JPH0578578B2 - - Google Patents

Info

Publication number
JPH0578578B2
JPH0578578B2 JP59072223A JP7222384A JPH0578578B2 JP H0578578 B2 JPH0578578 B2 JP H0578578B2 JP 59072223 A JP59072223 A JP 59072223A JP 7222384 A JP7222384 A JP 7222384A JP H0578578 B2 JPH0578578 B2 JP H0578578B2
Authority
JP
Japan
Prior art keywords
chitosan
granular
solution
acid
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59072223A
Other languages
Japanese (ja)
Other versions
JPS60215003A (en
Inventor
Kenzo Motosugi
Koji Kibune
Yasuhiko Yamaguchi
Hiroyuki Tanae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP59072223A priority Critical patent/JPS60215003A/en
Publication of JPS60215003A publication Critical patent/JPS60215003A/en
Publication of JPH0578578B2 publication Critical patent/JPH0578578B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、キトサン成形体の製造方法に関し、
さらに詳細には各種クロマトグラフイーの担体、
金属キレート剤、吸着剤などとして有用な粒状キ
トサンの製造方法に関するものである。 キトサンの原料であるキチンは、豊富に存在す
る未利用天然資源であり、その有効利用が渇望さ
れている。キトサンの利用に関しては、例えば
「化学と生物」誌第21巻、635ページ(1983年)に
記載されているように、多くの試みがなされてい
るが、実用化例は極めて少ない。その原因として
キトサンの成形技術が未確立であることがあげら
れる。例えば、キトサンの金属キレート能力やイ
オン交換能力を応用し、実用化するためには、キ
トサンの粒状加工技術が必須である。しかしなが
ら、そのような成形技術はこれまでほとんど検討
されず、したがつてキトサンの粒状化成形技術の
確立が熱望されていた。 キトサンの粒状加工技術としては、例えば特開
昭55−167048号公報には、球状のキチン成形体の
製造法が提案されている。しかしながら、この方
法はキトサン溶液をまず分散させ、次いでアシル
化することにより凝固せしめるという方法である
から、アシル化によりアミノ基はブロツクされて
しまう。キトサンに存在している遊離のアミノ基
は、天然に存在するキトサンをアルカリ処理によ
りN−脱アセチル化して得られるものであり、さ
らにこのアミノ基はキトサンが金属キレート能や
イオン交換能を発現するために必須である。 したがつて、特開昭55−167048号公報に記載さ
れている方法は、キトサン分子に存在する有用な
アミノ基をアシル化によりブロツクしてしまうと
いう重大な欠点をもつている。 本発明者らは、以上述べた点に鑑み、キトサン
の粒状化成形技術を確立すべく鋭意検討を重ねた
結果、溶液状キトサンを凝固浴中に滴下すること
により粒状キトサンが得られることを見出し本発
明に到達したものである。 すなわち本発明は、溶液状キトサンを凝固浴中
に滴下し、凝固させることを特徴とする粒状のキ
トサン成形体の製造方法を要旨とするものであ
る。 本発明にいう粒状とは、球状、米粒状、円筒
状、偏平な球状、その他不定形などの形状を意味
する。本発明の製造方法によれば、ほぼ均一な形
状と大きさを有する粒状のキトサンを得ることが
できる。また、本発明の製造方法によれば直径も
しくは長径が0.001〜10mm、特に0.001〜5mmの粒
状のキトサンを容易に得ることができる。 本発明におけるキトサンとは、キチンのN−脱
アセチル化処理により得られ、そのN−脱アセチ
ル化度が50%をこえるものである。また、上記キ
トサンを化学修飾して得られるさまざまなキトサ
ン誘導体も含まれる。 本発明における溶液状キトサンとは、キトサン
又はその誘導体が溶剤に溶解している液体をい
う。溶剤としては、例えばギ酸、酢酸、プロピオ
ン酸、酪酸、吉草酸、イソプロピオン酸、イソ酪
酸、イソ吉草酸、安息香酸、ケイ皮酸、サリチル
酸、アントラニル酸、フタル酸などの有機酸類、
塩酸、硝酸、硫酸などの鉱酸類を溶解した水もし
くはその他の有機溶剤が使用できる。これら溶剤
へのキトサンの溶解は公知の方法で行うことがで
き、キトサン濃度は用いるキトサンの重合度にも
よるが、通常は0.01〜10w/w%である。溶液状
キトサンの30℃における粘度は、好ましくは
5000cps以下、さらに好ましくは2000cps以下、最
適には1000cps以下である。 本発明における凝固浴としては、キトサンが凝
固するような液体であればいかなるものも使用で
き、凝固浴としては一種類の溶剤である必要はな
く、二種類以上の異なる溶剤の混合物又は必要に
応じて無機塩、界面活性化剤、架橋剤などを含ん
でいてもよい。凝固浴に用いる好ましい具体例と
してはNaOH水溶液ならびにアルカリ性のアル
コール類などがあげられる。凝固浴の濃度は溶液
状キトサンの凝固速度と関連するためなるべく一
定に保つことが望ましく、その温度は使用する凝
固浴の種類によつて異なるが、おおむね好ましく
は−10〜80℃、さらに好ましくは−5〜50℃、最
適には0〜40℃の範囲であればよい。また、粒状
キトサンを製造する際、凝固浴はゆるやかに撹拌
することが望ましい。 本発明の形態が粒状であるキトサン成形体は、
すでに述べた溶液状キトサンを凝固浴中に滴下す
ることにより製造することができるが、ここで滴
下とは、溶液状キトサンがノズルあるいはチユー
ブなどの先端から押し出され一滴ずつ不連続に凝
固液中に落下することを意味する。 本発明の方法により粒状のキトサンを製造する
際、キトサン粒子の大きさは溶液状キトサンの液
滴の大きさにより規定される。すなわち、溶液状
キトサンを吐出するノズルの径及び溶液状キトサ
ンの粘度によりキトサン粒子の大きさをコントロ
ールすることができる。 本発明の方法により、凝固浴中にて凝固した粒
状のキトサンは、その使用目的によつてさらに他
の溶媒で洗浄するか、又は通常知られている方法
で乾燥してもよい。 また、粒状のキトサンを製造する際、溶液状キ
トサンに様々な物質を分散又は溶解しておくとそ
れらの物質を含む粒状キトサンが得られることは
言うまでもない。例えば、微生物細胞を分散させ
た溶液状キトサンを、本発明の方法により粒状に
成形すれば粒状のキトサンに包括固定化された微
生物細胞が得られ、同様に医薬品、農薬、香料、
色素などを含む粒状のキトサンを製造することも
可能である。 本発明により得られるキトサン成形体は、金属
キレート剤やイオン交換体として有用であるばか
りか、酵素や生体細胞の固定化担体、アフイニテ
イークロマトグラフイーの担体、医薬品などの生
理活性物質の徐放性基材や医薬吸着材としての応
用も可能である。さらに、本発明のキトサン成形
体の製造方法は、極めて簡便な操作によりすでに
述べたように多くの産業分野で応用できる粒状の
キトサンを提供するものであり、豊富に存在する
未利用資源であるキトサンの積極的な有効利用に
大きく貢献するものである。 以下に実施例をあげ、本発明をさらに具体的に
説明する。 実施例 1 新日本化学株式会社から入手したキトサン3g
を200mlのイオン交換水に懸濁し、次いで3mlの
氷酢酸を加え、室温で約3時間撹拌し、溶液状キ
トサンを調製した。この溶液状キトサンの粘度を
B型粘度計を用いて30℃にて測定したところ、
650cpsであつた。 この溶液状キトサン50gを直径3mmのチユーブ
の先端から200mlの凝固浴中に高さ約10cmの位置
から滴下し、凝固させ粒状キトサンを製造した。
凝固浴としては、1N−NaOH水溶液を用い、マ
グネチツクスターラーにてゆるやかに撹拌した。
約30分間撹拌を続けたのち、凝固した粒状キトサ
ンを200mlのメタノール中に移し、濃塩酸を用い
て中和し、再度メタノールで洗浄し、第1図の顕
微鏡写真(倍率10倍)に示すような直径約5mmの
白色粒状キトサンを得た。この粒状キトサンを真
空乾燥したところ、直径約1mmの乾燥粒状キトサ
ン760mgを得た。また、この粒状キトサンは希薄
酢酸水溶液に溶解した。 実施例 2 実施例1で用いた溶液状キトサンを、注射針
〔テルモ株式会社製21G×1 1/2〕の先端から1N
−NaOH水溶液に滴下し、凝固させた。得られ
た粒状キトサンを脱イオン中に移し、濃塩酸を用
いて中和し、さらに脱イオン水中にて洗浄した。
このようにして直径約2mmの粒状キトサンを得
た。 参考例 1 粒状キトサンの金属キレート能力を検討すると
ともに、粉末状キトサンのそれと比較した。 すなわち、表−1に示す各種金属塩(塩酸塩又
は硝酸塩)25mmolを含む水溶液100mlに、実施
例2で得た粒状キトサンを乾燥したもの又はキト
サン粉末の0.5gを加え、室温で24時間撹拌し、
それぞれのキトサンへの吸着量を測定した。 その結果、表−1に示すように粒状キトサンは
粉末状キトサンと比べいずれの金属に対しても高
い吸着量を示した。
The present invention relates to a method for producing a chitosan molded body,
More specifically, various chromatography carriers,
This invention relates to a method for producing granular chitosan useful as a metal chelating agent, adsorbent, etc. Chitin, the raw material for chitosan, is an abundant and unused natural resource, and its effective use is eagerly desired. Regarding the use of chitosan, many attempts have been made, for example, as described in Chemistry and Biology, Volume 21, Page 635 (1983), but there are very few examples of practical use. One of the reasons for this is that the molding technology for chitosan has not yet been established. For example, in order to apply chitosan's metal chelating ability and ion exchange ability and put it into practical use, granular processing technology for chitosan is essential. However, such a molding technique has hardly been studied to date, and there has therefore been a strong desire to establish a granulation molding technique for chitosan. As a technique for processing chitosan into particles, for example, Japanese Patent Application Laid-Open No. 167048/1983 proposes a method for producing spherical chitin molded bodies. However, since this method involves first dispersing the chitosan solution and then coagulating it by acylation, the amino groups are blocked by the acylation. The free amino groups present in chitosan are obtained by N-deacetylation of naturally occurring chitosan by alkali treatment, and these amino groups also allow chitosan to exhibit metal chelating ability and ion exchange ability. It is essential for Therefore, the method described in JP-A-55-167048 has the serious drawback that the useful amino groups present in the chitosan molecule are blocked by acylation. In view of the above-mentioned points, the present inventors conducted extensive studies to establish a granulation molding technology for chitosan, and as a result, they discovered that granular chitosan can be obtained by dropping chitosan in solution into a coagulation bath. This has led to the present invention. That is, the gist of the present invention is a method for producing a granular chitosan molded article, which is characterized by dropping chitosan solution into a coagulation bath and coagulating it. The granular shape as used in the present invention means shapes such as spherical, rice grain-like, cylindrical, flat spherical, and other irregular shapes. According to the production method of the present invention, granular chitosan having a substantially uniform shape and size can be obtained. Further, according to the production method of the present invention, granular chitosan having a diameter or major axis of 0.001 to 10 mm, particularly 0.001 to 5 mm can be easily obtained. Chitosan in the present invention is obtained by N-deacetylation treatment of chitin, and the degree of N-deacetylation exceeds 50%. It also includes various chitosan derivatives obtained by chemically modifying the chitosan described above. The chitosan solution in the present invention refers to a liquid in which chitosan or a derivative thereof is dissolved in a solvent. Examples of the solvent include organic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, isopropionic acid, isobutyric acid, isovaleric acid, benzoic acid, cinnamic acid, salicylic acid, anthranilic acid, and phthalic acid;
Water or other organic solvents in which mineral acids such as hydrochloric acid, nitric acid, and sulfuric acid are dissolved can be used. Chitosan can be dissolved in these solvents by a known method, and the chitosan concentration depends on the degree of polymerization of the chitosan used, but is usually 0.01 to 10 w/w%. The viscosity of the chitosan solution at 30°C is preferably
It is 5000 cps or less, more preferably 2000 cps or less, and optimally 1000 cps or less. As the coagulation bath in the present invention, any liquid that can coagulate chitosan can be used, and the coagulation bath does not need to be a single type of solvent, but a mixture of two or more different solvents or a mixture of two or more different solvents, or as necessary. It may also contain an inorganic salt, a surfactant, a crosslinking agent, etc. Preferred specific examples for use in the coagulation bath include NaOH aqueous solution and alkaline alcohols. The concentration of the coagulation bath is related to the coagulation rate of the chitosan solution, so it is desirable to keep it as constant as possible.The temperature varies depending on the type of coagulation bath used, but is generally preferably -10 to 80°C, more preferably The temperature may be in the range of -5 to 50°C, optimally 0 to 40°C. Furthermore, when producing granular chitosan, it is desirable that the coagulation bath be gently stirred. The chitosan molded article of the present invention has a granular form,
It can be produced by dropping the chitosan solution mentioned above into a coagulation bath. Dropping here means that the chitosan solution is extruded from the tip of a nozzle or tube and discontinuously drops into the coagulation liquid drop by drop. means to fall. When producing granular chitosan by the method of the present invention, the size of the chitosan particles is determined by the size of the droplets of chitosan in solution. That is, the size of the chitosan particles can be controlled by the diameter of the nozzle that discharges the chitosan solution and the viscosity of the chitosan solution. The granular chitosan coagulated in the coagulation bath according to the method of the present invention may be further washed with another solvent or dried by a commonly known method, depending on the purpose of use. Furthermore, it goes without saying that when producing granular chitosan, by dispersing or dissolving various substances in chitosan solution, granular chitosan containing those substances can be obtained. For example, if a solution of chitosan in which microbial cells are dispersed is formed into granules by the method of the present invention, microbial cells entrapping and immobilized in the granular chitosan can be obtained, which can also be used for pharmaceuticals, agricultural chemicals, fragrances, etc.
It is also possible to produce granular chitosan containing pigments and the like. The chitosan molded article obtained by the present invention is not only useful as a metal chelating agent or ion exchanger, but also as an immobilized carrier for enzymes and living cells, a carrier for affinity chromatography, and a sustained release of physiologically active substances such as pharmaceuticals. It can also be applied as a chemical base material or a pharmaceutical adsorbent. Furthermore, the method for producing chitosan molded bodies of the present invention provides granular chitosan that can be applied in many industrial fields as described above through extremely simple operations. This will greatly contribute to the active and effective use of The present invention will be explained in more detail with reference to Examples below. Example 1 3g of chitosan obtained from Shin Nippon Chemical Co., Ltd.
was suspended in 200 ml of ion-exchanged water, then 3 ml of glacial acetic acid was added, and the mixture was stirred at room temperature for about 3 hours to prepare a chitosan solution. The viscosity of this chitosan solution was measured at 30°C using a B-type viscometer.
It was 650cps. 50 g of this chitosan solution was dropped from the tip of a 3 mm diameter tube into a 200 ml coagulation bath at a height of about 10 cm, and coagulated to produce granular chitosan.
A 1N-NaOH aqueous solution was used as the coagulation bath, and was gently stirred with a magnetic stirrer.
After continuing to stir for about 30 minutes, the solidified granular chitosan was transferred to 200 ml of methanol, neutralized with concentrated hydrochloric acid, washed again with methanol, and dissolved as shown in the micrograph in Figure 1 (10x magnification). White granular chitosan with a diameter of about 5 mm was obtained. When this granular chitosan was dried under vacuum, 760 mg of dry granular chitosan with a diameter of about 1 mm was obtained. Further, this granular chitosan was dissolved in a dilute aqueous acetic acid solution. Example 2 The chitosan solution used in Example 1 was injected 1N from the tip of a syringe needle [manufactured by Terumo Corporation, 21G x 1 1/2].
-Dropped into NaOH aqueous solution and solidified. The obtained granular chitosan was transferred to a deionized tank, neutralized using concentrated hydrochloric acid, and further washed in deionized water.
In this way, granular chitosan with a diameter of about 2 mm was obtained. Reference Example 1 The metal chelating ability of granular chitosan was investigated and compared with that of powdered chitosan. That is, 0.5 g of dried granular chitosan obtained in Example 2 or chitosan powder was added to 100 ml of an aqueous solution containing 25 mmol of various metal salts (hydrochloride or nitrate) shown in Table 1, and the mixture was stirred at room temperature for 24 hours. ,
The adsorption amount to each chitosan was measured. As a result, as shown in Table 1, granular chitosan showed a higher adsorption amount for all metals than powdered chitosan.

【表】 参考例 2 液体から金属を吸着、回収する操作は、一般に
カラム法で行われる場合が多い。そこで、形態の
異なるキトサンをカラムに充填した場合の流速を
比較検討した。 すなわち、粒状キトサンとしては、実施例2で
得られたものを用い、粉末状キトサンは衝撃型粉
砕器(細川ミクロンビクトリーミルVP−10)で
100メツシユに粉末化したものを用いた。 それぞれの形態のキトサン5g(乾重量)に水
を加え、一夜放置後、内径1cmのカラムに詰め
た。約40cmの静水圧をかけて通水した際の流速を
測定した結果、粒状キトサンでは94ml/min、粉
末キトサンでは27ml/minであつた。粒状キトサ
ンによる流速低下はほとんど無視できる値であつ
た。
[Table] Reference Example 2 The operation of adsorbing and recovering metals from liquids is generally performed using a column method. Therefore, we compared and investigated the flow rates when columns were filled with chitosan of different forms. That is, the granular chitosan obtained in Example 2 was used, and the powdered chitosan was crushed with an impact type mill (Hosokawa Micron Victory Mill VP-10).
A 100 mesh powder was used. Water was added to 5 g (dry weight) of each form of chitosan, and after standing overnight, it was packed into a column with an inner diameter of 1 cm. As a result of measuring the flow rate when water was passed under a hydrostatic pressure of about 40 cm, it was 94 ml/min for granular chitosan and 27 ml/min for powdered chitosan. The decrease in flow rate due to granular chitosan was almost negligible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の粒状キトサンの顕微鏡写真
であり、倍率は10倍である。
FIG. 1 is a micrograph of the granular chitosan of Example 1, and the magnification is 10 times.

Claims (1)

【特許請求の範囲】[Claims] 1 溶液状キトサンを凝固浴中に滴下し、凝固さ
せることを特徴とする粒状のキトサン成形体の製
造方法。
1. A method for producing a granular chitosan molded body, which comprises dropping chitosan solution into a coagulation bath and coagulating it.
JP59072223A 1984-04-10 1984-04-10 Chitosan molding and its production Granted JPS60215003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59072223A JPS60215003A (en) 1984-04-10 1984-04-10 Chitosan molding and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59072223A JPS60215003A (en) 1984-04-10 1984-04-10 Chitosan molding and its production

Publications (2)

Publication Number Publication Date
JPS60215003A JPS60215003A (en) 1985-10-28
JPH0578578B2 true JPH0578578B2 (en) 1993-10-29

Family

ID=13483037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59072223A Granted JPS60215003A (en) 1984-04-10 1984-04-10 Chitosan molding and its production

Country Status (1)

Country Link
JP (1) JPS60215003A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190110A (en) * 1986-02-15 1987-08-20 Fuji Boseki Kk Chitosan-containing cosmetic
JPH0657761B2 (en) * 1989-02-27 1994-08-03 富士紡績株式会社 Manufacturing method of porous chitosan moldings
JPH0747594B2 (en) * 1990-07-20 1995-05-24 大陽酸素株式会社 Method for producing high-purity alkoxysilane
US5858350A (en) 1993-12-01 1999-01-12 Marine Polymer Technologies Methods and compositions for poly-β-1→4-N-acetylglucosamine cell therapy system
JP2005081278A (en) * 2003-09-09 2005-03-31 Univ Nihon Method for adsorption removing phenolic compound using chitosane bead
WO2007004947A1 (en) * 2005-07-06 2007-01-11 Ge Healthcare Bio-Sciences Ab Method of preparing a separation matrix
EP3000487B8 (en) 2007-02-19 2022-06-15 Marine Polymer Technologies, Inc. Hemostatic compositions and therapeutic regimens
NZ703163A (en) 2010-04-15 2016-06-24 Marinepolymer Tech Inc Anti-bacterial applications of poly-n-acetylglucosamine nanofibers
ES2712098T3 (en) 2011-04-15 2019-05-09 Marine Polymer Tech Inc Treatment of HSV infections with poly-N-acetylglucosamine nanofibers
CN102352047B (en) * 2011-06-27 2013-04-03 张会艳 Preparation method of chitin balls

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860753A (en) * 1971-12-03 1973-08-25
JPS515834A (en) * 1974-07-02 1976-01-19 Sumitomo Chemical Co ANKYOHAISUIHOHO
JPS5590503A (en) * 1978-12-29 1980-07-09 Kureha Chem Ind Co Ltd Chitin molding material
JPS56106901A (en) * 1980-01-30 1981-08-25 Mitsubishi Rayon Co Ltd Production of formed product of chitosan
JPS5829801A (en) * 1981-08-13 1983-02-22 Agency Of Ind Science & Technol Production of n-acylated chitosan
JPS5857401A (en) * 1981-09-30 1983-04-05 Agency Of Ind Science & Technol Production of particulate porous chitosan

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860753A (en) * 1971-12-03 1973-08-25
JPS515834A (en) * 1974-07-02 1976-01-19 Sumitomo Chemical Co ANKYOHAISUIHOHO
JPS5590503A (en) * 1978-12-29 1980-07-09 Kureha Chem Ind Co Ltd Chitin molding material
JPS56106901A (en) * 1980-01-30 1981-08-25 Mitsubishi Rayon Co Ltd Production of formed product of chitosan
JPS5829801A (en) * 1981-08-13 1983-02-22 Agency Of Ind Science & Technol Production of n-acylated chitosan
JPS5857401A (en) * 1981-09-30 1983-04-05 Agency Of Ind Science & Technol Production of particulate porous chitosan

Also Published As

Publication number Publication date
JPS60215003A (en) 1985-10-28

Similar Documents

Publication Publication Date Title
Shi et al. Preparation of aerogel beads and microspheres based on chitosan and cellulose for drug delivery: A review
US4833237A (en) Process for producing granular porous chitosan
Liu et al. Synthesis of cellulose aerogels as promising carriers for drug delivery: a review
CA2124665C (en) Super-absorbents and a process for their preparation
KR950003609B1 (en) Process for preparing sustained release pharmaceutical preparations
JPS6320301A (en) Chitosan microparticle
JPH0578578B2 (en)
JPS60155245A (en) Porous spherical cellulose acetate particle and its production
JPS6045223B2 (en) Silicon dioxide-containing composition and method for producing the same
CA1076047A (en) Porous cellulose beads
US3597350A (en) Gel filtration process
JPWO2020121805A1 (en) Manufacturing method of cellulose beads
CN107714674A (en) A kind of preparation method of PLGA microballoons
CN113615706A (en) Water-soluble composite sustained-release agent and preparation method thereof
JPS6176504A (en) Production of porous granular chitosan
JPS5930722B2 (en) Method for producing powdery porous chitosan
US4948814A (en) Ion exchanger based on cross-linked glucomannan
JPS6354286B2 (en)
NO873184L (en) POLYMER TREATED JONE CHANGE RESIN.
JPS6320302A (en) Production of chitosan particle
JPH04210239A (en) Adsorbent and its production
JPS6317902A (en) Production of chitosan granule
JPH0578577B2 (en)
JPS63210101A (en) Manufacture of ultrafine porous chitosan or chitin particle
CN110938156A (en) Amphiphilic chitosan, preparation method thereof and amphiphilic chitosan-based nano microcapsule applying amphiphilic chitosan