JPH0578370B2 - - Google Patents

Info

Publication number
JPH0578370B2
JPH0578370B2 JP63282597A JP28259788A JPH0578370B2 JP H0578370 B2 JPH0578370 B2 JP H0578370B2 JP 63282597 A JP63282597 A JP 63282597A JP 28259788 A JP28259788 A JP 28259788A JP H0578370 B2 JPH0578370 B2 JP H0578370B2
Authority
JP
Japan
Prior art keywords
exhaust gas
mercury
concentration
mercury concentration
hypochlorite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63282597A
Other languages
Japanese (ja)
Other versions
JPH02191526A (en
Inventor
Masaaki Kawakami
Satoshi Fujii
Hajime Ase
Isamu Komine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP63282597A priority Critical patent/JPH02191526A/en
Publication of JPH02191526A publication Critical patent/JPH02191526A/en
Publication of JPH0578370B2 publication Critical patent/JPH0578370B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ごみ焼却炉等から排出される排ガス
中の水銀濃度を制御する方法に関するものであ
る。 [従来の技術] 次亜塩素酸塩を添加した洗浄液と排ガスを接触
させて、排ガス中から水銀を除去する装置は以前
から考えられており、水銀除去方法に関する発明
として、洗浄液PHを所定の範囲に制御するもの、
次亜塩素酸塩が水銀と最もよく反応すべく、予冷
塔において排ガス温度を下げたのち、洗浄液と接
触させるものなどが提案されているが、いずれ
も、原ガス水銀濃度や原ガス還元成分濃度の変動
に対して、処理ガス水銀濃度を制御するものでは
ない。したがつて、処理ガス水銀濃度が作業環境
基準値(0.05mg/Nm3)を下廻る保証はなく、ま
た、原ガス水銀濃度が低い場合は、過剰な次亜塩
素酸塩を消費する可能性もある。 このようなプロセスに対して、最も一般的な制
御方法としては、処理ガス水銀濃度を計測し、こ
の値と目標値との偏差に応じて、操作量である次
亜塩素酸塩の流量を計算するPID制御方法が考え
られる。 [発明が解決しようとする課題] しかしながら、このPID制御においては、次の
ような問題がある。 (1) 先ず、第1にはプロセスが有するむだ時間に
関するものである。第4図は次亜塩素酸塩の流
量に対する処理ガス水銀濃度のステツプ応答の
一例を示す線図である。第4図によれば、水銀
除去プロセスの動特性は、「むだ時間+一次遅
れ」系で近似できることがわかる。第4図よ
り、むだ時間(L)≒3.5分、時定数(T)=≒6.5分が
求められる。 このように、動特性がL/T≪1でない性質
をもつような制御対象を、汎用のPID制御で制
御することは困難で、PID制御で安定に運転す
るためには制御系のゲインを下げざるを得ず、
そのため偏差の解消に時間がかゝる。 (2) 第2のプロセスの非線形性の問題がある。第
5図は洗浄液中の酸化剤濃度に対する水銀除去
特性を示したもので、洗浄液中の酸化剤濃度が
高いほど水銀除去の割合が低下する非線形性が
あることがわかる。このため、制御系が不安定
にならないように、制御対象である水銀除去プ
ロセスのゲインが高いところで制御装置のゲイ
ンを調整しなければならない。この結果、処理
ガスの水銀濃度が低い領域では制御対象のゲイ
ンが低くなり、閉ループ系の一巡伝達関数のゲ
インが低下し、偏差の解消に時間がかゝる。 本発明は、上記の課題を解決すべくなされたも
ので、閉ループからのむだ時間が除外され、非線
形の問題も解消できる排ガス中の水銀濃度制御方
法をうることを目的としたものである。 [課題を解決するための手段] 先ず、制御対象である洗浄装置の動的モデルを
構成する。洗浄塔を循環している洗浄液ラインの
途中から添加される次亜塩素酸塩は、排ガス中の
水銀を除去する酸化剤となる。したがつて、次亜
塩素酸の流量が洗浄液中の酸化剤の濃度に関与
し、酸化剤が排ガス中の水銀と反応し、洗浄液中
に溶解して除去される。処理ガス中の水銀濃度
は、次亜塩素酸塩の流量、洗浄液中の酸化剤の濃
度と密接な関係があるので、この3つを変数とし
てモデル化すると、一般には非線形系であるた
め、ある定常点回りで線形化した次のように定式
化する。 d/dtx1(t) x2(t)= A・x1(t) x2(t)+b・u(t−L) y(t)=C・x1(t) x2(t) ……[1] x1(t):処理ガス水銀濃度[mg/Nm3] x2(t):洗浄液中の酸化剤濃度[ppm] u(t−L):次亜塩素酸塩流量[c.c./min] y(t):観測量 L:むだ時間[min] A,b,c:パラメータ ここで、処理ガス水銀濃度目標値に、実際値が
追従するように制御装置内に目標値と実際値の偏
差の積分項を導入する。 d/dtx3(t)=r(t)−x1(t) ……[2] x3(t):偏差積分値[mg/Nm3・min] r(t):処理ガス水銀濃度目標値[mg/Nm3] したがつて、[1]、[2]式を合わせた拡大系
は、次のように表現される。
[Industrial Field of Application] The present invention relates to a method for controlling mercury concentration in exhaust gas discharged from a garbage incinerator or the like. [Prior Art] A device for removing mercury from exhaust gas by bringing the cleaning solution containing hypochlorite into contact with the exhaust gas has been considered for some time. what is controlled by,
In order for hypochlorite to react best with mercury, methods have been proposed in which the temperature of the exhaust gas is lowered in a pre-cooling tower and then brought into contact with the cleaning solution. It does not control the mercury concentration in the treated gas due to fluctuations in mercury. Therefore, there is no guarantee that the mercury concentration in the treated gas will be below the working environment standard value (0.05 mg/Nm 3 ), and if the raw gas mercury concentration is low, there is a possibility that excessive hypochlorite will be consumed. There is also. The most common control method for such processes is to measure the mercury concentration in the treated gas and calculate the flow rate of hypochlorite, which is the manipulated variable, according to the deviation between this value and the target value. A PID control method can be considered. [Problems to be Solved by the Invention] However, this PID control has the following problems. (1) First, the first problem is the dead time that the process has. FIG. 4 is a diagram showing an example of the step response of the mercury concentration in the treated gas to the flow rate of hypochlorite. According to FIG. 4, it can be seen that the dynamic characteristics of the mercury removal process can be approximated by a "dead time + first-order lag" system. From Figure 4, dead time (L) = 3.5 minutes and time constant (T) = 6.5 minutes. In this way, it is difficult to control a controlled object whose dynamic characteristics are not L/T << 1 using general-purpose PID control, and in order to operate stably with PID control, the gain of the control system must be lowered. I had no choice but to
Therefore, it takes time to eliminate the deviation. (2) There is a problem with the nonlinearity of the second process. FIG. 5 shows the mercury removal characteristics with respect to the oxidizing agent concentration in the cleaning liquid, and it can be seen that there is a non-linearity in that the higher the oxidizing agent concentration in the cleaning liquid, the lower the mercury removal rate. Therefore, in order to prevent the control system from becoming unstable, the gain of the control device must be adjusted when the gain of the mercury removal process to be controlled is high. As a result, in a region where the mercury concentration of the process gas is low, the gain of the controlled object becomes low, the gain of the closed loop transfer function decreases, and it takes time to eliminate the deviation. The present invention was made to solve the above problems, and aims to provide a method for controlling mercury concentration in exhaust gas that eliminates dead time from a closed loop and can also solve nonlinear problems. [Means for solving the problem] First, a dynamic model of the cleaning device to be controlled is constructed. Hypochlorite, which is added midway through the cleaning liquid line circulating through the cleaning tower, acts as an oxidizing agent to remove mercury from the exhaust gas. Therefore, the flow rate of hypochlorous acid affects the concentration of the oxidizing agent in the cleaning liquid, and the oxidizing agent reacts with mercury in the exhaust gas, dissolves in the cleaning liquid, and is removed. The mercury concentration in the process gas is closely related to the flow rate of hypochlorite and the concentration of the oxidizing agent in the cleaning solution, so if these three are modeled as variables, it is generally a nonlinear system, so It is formulated as follows, linearized around a stationary point. d/dtx 1 (t) x 2 (t)= A・x 1 (t) x 2 (t)+b・u(t−L) y(t)=C・x 1 (t) x 2 (t) ...[1] x 1 (t): Treated gas mercury concentration [mg/Nm 3 ] x 2 (t): Oxidizing agent concentration in cleaning liquid [ppm] u (t-L): Hypochlorite flow rate [ cc/min] y(t): Observable quantity L: Dead time [min] A, b, c: Parameters Here, the target value is set in the control device so that the actual value follows the target value of the treated gas mercury concentration. We introduce an integral term for the deviation of the actual value. d/dtx 3 (t)=r(t)−x 1 (t)...[2] x 3 (t): Deviation integral value [mg/Nm 3・min] r(t): Treated gas mercury concentration target Value [mg/Nm 3 ] Therefore, the expanded system combining equations [1] and [2] is expressed as follows.

【表】 A ̄
b ̄
〓x(t)〓
[Table] A ̄
b ̄
〓x (t)〓

Claims (1)

【特許請求の範囲】 1 水銀含有排ガス中の水銀を次亜塩素酸塩を添
加した洗浄液と接触させて除去し、排出される排
ガス中の水銀濃度を制御する方法において、 排出される排ガス中の水銀濃度と添加する次亜
塩素酸塩の流量を測定して洗浄液中の酸化剤濃度
を測定又は推定し、添加する次亜塩素酸塩の流量
の変動が排出される排ガス中の水銀濃度変動に影
響するまでの無駄時間をLとするとき、前記測定
又は推定量、排ガス中の水銀濃度、次亜塩素酸塩
流量及び排出される排ガス中の水銀濃度の目標値
を入力として、前記Lだけ後に排出される排ガス
中の水銀濃度とその目標値との偏差を数式モデル
により推定し、前記推定されたLだけ後に排出さ
れる排ガス中の水銀濃度と目標値との偏差をゼロ
に制御するように次亜塩素酸塩の流量を操作する
ことを特徴とする排ガス中の水銀濃度制御方法。 2 数式モデルが線形モデルより構成され、該線
形モデルのパラメータが排出される排ガス中の水
銀濃度によつて変化するように構成された請求項
1記載の排ガス中の水銀濃度制御方法。
[Scope of Claims] 1. A method for controlling the concentration of mercury in the exhaust gas by contacting it with a cleaning solution containing hypochlorite to remove mercury in the exhaust gas containing mercury, comprising: The oxidizing agent concentration in the cleaning solution is measured or estimated by measuring the mercury concentration and the flow rate of the added hypochlorite, and the fluctuation in the flow rate of the added hypochlorite is determined by the fluctuation in the mercury concentration in the exhaust gas. When L is the dead time until the effect occurs, input the measured or estimated amount, the mercury concentration in the exhaust gas, the hypochlorite flow rate, and the target value of the mercury concentration in the exhaust gas to be discharged, and after the above L. The deviation between the mercury concentration in the exhaust gas discharged and its target value is estimated by a mathematical model, and the deviation between the mercury concentration in the exhaust gas discharged after the estimated L and the target value is controlled to zero. A method for controlling mercury concentration in exhaust gas, characterized by manipulating the flow rate of hypochlorite. 2. The method for controlling mercury concentration in exhaust gas according to claim 1, wherein the mathematical model is composed of a linear model, and the parameters of the linear model are configured to change depending on the mercury concentration in the exhaust gas to be discharged.
JP63282597A 1988-10-11 1988-11-10 Method for controlling mercury concentration in exhaust gas Granted JPH02191526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63282597A JPH02191526A (en) 1988-10-11 1988-11-10 Method for controlling mercury concentration in exhaust gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25390988 1988-10-11
JP63-253909 1988-10-11
JP63282597A JPH02191526A (en) 1988-10-11 1988-11-10 Method for controlling mercury concentration in exhaust gas

Publications (2)

Publication Number Publication Date
JPH02191526A JPH02191526A (en) 1990-07-27
JPH0578370B2 true JPH0578370B2 (en) 1993-10-28

Family

ID=17257741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63282597A Granted JPH02191526A (en) 1988-10-11 1988-11-10 Method for controlling mercury concentration in exhaust gas

Country Status (1)

Country Link
JP (1) JPH02191526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801152A (en) * 2014-01-27 2015-07-29 阿尔斯通技术有限公司 Mercury re-emission control

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4395315B2 (en) 2003-04-11 2010-01-06 三菱重工業株式会社 Method and system for removing mercury from exhaust gas
JP2007050334A (en) * 2005-08-17 2007-03-01 Ishikawajima Harima Heavy Ind Co Ltd Exhaust gas purification method and facility
US7524473B2 (en) * 2007-03-23 2009-04-28 Alstom Technology Ltd Method of mercury removal in a wet flue gas desulfurization system
JP2009208078A (en) * 2009-06-16 2009-09-17 Mitsubishi Heavy Ind Ltd Method for treating mercury in tail gas, and treatment system for tail gas
JP7324159B2 (en) * 2020-02-13 2023-08-09 株式会社東芝 Acid gas removal device and removal method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235630A (en) * 1984-05-07 1985-11-22 Kawasaki Heavy Ind Ltd Desulfurization or denitration method of waste gas
JPS61234914A (en) * 1985-04-08 1986-10-20 Nippon Kokan Kk <Nkk> Controlling method for exhaust gas denitration facility

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235630A (en) * 1984-05-07 1985-11-22 Kawasaki Heavy Ind Ltd Desulfurization or denitration method of waste gas
JPS61234914A (en) * 1985-04-08 1986-10-20 Nippon Kokan Kk <Nkk> Controlling method for exhaust gas denitration facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801152A (en) * 2014-01-27 2015-07-29 阿尔斯通技术有限公司 Mercury re-emission control

Also Published As

Publication number Publication date
JPH02191526A (en) 1990-07-27

Similar Documents

Publication Publication Date Title
Beschi et al. Characterization of symmetric send-on-delta PI controllers
CN101303595A (en) Open ring fuzzy control system for wet process FGD system
KR910002499A (en) Catalytic Removal of Nitric Oxide from Exhaust Gas Using Reducing Agent
EP0811580A3 (en) Method for removing heavy metal from sludge
JPH0578370B2 (en)
JPH1015343A (en) Oxidation control method in exhaust gas desulfurization treatment
CN107390730A (en) A kind of control method and controller of urea pyrolysis stove entrance urea liquid flow
CN105561771B (en) Oxide powder and zinc desulphurization control device and method based on online monitoring data interlocking
CN107168236A (en) A kind of fuzzy control method, controller and the control system of lime white straying quatity
Alpbaz et al. Application of self-tuning PID control to a reactor of limestone slurry titrated with sulfuric acid
US5154906A (en) Redox-potential control for hydrogen peroxide in nitric acid
JPH0429386A (en) Excimer laser
JPS60110321A (en) Control of exhaust gas desulfurizing plant
JPS5554022A (en) Forecast control of apparatus for removing hydrogen chloride gas
CN114159971B (en) Feed-forward automatic control method for ultralow emission of nitrogen oxides based on SCR (selective catalytic reduction) method
DE2967690D1 (en) Method for stabilizing solutions of gamma-glutamyl-p-nitroanilide
JPS62174802A (en) Process control method
Doerschuk et al. Conventional vs. RBF control of a benchmark process control problem
JPH04195611A (en) Water level control method
CN116339135A (en) First-order improved active disturbance rejection control method based on model assistance and similar smith estimation
CN101458112B (en) Acid-regenerating preconcentrator liquid level height measurement method
Cameron Use of advanced controls in environmental remediation
Zakaria Advanced pH Control by Using Fuzzy Logic
CN116880377A (en) Control method and control device for production process of reduction furnace
De et al. A nonlinear adaptive controller for a pH neutralization process