JPH0578389B2 - - Google Patents

Info

Publication number
JPH0578389B2
JPH0578389B2 JP24741184A JP24741184A JPH0578389B2 JP H0578389 B2 JPH0578389 B2 JP H0578389B2 JP 24741184 A JP24741184 A JP 24741184A JP 24741184 A JP24741184 A JP 24741184A JP H0578389 B2 JPH0578389 B2 JP H0578389B2
Authority
JP
Japan
Prior art keywords
electrode
discharge electrode
gas flow
discharge
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24741184A
Other languages
Japanese (ja)
Other versions
JPS61125455A (en
Inventor
Kazutaka Tomimatsu
Takashi Yagyu
Yoshi Yagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24741184A priority Critical patent/JPS61125455A/en
Publication of JPS61125455A publication Critical patent/JPS61125455A/en
Publication of JPH0578389B2 publication Critical patent/JPH0578389B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、丸形集塵極を用いた電気式集塵装置
に係わり、特に集塵極の配列ピツチの改良をはか
つた電気式集塵装置に関する。 [従来の技術] 従来の電気式集塵装置(以下EPと略記する)
は、ダスト抵抗が高くなりその固有抵抗値が1011
〜1012[Ω−cm]を越えるようになると、集塵極
に堆積したダスト層内での絶縁破壊、所謂逆電離
現象を生じるため、大幅な捕集性の低下がある。
このため、石炭火力用或いは焼結機用EP等の高
抵抗ダストを取り扱う場合には、一般に捕集性の
低下を補うべくEP容量を大きくして対応してい
る。 高抵抗ダスト対策として種々の試みがなされて
おり、その一つとして空気清浄器等で広く実用化
されている2段階式EP、即ちダストに荷電を与
える帯電部と高電界でダストを集塵する集塵部と
に分け、高電界部で電流を極力少なくすることに
より逆電離を抑制する方法を一般に適用しようと
する試みがある。 しかし、この場合もダストの帯電部の逆電離の
抑制が困難なため、色々な方法が試みられてい
る。例えば、パイプを集塵電極として使用し、パ
イプの中に水を流すことにより電極を冷却し、ダ
ストの電気抗体を下げ逆電離を抑制する方式、ま
た集塵極と放電極との間に第3の電極を設け、逆
電離時に発生する逆極性のイオンを吸収すること
により逆電離を抑制しようとする第3電極方式等
がある。さらに、荷電制御の工夫により、逆電離
を起こすことなくダストに電荷のみを与える、ボ
クサーチヤージヤーと称する粒子荷電装置(特願
昭52−106400号)等も考案されている。しかし、
これらの方法はいずれも一般産業用の商用規模で
の実機化が困難なため、実用化には至つていな
い。 そこで本発明者等は、帯電部でダストに出来る
だけ電荷を与え、後段の集塵部との組合わせによ
り高い集塵効率を得ることを目的として、丸形或
いは同等の形状をした集塵極より構成される多角
形(通常は4角形)の配列と、その多角形の中心
に配置される放電極の組合わせにより形成される
電気的な特性が、従来のガス流方向に平行な平板
上の集塵極とその中心に配列される放電極の列と
の組合わせと異なり、ダストに電荷を与える特性
のみに着目した場合の優れていることに注目し
て、丸形集塵極を用いた電気式集塵装置を提案し
た(特願昭59−66286号)。 この丸形の集塵極を用いることにより、集塵極
表面の電流密度の一様化及び集塵極表面の電界強
度の向上によつて、同一集塵面積当りの集塵効率
及びダストへ電荷を与える能力が、従来のガス流
方向に平行に集塵極を配置する方式に比べ優れて
いることがテスト等により確認されている。 特願昭59−66286号で提案された丸形の集塵極
を用いた場合と、従来の平行平板の集塵極を用い
た場合との比較を、第7図a,b及び第8図a,
bに示すが、電流密度分布特性は、第7図bに示
す従来形の電極組合わせ(1b+2b)による電流
密度に比べ、同図aで示すように丸形の集塵極2
aの表面では非常に均一な電流密度が得られてい
る。また、放電極と集塵極の等電界強度線及び最
短部での電界強度分布は、第8図bに示す従来の
電極構成では放電極1bの近傍にのみ電界強度の
高い部分Pbが存在しているが、同図aに示す丸
形の集塵極の電極構成では放電極1aの近傍のみ
ならず、集塵極2aの近傍にも高い電界強度を有
する部分Paを構成することができている。 [発明が解決しようとする問題点] しかしながら、この丸形の集塵極の方式を採用
する場合、放電極を丸形の集塵極で構成される多
角形(一般的には4角形)の中心に構成させるこ
とが必要であり、従来の放電極の場合にはその配
列、支持方式が難しいという不具合があつた。例
えば、第9図は上下方向に放電極を支持する例で
あるが、集塵極2の支持部7を放電極1が貫通す
ることになり、絶縁距離は放電極1の貫通部にて
最も短くなるため、運転電圧は貫通部の絶縁破壊
耐圧にて支配される。また、放電極1をフレーム
組にし、水平方向に支持する場合でも、第10図
に示すように放電極取付け枠3と集塵極2の絶縁
距離が最もが短くなり、運転電圧が本来の絶縁破
壊耐圧に比べ低下するという不具合点がある。 本発明は、上記事情を考慮してなされたもの
で、その目的とするところは、運転電圧の低下を
伴うことなく、丸形集塵極の特徴を発揮できる放
電極を実現し、丸形集塵極本来の表面電流密度の
均一性及び高い電界密度を確保することのできる
電気式集塵装置を提供することにある。 [問題点を解決するための手段] 本発明の特徴は、集塵極と放電極との間にコロ
ナ放電を生起し、ばい塵粒子を上記集塵極に吸引
する電気式集塵装置において、前記集塵極を丸形
に形成すると共に、前記放電極を幅広形に形成
し、幅広形放電極の幅広部分の両線をガス流方向
に向け、且つ該放電極の取付け枠をガス流直角方
向に向け、また丸形集塵極の配列のガス流方向に
対する基準ピツチをガス流直角方向に対するそれ
よりも上記放電極の幅と略等しい長さ分だけ長く
するようにしたものである。 [作用] 幅広タイプの放電極を用い、且つ放電極の取付
け枠をガス流直角方向とし、且つ丸形集塵極の基
準ピツチをガス流方向に放電極の幅長程度長くと
ることにより、放電極取付け枠と集塵極との間の
火花放電による運転電圧の低下を生じない。ま
た、幅広放電極を用いたことによるガス流れの乱
れも生じない。 [発明の効果] 本発明によれば、放電極取付け枠と集塵極との
間の火花放電による運転電圧の低下を生じること
なく、且つ幅広電極を用いたことによるガス流れ
の乱れも生じることなく、丸形集塵極表面上の電
流密度及び電界強度分布を一様とし、丸形集塵極
本来の集塵極表面の電流密度の均一性及び高い電
界強度を確保できるというメリツトを十分に生か
すことができる。 [実施例] 以下、本発明の詳細を図示の実施例によつて説
明する。 第1図は本発明の一実施例に係わる電気式集塵
装置の要部構成を示す平面図、第2図はその斜視
図、第3図は放電極とその取付け枠との関係を示
す斜視図である。図において、放電極1はガス流
方向に幅(幅をldとする)を持たせた構成とし、
且つ放電極1の取付け枠3をガス流直角方向に配
置し、且つ放電極1を取囲む丸形集塵極2の配置
をガス流直角方向の基準電極ピツチl1に対し、ガ
ス流方向の基準電極ピツチl2をl1+ldと同程度の
長さとなるように設定し、且つ放電極1の先端よ
り集塵極2の先端5までの距離lwが放電極取付
け枠3と集塵極2との最短距離lminの関係にお
いて、 lmin/lw≧0.7 となるように設定する。 なお、第5図a,bに示すように基準の多角形
が三角形の場合には、正三角形の一辺を基準寸法
l1とする時の高さlsを用い、ガス流方向の基準電
極ピツチl2をls+ldと同程度の長さとなるように
設定し、且つ lmin/lw≧0.7 となるように設定する。 また、放電極1の形状は第4図aに示す如きフ
ラツトバータイプに限らず、同図bに示す如きト
ゲ付の放電極でも構わないことはいうまでもな
い。 このように構成された本装置は、次のように作
用する。 放電極1に幅向タイプの放電極を用いること
により、 lmin/lw≧0.7 が達成でき、lminの間で火花放電を起こすこ
とによる運転電圧の低下を防ぐ。具体的に第1
図において丸形集塵極2の径lc=60[mm](配管
呼びで50A相当)とし、放電極取付け枠3の径
lf=34[mm](25A相当)とすると、 lmin=(l2−lf−lc)×1/2 にて表わされ、今l2=l1+ldとして設定すると lmin=(l1+ld−94)×1/2 となる。一般的にガス流直角方向の寸法は300
[mm]近辺の値をとるためl1=300[mm]とする
と、 lmin103+ld/2 となり、一方上記の数値で放電極1の先端と集
塵極2の先端5との距離lwは
[Industrial Application Field] The present invention relates to an electrostatic precipitator using round dust collecting electrodes, and more particularly to an electrostatic precipitator in which the arrangement pitch of the dust collecting electrodes is improved. [Conventional technology] Conventional electrostatic precipitator (hereinafter abbreviated as EP)
, the dust resistance increases and its specific resistance value becomes 10 11
If it exceeds ~10 12 [Ω-cm], dielectric breakdown occurs within the dust layer deposited on the dust collection electrode, a so-called reverse ionization phenomenon, resulting in a significant drop in collection performance.
For this reason, when handling high-resistance dust such as EP for coal-fired power plants or sintering machines, the EP capacity is generally increased to compensate for the decrease in collection performance. Various attempts have been made to counter high-resistance dust, one of which is the two-stage EP, which is widely used in air purifiers, etc., which collects dust using a charged part that charges the dust and a high electric field. Attempts have been made to generally apply a method of suppressing reverse ionization by reducing the current as much as possible in the high electric field area and the dust collecting area. However, in this case as well, it is difficult to suppress reverse ionization of the charged part of the dust, and various methods have been tried. For example, a method uses a pipe as a dust collection electrode and cools the electrode by flowing water through the pipe to lower the electrical resistance of the dust and suppress reverse ionization. There is a third electrode method that attempts to suppress reverse ionization by providing three electrodes and absorbing ions of opposite polarity generated during reverse ionization. In addition, a particle charging device called a boxer charger (Japanese Patent Application No. 106,400/1982) has also been devised, which uses charge control techniques to apply only an electric charge to dust without causing reverse ionization. but,
All of these methods have not been put into practical use because they are difficult to implement on a commercial scale for general industry. Therefore, the present inventors developed a dust collection electrode with a round shape or an equivalent shape, with the aim of giving as much charge to the dust as possible in the charging part and obtaining high dust collection efficiency by combining it with the dust collection part in the latter stage. The electrical characteristics formed by the combination of an array of polygons (usually quadrilaterals) and a discharge electrode placed at the center of the polygons are similar to those on a flat plate parallel to the gas flow direction. Unlike the combination of a dust collection electrode and a row of discharge electrodes arranged in the center, we focused on the superiority of focusing only on the property of giving charge to dust, and used round dust collection electrodes. proposed an electric dust collector (Japanese Patent Application No. 59-66286). By using this round dust collection electrode, the current density on the surface of the dust collection electrode is made uniform and the electric field strength on the surface of the dust collection electrode is improved, thereby increasing the dust collection efficiency per the same dust collection area and charging the dust. It has been confirmed through tests that the ability to provide dust is superior to that of the conventional method in which dust collection electrodes are arranged parallel to the gas flow direction. Figures 7a and b and Figure 8 compare the case of using the round dust collecting electrode proposed in Japanese Patent Application No. 59-66286 and the case of using the conventional parallel plate dust collecting electrode. a,
As shown in Fig. 7b, the current density distribution characteristics are different from the current density with the conventional electrode combination (1b+2b) shown in Fig. 7b, as shown in Fig. 7a.
A very uniform current density is obtained on the surface of a. In addition, in the equal electric field strength line and the electric field intensity distribution at the shortest point between the discharge electrode and the dust collection electrode, in the conventional electrode configuration shown in Figure 8b, there is a portion Pb with high electric field strength only in the vicinity of the discharge electrode 1b. However, in the electrode configuration of the round dust collection electrode shown in Figure a, a portion Pa having high electric field strength can be formed not only near the discharge electrode 1a but also near the dust collection electrode 2a. There is. [Problems to be Solved by the Invention] However, when adopting this method of round dust collecting electrodes, the discharge electrode is formed of a polygonal (generally quadrangular) shape composed of round dust collecting electrodes. It is necessary to configure the discharge electrode in the center, and in the case of conventional discharge electrodes, the arrangement and support method are difficult. For example, FIG. 9 shows an example in which the discharge electrode is supported in the vertical direction, but the discharge electrode 1 passes through the support part 7 of the dust collecting electrode 2, and the insulation distance is the longest at the penetration part of the discharge electrode 1. Since the length is shortened, the operating voltage is controlled by the dielectric breakdown voltage of the penetration portion. Furthermore, even when the discharge electrode 1 is assembled into a frame and supported horizontally, the insulation distance between the discharge electrode mounting frame 3 and the dust collection electrode 2 becomes the shortest, as shown in FIG. There is a drawback that the breakdown voltage is lower than the breakdown voltage. The present invention has been made in consideration of the above circumstances, and its purpose is to realize a discharge electrode that can exhibit the characteristics of a round dust collection electrode without reducing the operating voltage. An object of the present invention is to provide an electrostatic precipitator that can ensure the uniformity of surface current density and high electric field density inherent to dust electrodes. [Means for Solving the Problems] The present invention is characterized in that an electric dust collector generates a corona discharge between a dust collection electrode and a discharge electrode, and attracts dust particles to the dust collection electrode. The dust collection electrode is formed into a round shape, and the discharge electrode is formed into a wide shape, with both lines of the wide part of the wide discharge electrode facing the gas flow direction, and the mounting frame of the discharge electrode is oriented perpendicular to the gas flow. In addition, the reference pitch of the arrangement of round dust collecting electrodes in the gas flow direction is made longer than the reference pitch in the direction perpendicular to the gas flow by a length approximately equal to the width of the discharge electrode. [Function] By using a wide type discharge electrode, oriented the mounting frame of the discharge electrode in the direction perpendicular to the gas flow, and making the reference pitch of the round dust collection electrode as long as the width of the discharge electrode in the gas flow direction, the discharge can be improved. There is no drop in operating voltage due to spark discharge between the electrode mounting frame and the dust collecting electrode. Further, the gas flow is not disturbed due to the use of the wide discharge electrode. [Effects of the Invention] According to the present invention, there is no reduction in operating voltage due to spark discharge between the discharge electrode mounting frame and the dust collection electrode, and there is no disturbance in gas flow due to the use of a wide electrode. The current density and electric field strength distribution on the surface of the round dust collecting electrode are made uniform, and the merits of ensuring the uniformity of current density and high electric field strength on the surface of the round dust collecting electrode, which are inherent to the round dust collecting electrode, are fully realized. You can make use of it. [Examples] Hereinafter, details of the present invention will be explained with reference to illustrated examples. Fig. 1 is a plan view showing the main part configuration of an electrostatic precipitator according to an embodiment of the present invention, Fig. 2 is a perspective view thereof, and Fig. 3 is a perspective view showing the relationship between the discharge electrode and its mounting frame. It is a diagram. In the figure, the discharge electrode 1 has a width in the gas flow direction (width is ld),
In addition, the mounting frame 3 of the discharge electrode 1 is arranged in the direction perpendicular to the gas flow, and the arrangement of the round dust collection electrode 2 surrounding the discharge electrode 1 is arranged in the direction perpendicular to the gas flow with respect to the reference electrode pitch l1 in the direction perpendicular to the gas flow. The reference electrode pitch l 2 is set to be approximately the same length as l 1 + ld, and the distance lw from the tip of the discharge electrode 1 to the tip 5 of the dust collection electrode 2 is the distance between the discharge electrode mounting frame 3 and the dust collection electrode 2. In the relationship of the shortest distance lmin with , set so that lmin/lw≧0.7. In addition, when the reference polygon is a triangle as shown in Figure 5 a and b, one side of the equilateral triangle is the reference dimension.
Using the height ls when l 1 , the reference electrode pitch l 2 in the gas flow direction is set to be approximately the same length as ls + ld, and set so that lmin/lw≧0.7. It goes without saying that the shape of the discharge electrode 1 is not limited to the flat bar type shown in FIG. 4a, but may also be a discharge electrode with spikes as shown in FIG. 4b. The device configured in this way operates as follows. By using a widthwise type discharge electrode as the discharge electrode 1, lmin/lw≧0.7 can be achieved, and a drop in operating voltage due to spark discharge between lmin can be prevented. Specifically, the first
In the figure, the diameter lc of the round dust collecting electrode 2 is 60 [mm] (equivalent to 50A in piping nominal), and the diameter of the discharge electrode mounting frame 3 is
When lf = 34 [mm] (equivalent to 25A), it is expressed as lmin = (l 2 - lf - lc) x 1/2, and if we set l 2 = l 1 + ld, then lmin = (l 1 + ld - 94)×1/2. Generally, the dimension perpendicular to the gas flow is 300
If l 1 = 300 [mm] to take a value close to [mm], then lmin103 + ld/2, and on the other hand, with the above value, the distance lw between the tip of the discharge electrode 1 and the tip 5 of the collecting electrode 2 is

【化】 となる。従つて、ldが従来の放電極並に5〜10
[mm]程度の場合には、 lmin/lw≒0.58 程度しか確保できないが、ld≧50[mm]とする
ことにより、 lmin/lw≧0.7 が達成できる。テスト結果によれば、高抵抗ダ
ストの雰囲気で火花放電を起こす距離ls(Sは
火花放電を示す添字)は、放電極1のようにエ
ツヂのある部分と放電枠3のようにエツヂの無
い部分ではダストの付着状況によつても変化す
るが、大略 lmins(放電枠):lws(放電線) =1:0.7〜0.85 にあるため、 lmin/lw≧0.7 を確保することにより、本来の放電線と集塵極
の火花破壊耐圧まで運転電圧を確保できる。一
方、 lmin/lw<0.7 の場合には放電枠3と集塵極2との間lminに
て火花放電を生じ、このため運転電圧の低下を
生じ本来の丸形集塵極の特徴が生かすことがで
きない。 上記の例では従来のようなピアノ線の放電極
を使用した場合、 lmin/lw≧0.58 であるため、 lmins/lws×0.7 の場合に比べ運転電圧は、 0.58/0.7=0.83倍、 即ち約20[%]程度本来の運転電圧に比べて
低下することになる。 放電極1の取付け枠3をガス流直角方向に支
持することにより放電極1の幅方向(幅広部)
をガス流方向に持たせることが可能となり、電
極が幅広いことによるガス流れの乱れを防止で
きる。 第1図において従来のEPと同様ガス流と同
方向に放電極取付け枠3を配置する場合、ガス
流方向はY方向となるが、この場合放電極1の
ldの幅が大きい程ガス流れを妨げる方向に作用
するため、性能低下の要因となるが、本発明で
はX方向にガス流方向をもたせているため、放
電極1のldを大きくとつてもガス流を乱すこと
がなく性能低下が起こらない。 l2をl1+ldと同程度の長さとすることにより
幅広形放電極1を用いても集塵極表面上の電界
強度分布及び電流密度の一様性が保たれる。第
6図aにおいてガス流直角方向の基本寸法l1
ガス流方向の基準寸法l2とが等しい場合、集塵
極2が放電極1によつて囲まれる電気力線が一
様となるため、実験的にもまた論理的にも性能
が良いことが確認されている。 一方、作用に示すように幅広タイプの放電極
1(幅長ld)を用いた場合、第6図bに示すよう
に放電極1の先端と集塵極2の距離はガス流方向
に(l2−ld)/2、ガス流直角方向にl1/2とな
り、l2をl1+ldと同程度の長さにとることにより、
それぞれの距離がガス流方向及び直角方向ともほ
ぼ同程度になる。その結果、第6図a図において
l1=l2の時と同じような電気力線が得られ集塵極
表面上の電界強度分布及び電流密度の一様性が保
たれる。 このように本実施例装置によれば、幅広タイプ
の放電極1を用い、且つ放電極1の取付け枠3を
ガス流直角方向とし、且つ丸形集塵極2の基準ピ
ツチをガス流方向に放電極1の幅長程度長くとる
ことにより、放電極取付け枠3と集塵極2との間
の火花放電による運転電圧の低下を生じない。ま
た、幅広形の放電極1を用いたことによるガス流
れの乱れも生じない。 従つて本実施例装置によれば、放電極取付け枠
3と集塵極2との間の火花放電による運転電圧の
低下を生じることなく、且つ幅広電極を用いたこ
とによるガス流れの乱れも生じることなく、丸形
集塵極表面上の電流密度及び電界強度分布を一様
とし、丸形集塵極本来の集塵極表面の電流密度の
均一性及び高い電界強度を確保出来るというメリ
ツトを生かすことができる。 なお、本発明は上述した実施例に限定されるも
のではなく、その要旨を逸脱しない範囲で、種々
変形して実施することができる。
[C] becomes. Therefore, ld is 5 to 10, which is the same as that of conventional discharge electrodes.
[mm], lmin/lw≒0.58 can only be secured, but by setting ld≧50[mm], lmin/lw≧0.7 can be achieved. According to the test results, the distance ls (S is a subscript indicating spark discharge) at which a spark discharge occurs in a high-resistance dust atmosphere is the following: a part with an edge, such as the discharge electrode 1, and a part without an edge, such as the discharge frame 3. Although it changes depending on the state of dust adhesion, approximately lmins (discharge frame): lws (discharge line) = 1:0.7 to 0.85, so by ensuring lmin/lw≧0.7, the original discharge line The operating voltage can be maintained up to the spark breakdown voltage of the dust collecting electrode. On the other hand, when lmin/lw<0.7, a spark discharge occurs at lmin between the discharge frame 3 and the dust collection electrode 2, which causes a drop in the operating voltage and makes it impossible to take advantage of the characteristics of the original round dust collection electrode. I can't. In the above example, when a conventional piano wire discharge electrode is used, lmin/lw≧0.58, so compared to the case of lmins/lws×0.7, the operating voltage is 0.58/0.7=0.83 times, or about 20 [%] compared to the original operating voltage. By supporting the mounting frame 3 of the discharge electrode 1 in the direction perpendicular to the gas flow, the width direction (wide part) of the discharge electrode 1 is
It is possible to have this in the direction of the gas flow, and it is possible to prevent disturbances in the gas flow caused by the wide electrode. In Figure 1, when the discharge electrode mounting frame 3 is arranged in the same direction as the gas flow as in the conventional EP, the gas flow direction is the Y direction, but in this case the discharge electrode 1
The larger the width of ld, the more it acts in the direction of obstructing the gas flow, which causes a decrease in performance.However, in the present invention, since the gas flow direction is in the X direction, even if the ld of the discharge electrode 1 is made large, the gas There is no flow disturbance and no performance deterioration occurs. By setting l 2 to the same length as l 1 +ld, even if a wide discharge electrode 1 is used, the uniformity of the electric field strength distribution and current density on the surface of the collecting electrode can be maintained. If the basic dimension l 1 in the direction perpendicular to the gas flow and the reference dimension l 2 in the gas flow direction are equal in FIG. It has been confirmed that the performance is good both experimentally and theoretically. On the other hand, when a wide type discharge electrode 1 (width length ld) is used as shown in the operation, the distance between the tip of the discharge electrode 1 and the dust collecting electrode 2 is (l) in the gas flow direction, as shown in Figure 6b. 2 −ld)/2, and l 1 /2 in the direction perpendicular to the gas flow, and by taking l 2 to the same length as l 1 + ld,
The respective distances are approximately the same in both the gas flow direction and the perpendicular direction. As a result, in Figure 6a,
Electric lines of force similar to those when l 1 = l 2 are obtained, and the uniformity of the electric field strength distribution and current density on the surface of the dust collecting electrode is maintained. In this way, according to the device of this embodiment, the wide type discharge electrode 1 is used, the mounting frame 3 of the discharge electrode 1 is oriented perpendicular to the gas flow direction, and the reference pitch of the round dust collection electrode 2 is oriented in the gas flow direction. By making the discharge electrode 1 as long as the width thereof, a drop in operating voltage due to spark discharge between the discharge electrode mounting frame 3 and the dust collection electrode 2 does not occur. Further, the gas flow is not disturbed due to the use of the wide discharge electrode 1. Therefore, according to the device of this embodiment, there is no drop in operating voltage due to spark discharge between the discharge electrode mounting frame 3 and the dust collecting electrode 2, and the gas flow is disturbed due to the use of the wide electrode. By making the current density and electric field strength distribution uniform on the surface of the round dust collecting electrode, and making use of the merits of ensuring the uniformity of current density and high electric field strength on the surface of the round dust collecting electrode, which is inherent to the round dust collecting electrode. be able to. Note that the present invention is not limited to the embodiments described above, and can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例に係わる
電気式集塵装置の要部構成を示すもので第1図は
平面図、第2図は斜視図、第3図は放電極とその
取付け枠との関係を示す斜視図、第4図a,bは
放電極形状を示す側面図、第5図a,bは集塵極
の配列構成を示す平面図、第6図a,bは集塵極
と電気力線との関係を示す模式図、第7図乃至第
10図はそれぞれ従来装置を説明するための図で
ある。 1……放電極、2……集塵極、3……放電極取
付け枠、4……集塵極支持部、5……集塵極先
端、6……接続部。
Figures 1 and 2 show the main parts of an electrostatic precipitator according to an embodiment of the present invention. Figure 1 is a plan view, Figure 2 is a perspective view, and Figure 3 is a discharge electrode. A perspective view showing the relationship with the mounting frame, Figures 4a and b are side views showing the shape of the discharge electrode, Figures 5a and b are plan views showing the arrangement of the dust collecting electrodes, and Figures 6a and b. 1 is a schematic diagram showing the relationship between the dust collection electrode and the lines of electric force, and FIGS. 7 to 10 are diagrams for explaining the conventional apparatus, respectively. DESCRIPTION OF SYMBOLS 1... Discharge electrode, 2... Dust collecting electrode, 3... Discharge electrode mounting frame, 4... Dust collecting electrode support part, 5... Dust collecting electrode tip, 6... Connection part.

Claims (1)

【特許請求の範囲】[Claims] 1 集塵極と放電極との間にコロナ放電を生起
し、ばい塵粒子を上記集塵極に吸引する電気式集
塵装置において、前記集塵極を丸形に形成すると
共に、前記放電極を幅広形に形成し、幅広形放電
極の幅広部分の両線をガス流方向に向け、且つ該
放電極の取付け枠をガス流直角方向に向け、また
丸形集塵極の配列のガス流方向に対する基準ピツ
チをガス流直角方向に対するそれよりも上記放電
極の幅と略等しい長さ分だけ長くしたことを特徴
とする電気式集塵装置。
1. In an electric dust collector that generates a corona discharge between a dust collection electrode and a discharge electrode and attracts dust particles to the dust collection electrode, the dust collection electrode is formed into a round shape, and the discharge electrode is formed into a wide shape, both lines of the wide part of the wide discharge electrode are oriented in the gas flow direction, and the mounting frame of the discharge electrode is oriented in the direction perpendicular to the gas flow, and the gas flow of the arrangement of round dust collecting electrodes is An electrostatic precipitator characterized in that the reference pitch in the direction is longer than the reference pitch in the direction perpendicular to the gas flow by a length substantially equal to the width of the discharge electrode.
JP24741184A 1984-11-22 1984-11-22 Electrical dust precipitator Granted JPS61125455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24741184A JPS61125455A (en) 1984-11-22 1984-11-22 Electrical dust precipitator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24741184A JPS61125455A (en) 1984-11-22 1984-11-22 Electrical dust precipitator

Publications (2)

Publication Number Publication Date
JPS61125455A JPS61125455A (en) 1986-06-13
JPH0578389B2 true JPH0578389B2 (en) 1993-10-28

Family

ID=17163034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24741184A Granted JPS61125455A (en) 1984-11-22 1984-11-22 Electrical dust precipitator

Country Status (1)

Country Link
JP (1) JPS61125455A (en)

Also Published As

Publication number Publication date
JPS61125455A (en) 1986-06-13

Similar Documents

Publication Publication Date Title
US4689056A (en) Air cleaner using ionic wind
US4412850A (en) Electric dust collector
CN103384566B (en) The electric shield device of the structure near the high-voltage part of electrostatic precipitator
JPH054056A (en) Electrostatic precipitator
JPH05245411A (en) Electrical dust collector
JP2001121033A (en) Electric precipitator
JPH1028897A (en) Electric precipitator
JP3674751B2 (en) Electric dust collector
JPH0578389B2 (en)
JP6953605B2 (en) Electrostatic precipitator
JPH09248489A (en) Air cleaning apparatus
JP3702726B2 (en) Electric dust collector
JPH0238263B2 (en) DENKISHUJINSOCHI
JP2579031B2 (en) Air filter
JPS60209274A (en) Two-stage electrical dust collector
JPS5839783Y2 (en) electrostatic precipitator
CN218222908U (en) Electrostatic air filter
JP7358216B2 (en) electrostatic precipitator
JPH01262955A (en) Electric precipitator
JP4013103B2 (en) Corona discharge generator
JP2001038242A (en) Electrostatic dust collector
JPS62149359A (en) Electricstatic precipitator
JPH019640Y2 (en)
JPS5920359Y2 (en) Dielectric type electrostatic precipitator
JPS61222554A (en) Electrode structure of electric precipitator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees