その後、レーザ照射することによ
り、既存の構造物に溶射による熱の悪影響を与えること
無く、かつ、低温照射皮膜の表面の平坦化および皮膜中
のガス成分を揮発させることにより、均質な合金皮膜組
成をうることができるものである。
Furthermore, in order to perform appropriate preventive maintenance repairs on structural materials that have deteriorated over time, it is necessary to form a corrosion resistant film without adversely affecting existing structures. For this reason, new high corrosion resistance Fe, N
By spraying the i alloy at low temperature and then irradiating it with laser, the existing structure is not adversely affected by heat due to thermal spraying, and the surface of the low temperature irradiation film is flattened and gas components in the film are volatilized. By this, a homogeneous alloy film composition can be obtained.

【0012】[0012]

【作用】鋭敏化による粒界腐食挙動はCr炭化物の析出
核形成とともに即座に進行するものではなく、析出核が
成長するに従って粒界近傍のCr濃度がある一定量以下
にまで低下した場合に粒界腐食が生じる。レーザビーム
の照射によって表面溶融を施すとき、改質層内に溶融ビ
ードの重なる部分が生じる。ビードを重ねて照射したと
き、隣接ビードの熱影響によって、加熱−冷却の熱サイ
クル中にCr炭化物析出温度領域に保持される部分が不
可避的に存在する。ビームの照射エネルギーが大きい場
合、冷却速度が小さいため上記析出温度に保持される時
間が長くなり、Cr炭化物の析出核が形成され、またそ
の頻度も高い。核形成した炭化物は改質後、低温鋭敏化
をもたらす様な温度条件の下で成長し、上述した様にC
r欠乏層が形成されるので改質層は再鋭敏化する。従っ
て照射エネルギーの大きい場合には改質直後の耐食性が
良好であっても、その後の低温鋭敏化によって粒界腐食
が進行する。また、照射エネルギーが小さすぎる条件下
では溶け込み不良となり充分な脱鋭敏化層が得られな
い。また、ステンレス鋼は冷却速度の差によって凝固組
織が変化する。Cr炭化物の析出核形成に及ぼす凝固組
織の影響を考えた場合、フェライトの存在する組織では
フェライトの存在によるCr濃度のマクロ的不均一性や
フェライトとオーステナイトのCrの拡散挙動の差など
によって初晶フェライト/オーステナイト2相組織の方
が初晶オーステナイト単相組織よりも析出核形成サイト
が多く、核形成しやすいと考えられる。
[Function] The intergranular corrosion behavior due to sensitization does not proceed immediately with the formation of precipitation nuclei of Cr carbide, but when the Cr concentration near the grain boundaries decreases to below a certain amount as the precipitation nuclei grow, Intercalation occurs. When the surface is melted by the irradiation of the laser beam, an overlapping portion of the molten bead is generated in the modified layer. When the beads are overlapped and irradiated, due to the thermal effect of the adjacent beads, a portion held in the Cr carbide precipitation temperature region inevitably exists during the heating-cooling thermal cycle. When the irradiation energy of the beam is high, the cooling rate is low, so that the time for holding at the above-mentioned precipitation temperature becomes long, and the precipitation nuclei of Cr carbide are formed, and the frequency thereof is high. After reforming, the nucleated carbides grow under the temperature conditions that bring about low-temperature sensitization, and as described above, C
Since the r-deficient layer is formed, the modified layer is re-sensitized. Therefore, when the irradiation energy is large, even if the corrosion resistance immediately after the modification is good, the intergranular corrosion progresses due to the subsequent low temperature sensitization. In addition, if the irradiation energy is too low, the penetration will be poor and a sufficient desensitization layer cannot be obtained. In addition, the solidification structure of stainless steel changes depending on the difference in cooling rate. Considering the influence of the solidification structure on the precipitation nucleation of Cr carbides, in the structure where ferrite is present, the primary crystal is caused by the macroscopic non-uniformity of Cr concentration due to the presence of ferrite and the difference in the diffusion behavior of Cr between ferrite and austenite. It is considered that the ferrite / austenite two-phase structure has more precipitation nucleation sites than the primary austenite single-phase structure, and is likely to form nucleation.

【0013】発明者らは照射エネルギー密度が0.00
5J/μm〜0.05J/μmの範囲内に制御した場
合、104℃/s〜106℃/sの冷却速度を有するセル
間隔が0.2〜2.0μmの範囲にあるセル組織を持つ表
面部形成される。その場合、上記の炭化物析出温度保持
時間が短いため、析出核が形成されないかあるいは頻度
が小さく、低温鋭敏化条件の下でも粒界腐食は発生しな
いことを見出した。また、パルスビームの照射ではビー
ムスポットの形成で凝固が完了し、冷却速度は105
/s〜106℃/sと極めて速く、かつ隣接スポットの
熱影響が小さいため、当該部に熱影響部がほとんど存在
しないことを見出した。さらに、レーザトーチを線状に
移動させずに、改質領域内でビームスポットを不連続に
形成しながら最終的にすべてのスポットが一部ずつ重な
るようにして隙間の無い表面改質層を形成した場合、上
記の隣接スポットの影響がさらに低減されることを見出
した。
The inventors have an irradiation energy density of 0.00
When controlled within the range of 5 J / μm to 0.05 J / μm, a cell structure having a cooling rate of 10 4 ° C./s to 10 6 ° C./s and a cell spacing of 0.2 to 2.0 μm is obtained. Has a surface part formed. In that case, it was found that, because the above-mentioned carbide precipitation temperature holding time was short, precipitation nuclei were not formed or the frequency was low, and intergranular corrosion did not occur even under low-temperature sensitization conditions. In addition, the irradiation with the pulsed beam completes the solidification by forming the beam spot, and the cooling rate is 10 5 ° C.
It has been found that there is almost no heat-affected zone in the relevant area because the heat-affected zone is extremely fast at / s to 10 6 ° C / s and the thermal effect of the adjacent spot is small. Furthermore, without moving the laser torch linearly, the beam spots were discontinuously formed in the modified region, and finally all the spots were partially overlapped to form a surface-modified layer having no gap. In this case, it was found that the influence of the adjacent spots described above was further reduced.

【0014】更に、新しい高耐食性Fe,Ni合金、す
なわち、Cr炭化物の析出の少ない低炭素系統のP,N
を0.01% 以下に低減したステンレス鋼や、ニオブを
1〜3%含有したインコネル600等の、Ni基合金を
プラントの運転温度より低い温度で、例えば、288℃
以下で、低温溶射し、既存の構造物に溶射による熱の悪
影響を与えること無く、かつ、その後、レーザ照射する
ことにより、低温溶射皮膜の表面急速加熱および、冷却
により、低温溶射皮膜の平坦化および皮膜中のガス成分
を揮発させることにより、均質な合金皮膜組成をうるこ
とができることを見出した。
Further, a new high corrosion resistance Fe / Ni alloy, that is, P / N of a low carbon system in which precipitation of Cr carbide is small.
At a temperature lower than the operating temperature of the plant, for example, 288 ° C., such as stainless steel whose content is reduced to 0.01% or less, or Inconel 600 containing 1-3% niobium.
In the following, the low-temperature spray coating is subjected to low-temperature spraying, without adversely affecting the existing structure by the heat of spraying, and thereafter, by laser irradiation, the surface of the low-temperature spray coating is rapidly heated and flattened by cooling. It was also found that a homogeneous alloy coating composition can be obtained by volatilizing the gas component in the coating.

【0015】[0015]

【実施例】【Example】

(実施例1)以下、本発明の実施例を図1より説明す
る。図1は代表的なオーステナイト系ステンレス鋼であ
るSUS304ステンレス鋼について照射エネルギーを
変化させた時の軽水炉プラントの炉内構造物の一部に適
用した例である。照射エネルギー密度が0.005J /
μm以下の条件では溶け込み不良あるいは凝固割れが生
じた。試験片はそれぞれ軽水炉プラントの稼働期間であ
る288℃,40年の低温鋭敏化条件を加速模擬した5
00℃,24hの熱履歴を与え、沸騰H2SO4−CuS
4溶液に72h浸せきした後、50Rに曲げて割れの
状況を見た。尚、比較材として低温鋭敏化(LTS)の
熱履歴を与えずに改質したままの状態で上記粒界腐食試
験に供した。LTS条件を与えずに改質したままの表面
部はいずれも粒界割れが見られなかったのに対し、LT
S条件を与えた改質部では照射エネルギー密度が0.0
05J/μm〜0.05J/μmの範囲内に制御する照
射条件すなわち、冷却速度が104℃/s〜106℃/s
の範囲内であり、セル間隔が0.2〜2.0μmの範囲に
あるセル組織を形成する条件でのみ、凝固割れが生じ
ず、かつ低温鋭敏化条件に耐えうる表面改質層が形成さ
れる。従って、表面改質の適正な照射条件として、照射
エネルギー密度を0.005J/μm〜0.05J/μm
の範囲内に制御する事が必要となる。
(Embodiment 1) An embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows an example in which a typical austenitic stainless steel, SUS304 stainless steel, is applied to a part of the internal structure of a light water reactor plant when the irradiation energy is changed. Irradiation energy density is 0.005J /
Under conditions of μm or less, poor penetration or solidification cracking occurred. Each of the test pieces was simulated by accelerating the low-temperature sensitization condition of 288 ° C for 40 years, which is the operating period of the light water reactor plant.
Boiled H 2 SO 4 -CuS with heat history of 00 ° C, 24h
After being dipped in the O 4 solution for 72 h, it was bent to 50 R and the state of cracking was observed. As a comparative material, the intergranular corrosion test was carried out in the state of being modified without giving a thermal history of low temperature sensitization (LTS). No intergranular cracks were observed on the surface of the as-modified surface without applying the LTS conditions, whereas LT
Irradiation energy density is 0.0 in the reformed part under S condition.
Irradiation conditions controlled within the range of 05 J / μm to 0.05 J / μm, that is, cooling rate of 10 4 ° C / s to 10 6 ° C / s
And the cell spacing is in the range of 0.2 to 2.0 μm, only under the condition that the cell structure is formed, solidification crack does not occur, and the surface modified layer that can withstand the low temperature sensitization condition is formed. It Therefore, as an appropriate irradiation condition for surface modification, the irradiation energy density is 0.005 J / μm to 0.05 J / μm.
It is necessary to control within the range of.

【0016】(実施例2)図2は低温溶射皮膜の断面図
である。高耐食性合金をアークにより溶融させ、部材に
溶射した皮膜の断面であり、溶射皮膜の付着性を高める
ために、粗面形成剤を適用した例である。粗面形成剤と
しては、二液溶剤型吹き付け常温乾燥タイプでセラミク
ス微粉末と特殊エポキシ樹脂が主成分の市販の塗布型粗
面形成剤を適用した例である。なお、ステンレス鋼の低
温溶射においては、セラミクス微粉末や特殊エポキシ樹
脂の残存が好ましく無い場合には、高耐食性Fe,Ni
基合金粉末と特殊粘着剤を主成分とした粗面形成剤を適
用する。このようにして、形成した皮膜には、気泡の発
生や、皮膜表面の粗さが生ずるが、通常の使用において
は、このままでも、使用可能である。
(Embodiment 2) FIG. 2 is a sectional view of a low temperature spray coating. This is a cross section of a coating sprayed on a member by melting a high corrosion resistant alloy by an arc, and is an example in which a rough surface forming agent is applied in order to enhance the adhesion of the sprayed coating. The rough surface forming agent is an example in which a commercially available coating type rough surface forming agent, which is a two-liquid solvent type sprayed room temperature dry type and contains ceramics fine powder and a special epoxy resin as main components. In the case of low temperature thermal spraying of stainless steel, if the fine ceramic powder or special epoxy resin remains undesirably, high corrosion resistance Fe, Ni
A roughening agent containing a base alloy powder and a special adhesive is used. In the film thus formed, bubbles are generated and the surface of the film is roughened, but it can be used as it is in normal use.

【0017】(実施例3)図3は高耐食性Fe,Ni基
合金を低温溶射し、その後、パルスレーザの照射によっ
て形成される表面改質部の形成方法を模式的に示したも
のである。既存の炉内構造物10の表面に低温溶射ノズ
ル13より高耐食性Fe,Ni基合金を冷却用気流,空
気又は、好ましくは、不活性ガス、例えば、アルゴン,
窒素,ヘリウム、とともに部材表面に吹き付け、低温溶
射皮膜12を形成する。その後、レーザ照射15によ
り、低温溶射皮膜12の表面を急速加熱冷却させて、レ
ーザ表面改質部14を形成する。このようにして、形成
した表面改質材を実施例1と同様の粒界腐食試験に供し
たところ、LTS条件を与えた改質部でも粒界割れが見
られず、低温鋭敏化条件に耐えうる表面改質層が形成さ
れることがわかった。
(Embodiment 3) FIG. 3 schematically shows a method of forming a surface-modified portion formed by low-temperature spraying a highly corrosion-resistant Fe-Ni-based alloy and then irradiating a pulsed laser. On the surface of the existing in-core structure 10, a high corrosion resistance Fe, Ni-based alloy is supplied from the low temperature spray nozzle 13 to a cooling air flow, air or, preferably, an inert gas such as argon,
The low temperature sprayed coating 12 is formed by spraying the surface of the member together with nitrogen and helium. After that, the surface of the low temperature sprayed coating 12 is rapidly heated and cooled by laser irradiation 15 to form the laser surface modified portion 14. When the surface modifier thus formed was subjected to an intergranular corrosion test similar to that of Example 1, no intergranular cracks were observed even in the modified part subjected to the LTS condition, and the surface modifier endured the low temperature sensitization condition. It was found that a surface-modifying layer was formed.

【0018】(実施例4)図4はオーステナイト単相セ
ル組織の形成が可能な成分の合金元素を粉末にして、粉
末付テープ16に添加し、粉末付きテープ押し付装置1
7で部材10に密着させた後、レーザビームを照射して
上記合金相組織を表面部に形成させたときの様子を示す
ものである。合金成分としては、JIS規格のSUS3
04,316,304L,316L,348,NCF60
0,NCF800,NCF690等が好適である。更
に、これらのうち、凝固時の偏析の原因となる、不純物
元素としてP,Nをすくなくとも、0.01% 以下に制
限することが望ましい。このときの条件で、粒界腐食割
れ試験を行なった。基材にはオーステナイト/フェライ
ト2相合金であるSUS312ステンレス鋼と、同じく
オーステナイト/フェライト2相合金であるSUS30
8ステンレス鋼、オーステナイト単相であるインコネル
600、同じくオーステナイト単相であるSUS316
ステンレス鋼を用いた。両合金はレーザ照射による溶融
−急冷凝固のみでは凝固組織がオーステナイト/フェラ
イト2相状態のままであり、Cr炭化物の核形成サイト
が多く、低温鋭敏化を抑止することは困難である。ま
た、炉内構造材として用いられるインコネル600、S
US316ステンレス鋼は炭素の固溶度が小さいことか
らレーザ照射による溶融−急冷凝固のみでは脱鋭敏化が
達成される照射条件では極めて速い凝固速度のため残留
応力が集中し、割れを抑止することが困難である。0.12
wt%のC量を持つ29Cr−9NiのSUS308ス
テンレス鋼、0.12wt%のC量を持つ20Cr−1
0NiのSUS308ステンレス鋼、0.07wt%の
C量を持つ74Ni−16Crのインコネル600、
0.07wt% のC量を持つ20Cr−12NiのSU
S316ステンレス鋼を共に1250℃で溶体化後、6
00℃,0.5 hの鋭敏化熱処理を施し、その表面に1
8Cr−8Ni−74Feの比で粉末を塗布したテール
の上から、レーザビームの照射をおこなった表面部を粒
界腐食割れ試験の供試材とした。試験片はそれぞれ低温
鋭敏化条件を加速模擬した500℃,24hの熱履歴を
与え、沸騰H2SO4−CuSO4溶液に72h浸せきした
後、50Rに曲げて割れの状況を見たものである。尚、
比較材として表面改質を施さない基材を低温鋭敏化熱履
歴を与えて上記粒界腐食試験に供した。その結果、基材
ではいずれも粒界割れが発生したのに対し、改質材では
いずれも粒界割れが見られなかった。これらの新しい知
見により、冷却速度が104℃/s〜106℃/sの範囲
となるレーザビームの適性条件での照射によって表面部
にセル間隔が0.2〜2.0μmの範囲にあるセル組織を
形成させた場合、異種材料においても耐粒界腐食割れ性
が向上することがわかった。
(Embodiment 4) FIG. 4 shows a powdery tape 16 with a powdery alloy element, which is a component capable of forming an austenite single-phase cell structure, and is added to the powdery tape 16.
7 shows a state when the member 10 is brought into close contact with the member 10 and then a laser beam is irradiated to form the alloy phase structure on the surface portion. As the alloy component, JIS standard SUS3
04, 316, 304L, 316L, 348, NCF60
0, NCF800, NCF690, etc. are suitable. Furthermore, among these, it is desirable to limit P and N as impurity elements that cause segregation during solidification to at least 0.01% or less. An intergranular corrosion cracking test was performed under the conditions at this time. The base material is SUS312 stainless steel, which is an austenite / ferrite dual phase alloy, and SUS30, which is also an austenite / ferrite dual phase alloy.
8 stainless steel, austenite single phase Inconel 600, also austenite single phase SUS316
Stainless steel was used. In both alloys, the solidification structure remains in an austenite / ferrite two-phase state only by melting and rapid solidification by laser irradiation, and there are many Cr carbide nucleation sites, and it is difficult to suppress low-temperature sensitization. Also, Inconel 600, S used as a structural material in the furnace
Since US316 stainless steel has a low solid solubility of carbon, desorption sensitization can be achieved only by melt-quenching and solidification by laser irradiation. Under irradiation conditions, the residual stress is concentrated due to an extremely fast solidification rate and cracking can be suppressed. Have difficulty. 0.12
29Cr-9Ni SUS308 stainless steel with C content of wt%, 20Cr-1 with C content of 0.12wt%
0Ni SUS308 stainless steel, 74Ni-16Cr Inconel 600 with C content of 0.07wt%,
20Cr-12Ni SU with 0.07 wt% C content
After solutionizing both S316 stainless steel at 1250 ° C, 6
Sensitization heat treatment at 00 ℃, 0.5h
The surface portion irradiated with the laser beam from the top of the tail coated with the powder at the ratio of 8Cr-8Ni-74Fe was used as the test material for the intergranular corrosion cracking test. Each test piece was subjected to a thermal history of 500 ° C. for 24 hours, which was simulated by accelerating the low temperature sensitization condition, immersed in a boiling H 2 SO 4 —CuSO 4 solution for 72 hours, and then bent at 50 R to see the cracks. .. still,
As a comparative material, a base material not surface-modified was subjected to the low temperature sensitization heat history and subjected to the above-mentioned intergranular corrosion test. As a result, intergranular cracks occurred in all the base materials, whereas no intergranular cracks were seen in the modified material. According to these new findings, the cell spacing on the surface portion is in the range of 0.2 to 2.0 μm by irradiation of the laser beam under the proper condition that the cooling rate is in the range of 10 4 ° C / s to 10 6 ° C / s. It was found that when a cell structure is formed, the intergranular corrosion cracking resistance is improved even in different materials.

【0019】(実施例5)図5は、低温溶射装置の主要
部を示す図である。高耐食性合金は線状20にして自動
供給装置により供給される。少なくとも2本以上の線材
20のそれぞれに電源21につながる導電端子19に接
続し、ノズル18の端部でアーク24を生成させる。ア
ーク部で溶融した合金は、ボンベ23に蓄圧された圧縮
ガス22を、前記のアーク部24を包込む様に、円錐状
に気流を形成させる。アーク部24で溶融下合金は、吹
き付け気流25の負圧に引かれて、溶滴26となって、
吹き付け気流25とともに目標部材表面に吹き付けられ
る。
(Embodiment 5) FIG. 5 is a diagram showing a main part of a low temperature thermal spraying apparatus. The highly corrosion resistant alloy is made into a linear shape 20 and supplied by an automatic supply device. Each of the at least two wires 20 is connected to a conductive terminal 19 connected to a power source 21, and an arc 24 is generated at the end of the nozzle 18. The alloy melted in the arc portion causes the compressed gas 22 accumulated in the cylinder 23 to form a conical airflow so as to enclose the arc portion 24. In the arc portion 24, the molten lower alloy is attracted by the negative pressure of the blowing air current 25 to form droplets 26,
It is sprayed on the surface of the target member together with the spray airflow 25.

【0020】本発明者らは、圧縮ガスとして、種々のガ
スを検討した結果、空気よりも、不活性ガスが溶射皮膜
の酸化を防止できることが判明した。不活性ガスとして
は、アルゴンが最も良く、継いでヘリウム,チッソが好
ましい。尚、原子炉圧力容器の内部のように狭隘部に本
発明を適用するためには、溶滴の飛翔距離が短いことが
望ましい。このために、本発明者らは、種々の実験によ
り、最適アーク電流と吹き付け気流流量との関係及び部
材表面温度の関係を把握して、これらの制御因子を自動
検出装置と電流及び気流流量の制御装置により、部材表
面が目標値以上にならない様に、自動監視できるように
した。例えば、炉内の温度288℃以上にならないよう
に設定することにより、対象部材SUS304の鋭敏化
を防止できる。さらに、低温化の冷却効果を高めるため
に、かつ、使用ガス量を低減させるためには、液体ヘリ
ウム,チッソを用いることができる。
As a result of examining various gases as the compressed gas, the present inventors have found that the inert gas can prevent the oxidation of the sprayed coating more than the air. Argon is most preferable as the inert gas, and helium and nitrogen are preferable as the next. In addition, in order to apply the present invention to a narrow portion such as the inside of a reactor pressure vessel, it is desirable that the flight distance of a droplet is short. For this reason, the present inventors grasped the relationship between the optimum arc current and the blowing air flow rate and the relationship between the member surface temperature by various experiments, and determined these control factors by the automatic detection device and the current and air flow rate. The control device enables automatic monitoring so that the surface of the member does not exceed the target value. For example, by setting the temperature in the furnace so that it does not exceed 288 ° C., it is possible to prevent the target member SUS304 from becoming sensitized. Further, liquid helium or nitrogen can be used to enhance the cooling effect of lowering the temperature and to reduce the amount of gas used.

【0021】(実施例6)図6は本発明を更に応用した
例である。対象部材が広い範囲の場合、低温溶射の効率
を高めるため、複数のノズルを組み合わせ、溶滴範囲が
帯状にできるマルチタイプノズルを開発した。この場合
も、実施例6に示した自動監視システムが適用できる。
すなわち、最適アーク電流と吹き付け気流流量との関係
及び部材表面温度の関係を把握して、これらの制御因子
を自動検出装置と電流及び気流流量の制御装置により、
部材表面が目標値以上にならない様に、自動監視できる
ようにした。例えば、炉内の温度288℃以上にならな
いように設定することにより、対象部材SUS304の
鋭敏化を防止できる。さらに、低温で、かつ、使用ガス
量を低減させるためには、液体ヘリウム,チッソを用い
ることができる。
(Sixth Embodiment) FIG. 6 is an example in which the present invention is further applied. In the case of a wide range of target members, we have developed a multi-type nozzle that can combine multiple nozzles to form a droplet-shaped range in order to increase the efficiency of low-temperature spraying. Also in this case, the automatic monitoring system shown in the sixth embodiment can be applied.
That is, by grasping the relationship between the optimum arc current and the blowing air flow rate and the relationship between the member surface temperature, these control factors are detected by the automatic detection device and the current and air flow rate control device.
It is now possible to monitor automatically so that the surface of the member does not exceed the target value. For example, by setting the temperature in the furnace so that it does not exceed 288 ° C., it is possible to prevent the target member SUS304 from becoming sensitized. Furthermore, liquid helium or nitrogen can be used at a low temperature to reduce the amount of gas used.

【0022】(実施例7)図7に本発明を軽水原子炉圧
力容器27の内部構造物であるシュラウド30の炉内構
造物狭隘部に適用した例を示す。シュラウドは燃料集合
体を支持する構造物であり、炉心支持板29と同様に、
ステンレス鋼で出来ている。なお、シュラウド以外のこ
れらの、ステンレス鋼または、ニッケル基合金でできて
いる炉内構造物にも、当然、本発明は、適用できる。ま
た、シュラウドサポートレグ31シュラウドサポートプ
レート32はニッケル基合金で出来ている。特に、シュ
ラウド30は中性子照射を受け長時間の運転により材料
の特性が変わる。プラントの供用期間の延長をはかる為
に、必要に応じて、予め、これらの既存の構造物に、高
耐食性合金皮膜を形成させることにより、更に構造物の
信頼性を向上することができる。本実施例は運転中のプ
ラントに本発明の低温溶射とレーザ照射を適用した例で
ある。炉内構造物は放射線当量率が高いため、水シール
39により、遮蔽用の水を上部に蓄え、遮蔽を行ない、
かつ、シュラウド周辺は水抜き状態で作業することが可
能となる。低温溶射とレーザ照射装置はヘッド35に取
付けられ、開閉棒34と開閉ピン36により、ポール3
3に固定される。42は駆動機構であり、ホース46,
ケーブル45により、低温溶射装置制御部及び、ガスボ
ンベ44である。シュラウド周辺の雰囲気をコントロー
ルするために、ガス供給パイプ38と穴27が設けられ
ている。
(Embodiment 7) FIG. 7 shows an example in which the present invention is applied to a narrow portion of a reactor internal structure of a shroud 30 which is an internal structure of a light water reactor pressure vessel 27. The shroud is a structure that supports the fuel assembly, and like the core support plate 29,
Made of stainless steel. It should be noted that the present invention is naturally applicable to the reactor internal structure made of stainless steel or nickel-based alloy other than the shroud. Further, the shroud support leg 31 and the shroud support plate 32 are made of a nickel base alloy. In particular, the shroud 30 is irradiated with neutrons, and the characteristics of the material change due to long-term operation. In order to extend the service life of the plant, the reliability of the structure can be further improved by forming a high corrosion resistant alloy film on these existing structures in advance, if necessary. This embodiment is an example in which the low temperature spraying and laser irradiation of the present invention are applied to an operating plant. Since the reactor internal structure has a high radiation equivalent rate, the water seal 39 stores water for shielding at the upper portion and shields the water.
In addition, it is possible to work in the drained state around the shroud. The low temperature spraying and laser irradiation device is attached to the head 35, and by means of the opening / closing bar 34 and the opening / closing pin 36, the pole 3
It is fixed at 3. 42 is a drive mechanism, and the hose 46,
A cable 45 is a low temperature spraying apparatus control unit and a gas cylinder 44. A gas supply pipe 38 and a hole 27 are provided to control the atmosphere around the shroud.

【0023】本実施例によれば、既設のプラントの構造
材料を改質後、運転温度に相当する低温鋭敏化条件の下
での応力腐食割れを防止する事ができるので、288℃
の高温高圧水に接する軽水炉プラントを長寿命化させる
のに大きな効果がある。
According to this embodiment, after the structural material of the existing plant is modified, it is possible to prevent stress corrosion cracking under the low temperature sensitization condition corresponding to the operating temperature.
It has a great effect on prolonging the life of the light water reactor plant that comes into contact with the high temperature and high pressure water.

【0024】[0024]

【発明の効果】本発明によれば、既設のプラントの構造
材料を改質後、運転温度に相当する低温鋭敏化条件の下
での応力腐食割れを防止する事ができるので、288℃
の高温高圧水に接する軽水炉プラントを長寿命化させる
のに大きな効果がある。また、現在想定されている上記
プラントの40年の稼働期間中の応力腐食割れを防止す
る事ができるので、施工コストを大きく低下させる効果
がある。
According to the present invention, after the structural material of the existing plant is modified, stress corrosion cracking under the low temperature sensitization condition corresponding to the operating temperature can be prevented.
It has a great effect on prolonging the life of the light water reactor plant that comes into contact with the high temperature and high pressure water. Further, it is possible to prevent stress corrosion cracking during the 40-year operation period of the above-mentioned plant which is currently assumed, so that there is an effect of greatly reducing the construction cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】パルスレーザの照射によって形成される表面改
質部の模式図である。
FIG. 1 is a schematic view of a surface modified portion formed by irradiation with a pulse laser.

【図2】低温溶射により形成した防食皮膜の断面図であ
る。
FIG. 2 is a sectional view of an anticorrosion coating formed by low temperature spraying.

【図3】部材に低温照射した後、レーザ照射して形成し
た防食皮膜の模式図である。
FIG. 3 is a schematic view of an anticorrosion coating formed by irradiating a member at low temperature and then irradiating with laser.

【図4】高耐食性合金粉末テープを密着させて、レーザ
ビームを照射して、防食皮膜を形成するプロセスを説明
する図である。
FIG. 4 is a diagram illustrating a process of bringing a highly corrosion resistant alloy powder tape into close contact and irradiating with a laser beam to form an anticorrosion coating.

【図5】低温溶射装置を模式的に示した図である。FIG. 5 is a diagram schematically showing a low temperature spraying apparatus.

【図6】複数の低温溶射ノズルにより部材に高耐食性皮
膜を形成する装置を模式的に示した図である。
FIG. 6 is a diagram schematically showing an apparatus for forming a high corrosion resistant coating on a member by using a plurality of low temperature spray nozzles.

【図7】炉内構造物に本発明の低温溶射とレーザ照射を
シュラウドに適用した例を示す図である。
FIG. 7 is a diagram showing an example in which low temperature spraying and laser irradiation of the present invention are applied to a shroud for the internal structure of a furnace.

【図8】シュラウドに本発明の低温溶射とレーザ照射を
適用した例を説明する図である。
FIG. 8 is a diagram illustrating an example in which low temperature spraying and laser irradiation of the present invention are applied to a shroud.

【符号の説明】[Explanation of symbols]

1…母材、2…溶接部、3…レーザビーム光、4…レー
ザ加工ヘッド、5,7,8…ベンディングミラー、6…
ビームガイドチューブ、7…水シール胴、8…栓、9…
レーザ発信器、10…部材、11…粗面形成材、12…
低温溶射皮膜、13…低温溶射装置、14…レーザ表面
改質部、15…レーザ照射装置、16…粉末付テープ、
17…粉末付テープ押しつけ装置、18…ノズル、19
…導電端子、20…線材、21…電源、22…圧縮ガ
ス、23…ボンベ、24…アーク、25…吹き付け気
流、26…溶滴、27…原子炉圧力容器、28…上部格
子板、29…炉心支持板、30…シュラウド、31…シ
ュラウドサポートレグ、32…シュラウドサポートプレ
ート、33…ポール、34…開閉棒、35…ヘッド、3
6…開閉ピン、37…ガス供給穴、38…ガス供給パイ
プ、39…水シール、40…給水スパージャ、41…炉
心スプレー配管、42…駆動機構、43…低温溶射制御
装置、44…ガスボンベ、45…ケーブル、46…ホー
ス。
1 ... Base material, 2 ... Welding part, 3 ... Laser beam, 4 ... Laser processing head, 5, 7, 8 ... Bending mirror, 6 ...
Beam guide tube, 7 ... Water seal cylinder, 8 ... Stopper, 9 ...
Laser oscillator, 10 ... Member, 11 ... Rough surface forming material, 12 ...
Low temperature sprayed coating, 13 ... Low temperature spraying device, 14 ... Laser surface modification part, 15 ... Laser irradiation device, 16 ... Tape with powder,
17 ... Powder pressing tape pressing device, 18 ... Nozzle, 19
... Conductive terminals, 20 ... Wires, 21 ... Power source, 22 ... Compressed gas, 23 ... Cylinder, 24 ... Arc, 25 ... Spraying airflow, 26 ... Droplets, 27 ... Reactor pressure vessel, 28 ... Upper lattice plate, 29 ... Core support plate, 30 ... Shroud, 31 ... Shroud support leg, 32 ... Shroud support plate, 33 ... Pole, 34 ... Opening bar, 35 ... Head, 3
6 ... Open / close pin, 37 ... Gas supply hole, 38 ... Gas supply pipe, 39 ... Water seal, 40 ... Water supply sparger, 41 ... Core spray pipe, 42 ... Drive mechanism, 43 ... Low temperature spray control device, 44 ... Gas cylinder, 45 … Cables, 46… hoses.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 玉井 康方 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 黒沢 孝一 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 青田 欣也 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasukata Tamai 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory (72) Inventor Koichi Kurosawa 3-cho, Hitachi-shi, Ibaraki No. 1 No. 1 Hitachi Ltd., Hitachi Plant (72) Inventor Kinya Aota 4026 Kujicho, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】Fe,Ni基合金からなる部材表面に高耐
食性合金を低温溶射し、その後、レーザ照射することを
特徴とする皮膜形成法。
1. A method for forming a film, which comprises spraying a highly corrosion-resistant alloy at a low temperature on the surface of a member made of an Fe, Ni-based alloy, and then irradiating a laser.
【請求項2】Fe,Ni基合金からなる原子力プラント
用部材の表面に、Fe,Ni基合金からなる高耐食性合
金を低温溶射し、その後、レーザ光を照射して表面部を
溶融させた後、104℃/s〜106℃/sの冷却速度を
持つ再凝固によってセル間隔が0.2〜2.0μmの範囲
にあるセル組織を持つ溶融凝固層からなる表面改質層を
有することを特徴とする皮膜形成法。
2. A high corrosion resistant alloy made of Fe, Ni-based alloy is sprayed at a low temperature on the surface of a nuclear power plant member made of Fe, Ni-based alloy, and then laser light is irradiated to melt the surface portion. It has a surface-modified layer consisting of a melt-solidified layer having a cell structure in which the cell spacing is in the range of 0.2 to 2.0 μm by resolidification having a cooling rate of 10 4 ° C / s to 10 6 ° C / s. A film forming method characterized by.
【請求項3】Fe,Ni基合金からなる部材表面に高耐
食性合金を低温溶射し、その後、レーザ照射することを
特徴とする皮膜形成法により、補修した原子炉炉内構造
物。
3. A nuclear reactor internal structure repaired by a film forming method characterized in that a high corrosion resistant alloy is sprayed at low temperature on the surface of a member made of Fe, Ni-based alloy, and then laser irradiation is carried out.
【請求項4】Fe,Ni基合金からなる部材表面に、高
耐食性合金粉末をテープ状にして、部材表面に密着させ
た後、レーザ照射することを特徴とする皮膜形成法。
4. A method for forming a coating film, comprising: forming a tape of highly corrosion-resistant alloy powder on a surface of a member made of an Fe, Ni-based alloy, bringing the powder into close contact with the surface of the member, and then irradiating laser.
【請求項5】Fe,Ni基合金からなる部材表面に高耐
食性合金を低温溶射し、その後、レーザ照射する皮膜形
成法において、低温溶射とほぼ同じにレーザ照射するこ
とを特徴とする皮膜形成法。
5. A coating forming method comprising spraying a high corrosion resistant alloy at low temperature on a surface of a member made of Fe, Ni-based alloy and then irradiating with laser. ..
【請求項6】Fe,Ni基合金からなる部材表面に高耐
食性合金を低温溶射し、その後、レーザ照射し、皮膜形
成を行なうことを特徴とする装置。
6. An apparatus characterized in that a high-corrosion-resistant alloy is sprayed at low temperature on the surface of a member made of Fe, Ni-based alloy, and then laser irradiation is carried out to form a film.
【請求項7】Fe,Ni基合金からなる部材表面に高耐
食性合金を低温溶射し、その後、レーザ照射し、皮膜形
成を行なう装置において、吹き付け冷却用気流として、
不活性ガスを用いることを特徴とする装置。
7. A device for spraying a high corrosion resistant alloy at a low temperature onto a surface of a member made of an Fe, Ni-based alloy, and then irradiating a laser to form a film, as a blowing cooling air flow,
A device characterized by using an inert gas.
【請求項8】Fe,Ni基合金からなる部材表面に高耐
食性合金を低温溶射し、その後、レーザ照射し、皮膜形
成を行なう装置において、吹き付け冷却用気流として、
液体窒素を用いることを特徴とする装置。
8. An apparatus for spraying a highly corrosion resistant alloy at a low temperature on a surface of a member made of an Fe, Ni-based alloy and then irradiating a laser to form a film, as an air flow for spray cooling,
An apparatus characterized by using liquid nitrogen.
【請求項9】Fe,Ni基合金からなる部材表面に高耐
食性合金を低温溶射し、その後、レーザ照射し、皮膜形
成を行なう装置において、低温溶射装置の吹き付け冷却
用気流として、液体アルゴンを用いることを特徴とする
装置。
9. In a device for spraying a high corrosion resistant alloy at a low temperature onto a surface of a member made of an Fe, Ni-based alloy and then irradiating a laser to form a film, liquid argon is used as a blowing cooling air flow of the low temperature spraying device. A device characterized by the above.
【請求項10】Fe,Ni基合金からなる部材表面に高
耐食性合金を低温溶射し、その後、レーザ照射し、皮膜
形成を行なう装置において、低温溶射装置の吹き付け冷
却用気流の部材表面の温度を検出し、設定温度にするた
め、吹き付け冷却用気流の流量を制御する回路をもつこ
とを特徴とする装置。
10. In an apparatus for spraying a high corrosion resistant alloy at low temperature on a surface of a member made of Fe, Ni-based alloy, and then performing laser irradiation to form a film, the temperature of the surface of the member of the blowing cooling air flow of the low temperature spraying device is controlled. A device that has a circuit that controls the flow rate of the blowing cooling airflow to detect and set the temperature.
JP3241679A 1991-09-20 1991-09-20 Surface modification treatment method Expired - Fee Related JP3042072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3241679A JP3042072B2 (en) 1991-09-20 1991-09-20 Surface modification treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3241679A JP3042072B2 (en) 1991-09-20 1991-09-20 Surface modification treatment method

Publications (2)

Publication Number Publication Date
JPH0578812A true JPH0578812A (en) 1993-03-30
JP3042072B2 JP3042072B2 (en) 2000-05-15

Family

ID=17077910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3241679A Expired - Fee Related JP3042072B2 (en) 1991-09-20 1991-09-20 Surface modification treatment method

Country Status (1)

Country Link
JP (1) JP3042072B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005005359A1 (en) * 2005-02-02 2006-08-10 Siemens Ag Process for cold gas spraying and coating system suitable for this process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005005359A1 (en) * 2005-02-02 2006-08-10 Siemens Ag Process for cold gas spraying and coating system suitable for this process
DE102005005359B4 (en) * 2005-02-02 2009-05-07 Siemens Ag Method for cold gas spraying
US8021715B2 (en) 2005-02-02 2011-09-20 Siemens Aktiengesellschaft Cold gas spraying method

Also Published As

Publication number Publication date
JP3042072B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
JP6541686B2 (en) Adhesion of protective coatings containing metal and chromium containing layers to zirconium alloys for nuclear power generation
Slobodyan Resistance, electron-and laser-beam welding of zirconium alloys for nuclear applications: a review
JP2996890B2 (en) Method for mitigating initiation or propagation of cracks on the surface of a metal component of a water-cooled reactor or related equipment, and metal component having a crack on the surface
JP5706608B2 (en) Fuel rod assembly and method for reducing radiation-enhanced corrosion of zirconium-based elements
JP2011161459A (en) Method of welding material with high-corrosion resistance
US5022936A (en) Method for improving property of weld of austenitic stainless steel
US5674419A (en) Method for weld repairing of structures in nuclear reactors
JP3428175B2 (en) Structure having surface treatment layer and method for forming surface treatment layer
JP2657437B2 (en) Stress corrosion cracking resistant austenitic material and method for producing the same
JPH0578812A (en) Formation of film
JP2000254776A (en) Stress corrosion crack prevention method for atomic reactor-inside piping welded part
JP3682599B2 (en) Surface treatment method for welded structure in reactor
JPH06322508A (en) Surface modification process for structure
JP2000230996A (en) Repair method for nuclear reactor structure
JP4412533B2 (en) Method for improving and repairing stress corrosion cracking of high nickel alloy
JPH02258190A (en) Method for reforming welded part of austenitic stainless steel
JPH08225916A (en) Thermal spraying method and device thereof
US5695666A (en) Method of welding neutron irradiated metallic material
JP2020172679A (en) Coating processing method for structural member
JPS58154487A (en) Method for welding tubular member
JPH05281386A (en) Method for transforming reactor incore component material
JPH05125432A (en) Method for improving corrosion resistance at weld zone of stainless steel
Nishimoto et al. Effect of filler metal La additions on micro-cracking in multi-pass laser overlay weld metal of alloy 690
JP2003066183A (en) Method for repairing nuclear reactor structures
CN117506136A (en) Laser welding method for controlling welding defects of heat shield of engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees