JPH0578089B2 - - Google Patents

Info

Publication number
JPH0578089B2
JPH0578089B2 JP61269785A JP26978586A JPH0578089B2 JP H0578089 B2 JPH0578089 B2 JP H0578089B2 JP 61269785 A JP61269785 A JP 61269785A JP 26978586 A JP26978586 A JP 26978586A JP H0578089 B2 JPH0578089 B2 JP H0578089B2
Authority
JP
Japan
Prior art keywords
particles
weight
film
polyester
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61269785A
Other languages
Japanese (ja)
Other versions
JPS63124214A (en
Inventor
Koichi Abe
Kyohiko Ito
Shoji Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP26978586A priority Critical patent/JPS63124214A/en
Publication of JPS63124214A publication Critical patent/JPS63124214A/en
Publication of JPH0578089B2 publication Critical patent/JPH0578089B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は磁気記録媒体用ベースフイルムに関す
るものである。 [従来の技術] 磁気記録媒体用ベースフイルムとしては、ポリ
エステルに内部析出粒子および不活性物質粒子を
含有せしめてなるフイルムが知られている(例え
ば、特開昭53−78808号公報)。 [発明が解決しようとする問題点] しかし、上記従来の磁気記録媒体用ベースフイ
ルムは、生産性を高めるため、磁気記録媒体製造
工程での塗布やカレンダー速度を速くすると、磁
気媒体のドロツプアウトが多くなるという問題点
があつた。 本発明はかかる問題点を改善し、カレンダー等
の速度を速くしても、磁気媒体のドロツプアウト
が増加せず、ドロツプアウトの少ないしかも滑り
性の優れた磁気記録媒体用ベースフイルムを提供
することを目的とする。 [問題点を解決するための手段] 本発明は、上記目的を達成するため、下記の構
成を有する。すなわち、 ポリエステルと、内部析出粒子および平均粒径
が0.5〜2.0μmの不活性無機粒子を0.003〜0.1重量
%含有する組成物を主成分とする二軸配向フイル
ムであつて、該不活性無機粒子は結晶化促進係数
が15℃以下であることを特徴とする磁気記録媒体
用ベースフイルム。 本発明におけるポリエステルとは、エチレンテ
レフタレート、エチレン−α,β−ビス(2−ク
ロルフエノキシ)エタン4,4′−ジカルボキシレ
ート、エチレン2,6−ナフタレートを主要構成
成分とするポリエステルである。ただし、本発明
を阻害しない範囲内、好ましくは5モル%以内で
あれば他成分が共重合されていてもよい。また、
エチレンテレフタレート、エチレン−α,β−ビ
ス(2−クロルフエノキシ)エタン4,4′−ジカ
ルボキシレートを主要構成成分とした場合に、ド
ロツプアウトがより一層良好となるので特に望ま
しい。 本発明における内部析出粒子とは、ポリエステ
ル合成時に添加したカルシウム化合物、マグネシ
ウム化合物、マンガン化合物、リチウム化合物の
少なくとも一種の化合物とポリエステル構成成分
とが結合して生成する粒子である。なお、本発明
の内部析出粒子中には、本発明の効果を阻害しな
い範囲内でリン元素および微量の他の金属成分、
例えば、亜鉛、コバルト、アンチモン、ゲルマニ
ウム、チタン等が含まれていてもよい。 また、本発明の内部析出粒子の平均粒径は0.2
〜5μm、特に0.3〜3μmの範囲の場合に、ドロツ
プアウトがより一層良好となるので望ましく、内
部析出粒子含有量は0.01〜2重量%、特に0.05〜
1重量%の範囲の場合に、ドロツプアウトがより
一層良好となるので望ましい。 本発明における不活性無機粒子の平均粒径は
0.5〜2.0μm、好ましくは0.55〜1.7μm、さらに好
ましくは0.6〜1.5μmの範囲であることが必要であ
る。平均粒径が上記の範囲より小さいとフイルム
の滑り性が不良となり、磁気記録媒体用ベースフ
イルムとして好ましくない。逆に、平均粒径が上
記の範囲より大きいとドロツプアウトが不良にな
るので好ましくない。また、3μm径以上の粒子を
実質的に含有しないことがドロツプアウトにとつ
てより一層好ましい。 本発明における不活性無機粒子の含有量は、
0.003〜0.1重量%、好ましくは0.005〜0.08重量
%、さらに好ましくは0.005〜0.06重量%である
ことが必要である。含有量が上記の範囲より少な
いとフイルムの滑り性が不良となり、磁気記録媒
体用ベースフイルムとして好ましくない。逆に含
有量が上記の範囲より多いとドロツプアウトが不
良になるので好ましくない。 本発明における不活性無機粒子の結晶化促進係
数は15℃以下、好ましくは12℃以下、さらに好ま
しくは10℃以下であることが必要である。結晶化
促進係数が上記の範囲より大きいと、ドロツプア
ウトが不良となるので好ましくない。なお、結晶
化促進係数の下限は特に限定されないが、0℃程
度が製造上の限界である。 本発明における不活性無機粒子の種類は特に限
定されないが、コロイダルシリカに起因する実質
的に球形のシリカ粒子、ルチル型の酸化チタン、
酸化タングステン等、酸素を含有する無機化合物
の場合に、結晶化促進係数を本発明範囲とした時
の効果が大きく、ドロツプアウトがより一層良好
となるので特に望ましい。中でも上記のシリカが
特に望ましい。 ここでいうコロイダルシリカとは、ケイ酸ナト
リウムを主原料とし、アルカリ分を除去してゆく
過程で生成した粒子であるのが望ましい。 本発明は上記組成物を主要成分とするが、本発
明の目的を阻害しない範囲内で、他種ポリマをブ
レンドしても良いし、また、酸化防止剤、熱安定
剤、滑剤、紫外線吸収剤などの無機または有機添
加剤が通常添加される程度添加されていてもよ
い。 本発明フイルムは上記組成物を二軸配向せしめ
たフイルムである。ここでいう二軸配向フイルム
とは、厚さ方向屈析率比が0.935〜0.970の範囲で
あるフイルムである。厚さ方向屈析率比が上記の
範囲より小さいとドロツプアウトが不良となり、
また、大きいとドロツプアウト、滑り性共に不良
となるので好ましくない。また、本発明フイルム
は、厚さ方向屈析率比が0.935〜0.950の範囲の場
合にドロツプアウトがより一層良好となるので特
に望ましい。 本発明フイルムの幅方向のヤング率は特に限定
されないが、ヤング率が450Kg/mm2以上、特に500
Kg/mm2以上である場合にドロツプアウトがより一
層良好となるので特に望ましい。 本発明フイルムの溶融粘度は特に限定されない
が、溶融粘度が1000ポイズ以上、特に2000ポイズ
以上の場合に、ドロツプアウトがより一層良好と
なるので特に望ましい。 本発明フイルムの100℃での長手方向の熱収縮
率は特に限定されないが、0.8%以下、特に0.6%
以下の場合にドロツプアウトがより一層良好とな
るので特に望ましい。 本発明のフイルムのうねり指数は特に限定され
ないが、うねり指数が0.50〜0.95の場合に、滑り
性がより一層良好となるので特に望ましい。 本発明フイルムの不活性無機粒子としてシリカ
を用いる場合、そのシリカの表層粒子濃度は特に
限定されないが、表層粒子濃度が0.02〜0.20の範
囲の場合に、ドロツプアウトがより一層良好とな
るので特に望ましい。 本発明フイルムの結晶サイズは特に限定されな
いが、結晶サイズが47Å以上、特に50Å以上であ
る場合に、ドロツプアウトがより一層良好となる
ので特に望ましい。 次に本発明フイルムの製造方法について説明す
る。 まず、内部析出粒子の生成方法は次の方法が有
効である。すなわち、 内部粒子は、所定のジカルボン酸とエチレン
グリコールとの直接エステル化を経て重縮合する
過程あるいは、所定のジカルボン酸のジメチル
エステルとエチレングリコールとのエステル交換
反応を経て重縮合を行なう過程において、グリコ
ールに可溶性のカルシウム化合物、マグネシウム
化合物、マンガン化合物、リチウム化合物の少な
くしも一種と、好ましくは、リンの酸および/ま
たはエステル化合物を適当な方法で添加すること
によつて生成される。内部粒子を生成させるため
の化合物の添加は、エステル化反応またはエステ
ル交換反応が実質的に終了した時点から重縮合反
応のあまり進んでいない初期の段階までの任意の
時期に、カルシウム化合物、リチウム化合物の少
なくとも一種をグリコール溶液として反応系に添
加するのがよい。 ここで使用しうるカルシウム、マグネシウム、
マンガン、リチウムの化合物としては、ハロゲン
化物、硝酸塩、硫酸塩などの無機酸塩、酢酸塩、
シユウ酸塩、安息香酸塩などの有機酸塩、水素化
物および酸化物などのグリコール可溶性の化合物
が最も好ましく使用されるが、二種以上併用して
も構わない。 また、リン化合物としてはリン酸、亜リン酸、
ホスホン酸、およびこれらのエステル類、部分エ
ステル類の一種以上が用いられる。 次に不活性無機粒子は、エチレングリコールに
分散させたスラリーを重合反応前、または重合反
応中に添加するのが本発明範囲の平均粒径を得る
のに有効である。ここで、本発明の結晶化促進係
数を得るには、次の方法が有効である。 (1) 不活性粒子が元素周期表第A,A,
B,B,B族のいずれかの元素を含有する
場合−粒子固形分1gの20%エチレングリコー
ルゾル(スラリー)を水100c.c.と混合した時の
PH値が7〜12の範囲、好ましくは9〜11の範囲
とし、ナトリウム含量が粒子固形分に対して
0.15〜0.6重量%となるようにエチレングリコ
ールゾルを調整したのち、所定のジカルボン酸
(またはそのエステル)と重縮合せしめ不活性
無機粒子を含有するポリエステルを得る。 (2) 不活性無機粒子が元素周期表A,A族の
いずれかの元素を含有する場合−不活性無機粒
子をエチレングリコールに分散させる前に、メ
タノール、エタノールなどの有極性溶媒で洗浄
し、分散助剤としてリン酸アンモニウム塩を粒
子に対し0.1〜5重量%添加してエチレングリ
コールに分散させ、微細なガラスビーズ等をメ
デイアとして分散させたのち、ガラスビーズ等
のメデイアを除去する方法でさらに分散を進め
る。かくして得られた粒子のエチレングリコー
ルのスラリーと、所定のジカルボン酸(または
そのエステル)とを重縮合せしめ、不活性無機
粒子を含有するポリエステルを得る。 なお、本発明においては、内部粒子または不活
性粒子をそれぞれ別に含有するポリエステルを
別々に製造し、溶融工程で混練する方法、あるい
は内部粒子含有ポリエステルと不活性粒子を多量
に含有する高濃度マスタのポリエステルを適当量
混合する方法も好ましく採用される。 最も好ましいのは、実質的に内部粒子を含有し
ないポリエステルに不活性粒子を高濃度含有せし
めたポリエステルを内部析出粒子含有ポリエステ
ルで希釈して用いる方法である。 かくして、内部析出粒子と所定量の不活性無機
粒子を含有するポリエステルペレツトを、十分乾
燥させたのち、公知の溶融押出機に供給し、270
〜330℃でスリツト状のダイからシート状に押出
し、冷却固化せしめて未延伸フイルムを作る。こ
の場合、コールターカウンターで測定した95%カ
ツト粒子径が5μm以下、好ましくは4μm以下、さ
らに好ましくは3μm以下の過能力のフイルター
を用いることが本発明の望ましい範囲のうねり指
数を得るのに極めて有効である。 次にこの未延伸フイルムを二軸延伸し、二軸配
向せしめる。延伸方法としては、逐次二軸延伸法
または同時二軸延伸法を用いることができる。 逐次二軸延伸法の場合は長手方向、幅方向の順
に延伸するのが一般的であるが、この順を逆にし
て延伸してもよい。二軸延伸の条件は延伸方法、
ポリマの種類などによつて必ずしも一定ではない
が、通常、長手方向、幅方向とも80〜160℃、好
ましくは90〜150℃の範囲で、延伸倍率はそれぞ
れ3.0〜5.0倍、好ましくは3.2〜4.5倍の範囲が、
また、延伸速度は1×103〜7×104%/分の範囲
が本発明範囲の厚さ方向屈析率比を得るのに有効
である。 次に本発明フイルムを熱処理してもよい。熱処
理温度は180〜230℃、時間は0.5〜60秒間とする
のが本発明の望ましい範囲の熱収縮率を得るのに
有効である。また、上記熱処理を施す際、幅方向
に2.0〜10%弛緩させつつ、熱処理を行なう方法
は、本発明範囲の厚さ方向屈析率比、望ましい範
囲の結晶サイズを得るのに特に有効である。 [作用] 本発明は内部析出粒子と、特定の結晶化促進係
数を有する不活性無機粒子を含有するポリエステ
ルを二軸配向せしめたフイルムとしたため、フイ
ルム表面突起が外的シエアに対して強いフイルム
となり、耐摩耗性が向上し、本発明の効果が得ら
れたものと推定される。 [物性の測定並びに効果の表方法] 本発明の特性値の測定方法並びに効果の評価方
法は次の通りである。 粒子含有量 試料をメタノールで十分洗浄し、表面付着物を
取り除き、水洗して乾燥した300gのサンプルに0-
クロロフエノール2.7Kgを加えて攪拌しつつ100℃
まで昇温させ、昇温後さらに1時間そのまま放置
してポリエステル部分を溶解させる。ただし、高
度に結晶化している場合などでポリエステル部分
が溶解しない場合には、一度溶解させて急冷した
後に前記の溶解操作を行なう。 次いでポリエステル中に含有されているゴミな
どの粗大不溶物をG−1ガラスフイルターで炉別
し、除去し、この炉上物の重量を試料重量から差
し引く。 日立製作所分離用超遠心機40p型にローター
RP30を装備し、セル1個当りに前記ガラスフイ
ルター炉別後の溶液30c.c.を注入後、ローターを
4500rpmにて回転させ、回転異常のないことを確
認後、ローター中を真空にし、30000rpmに回転
数を上げ、この回転数にて粒子の遠心分離を行な
う。 分離の完了はほぼ40分後であるが、この確認は
必要あれば分離後の液の375mμにおける光線透過
率が分離前のそれに比し、高い値の一定値になる
ことで行なう。分離後、上澄液を傾斜法で除去し
分離粒子を得る。 分離粒子には分離が不十分なことに起因するポ
リエステル分の混入があり得るので、採取した該
粒子に常温の0-クロロフエノールを加え、ほぼ均
一懸濁後、再び超遠心分離機処理を行なう。 この操作は後述の粒子を乾燥後該粒子を走査型
差動熱量分析を行なつて、ポリマに相当する融解
ピークが検出できなくなるまで繰返す必要があ
る。最後に、このようにして得た分離粒子を120
℃、16時間真空乾燥して秤量する。 なお、前記操作で得られた分離粒子は内部析出
粒子と不活性無機粒子の両者を含んでいる。この
ため内部粒子量と不活性無機粒子量を別個に求め
る必要があり、まず前記分離粒子について金属分
の定量分析を行ない、Ca,Liの含有量およびCa,
Li以外の金属含有量を求めておく。次いで該分離
粒子を3倍モルのエチレングリコール中で6時間
以上環流加熱したのち、200℃以上になるように
エチレングリコールを留去して解重合すると内部
粒子だけが融解する。残つた粒子を延伸分離して
得られた分離粒子を乾燥秤量し、不活性無機粒子
量とし、最初の合計分離粒子量との差を内部粒子
量とする。 なお、前記解重合が完全に行なわれたかを確認
するため解重合後の分離粒子について金属分の定
量分析を行ない。これらの操作を繰返すことによ
り粒子量測定精度を高めることができる。 不活性無機粒子の平均粒径 上記方法によつて分離された不活性無機粒子を
エタノールに分散させ、遠心沈降法(掘場製作
所、CAPA500使用)で測定した体積平均径であ
る。 ガラス転移点Tg、冷却晶化温度Tcc パーキンエルマー社製DSC(示差走査熱量計)
型を用いて測定した。DSCの測定条件は次の
通りである。すなわち、試料10mgをDSC装置に
セツトして5分間溶解した後、液体窒素中に急冷
する。この急冷試料を10℃/分で昇温し、ガラス
転移点Tgを検知する。さらに昇温を続け、ガラ
ス状態からの結晶化発熱ピーク温度をもつて冷却
晶化温度Tccとした。ここでTccとTgの差(Tcc
−Tg)を△Tcgと定義する。 結晶化促進係数 上記方法で、1重量%の不活性無機粒子を含有
するポリエステルの△Tcg(A)およびこれと同
粘度の不活性無機粒子を含有しないポリエステル
の△Tcg(B)を測定し、△Tcg(B)と△Tcg
(A)との差[△Tcg(B)−△Tcg(A)]をもつ
て、その不活性無機粒子の結晶化促進係数とし
た。 ヤング率 ASTM−D−882にしたがつて、インストロン
式の引張試験機を用いて、25℃、65%RHにて測
定した。 フイルムの熱収縮率 試料フイルムを幅10mm、長さ250mmに切り出し、
約200mmの間隔で2本の標線を入れ、その間隔を
正確に測定する(これをAmmとする。)この試料
の先端に3.0gの荷重をかけた状態で150℃の熱風
オーブン中に30分間放置したのち標線間の間隔を
測定し(これをBmm)とする、100×(A−B)/
Aをもつて熱収縮率とした。 溶融粘度 高化式フローテスターを用いて、温度290℃、
ずり速度200sec-1で測定した。 うねり指数 JIS−B−0601に従つて触針式表面粗さ計で表
面平均粗さ(Ra)を測定する。この場合、下記
測定法A,BによるRaの比、Ra(A法)/Ra(B
法)の比をうねり指数とした。 [A法] 装置:小坂研究所高精度薄膜段差測定機ET−
10 触針先端半径:0.5μm カツトオフ:0.08mm 測定長:0.5mm [B法] 装置:小坂研究所表面粗さ計SE−3E 触針先端半径:2.0μm カツトオフ:0.08mm 測定長:4mm 表層粒子濃度 2次イオン質量分析装置(SIMS)を用いて、
不活性無機粒子が含有する金属元素とポリエステ
ルの炭素元素の濃度比を粒子濃度とし、該測定で
得られるフイルム表面〜深さ100Åの濃度平均値
CSと、深さ5000〜10000Åの濃度平均値CBとの
比、CS/CBを表層粒子濃度とした。測定装置、
条件は下記のとおりである。 (1) 測定条件 2次イオン質量分析装置(SIMS) 西独、ATOMIKA社製 A−DIDA3000 (2) 測定条件 1次イオン種:O2 + 1次イオン加速電圧:12KV 1次イオン電流:200nA ラスター領域:400μm□ 分析領域:ゲート30% 測定真空度:6.0×10-9Torr E−GUN:0.5KV−3.0A 結晶サイズ(100面) 広角X線回析(カウンター法)で求めた。 (1) X線発生装置 理学電機社製 X線源:Cu、Kα(Niフイルター使用) 出力:35KV 15mA (2) ゴニオメーター 理学電機社製 2155D1型 スリツト径:2mmφ、1゜×1゜ (3) 結晶サイズ 透過法により得られた2θが26〜28°のピークの
半価幅の値から、Scherrerの式: L(100)=Kλ/βo cosθ (ただし、βo2=βE2−βI2、 βE:見かけの半価幅、 βI:1.05×10-2、 K:1.0、 λ:X線の波長、 θ:Bragg角、 L(100):微結晶の(100)面に垂直な方向の平
均の大きさ)を用い、計算した。X線の入射
方向はフイルム幅方向に平行とし、結晶
(100)面に垂直な方向の平均の大きさをもつ
て結晶サイズとした。 (11) 厚さ方向屈析率比 ナトリウムD線(波長589nm)を光源としてア
ツベ屈析率計を用いて、二軸配向フイルムの厚さ
方向の屈析率(Aとする)および溶融プレス後10
℃の水中へ急冷した作つた無配向(アモルフア
ス)フイルムの厚さ方向の屈析率(Bとする)を
測定し、A/Bをもつて厚さ方向の屈析率比とし
た。マウント液にはヨウ化メチレンを用い、25
℃、65%RHにて測定した。 (12) 磁気テープとした時のドロツプアウト γ−Fe2O3100重量部、塩化ビニル−酢酸ビニ
ル共重合体15重量部、ポリウレタンエラストマー
15重量部、カーボンブラツク8重量部、メチルエ
チルケトン120重量部、メチルイソブチルケトン
130重量部、ミリスチル酸2重量部の混合物をサ
ンドミルで十分に混合分散させて磁性塗料を作
り、この磁性塗料にポリイソシアネート(コロネ
ートL)を15重量部添加し、これをサンプルのポ
リエステルフイルムに厚さ4.0μm(乾燥厚さ)塗
布し、カレンダー処理(温度90℃、線圧200Kg/
cm、速度550m/分)後、1/2インチ幅にスリツト
してテープとした。このテープをVHS方式のビ
デオカセツト(120分)に組込み、ビデオカセツ
トテープを作つた。 このテープにVTRを用い、TV試験信号発生
機((株)シバソク製TG−7/1型)からの信号を
録画させたのち、25℃、50%RHで100パス(120
分×100パス)走行させた。このテープをドロツ
プアウトカウンターを用いて、ドロツプアウトの
幅が5μ秒以上で、再生された信号の減衰がマイ
ナス16dB以上のものをピツクアツプしてドロツ
プアウトした。測定はビデオカセツト10巻につい
て行ない、1分間当りに換算したドロツプアウト
個数が10個未満の場合はドロツプアウト良好、10
個以上の場合を不良とした。 (13) 滑り性 テープ走行性試験機TBT−300型((株)横浜シス
テム研究所製)を使用し、20℃、60%RH雰囲気
で走行させ、初期のμKを下記の式より求めた。 μK=0.733log(T1/T0) ここでT0は入側張力、T1は出側張力である。
ガイド径は6mmφであり、ガイド材質はSUS27
(表面粗度0.2S)、巻き付け角は180°、走行速度は
3.3cm/秒である。 上記μKが0.23以下の場合を滑り性良好、0.23を
越える場合は滑り性不良と判定した。 [実施例] 本発明を実施例に基づいて説明する。 実施例1〜3、比較例1〜6 テレフタル酸100重量部とエチレングリコール
43重量部を混練し、スラリーを調製した。反応器
に245℃で貯留したテレフタル酸50重量部とエチ
レングリコール21.5重量部の反応物中に該スラリ
ーを一定速度で連続的に添加し、常圧下245℃で
エステル化反応を行ない。生成する水を精留塔か
ら連続的に系外に留去させた。該スラリーの供給
時間は3時間30分で終了し、エステル化反応は4
時間で終了した。得られた反応物からテレフタル
酸100重量部に相当するエステル化反応物を重合
装置に移し、リン酸0.045重量部、三酸化アンチ
モン0.023重量部、および平均粒径が異なるコロ
イダルシリカをエチレングリコールスラリーとし
て添加し、常法に従つて重縮合反応した。得られ
たポリマーは本発明で規定する内部粒子は存在せ
ず、コロイダルシリカに起因するシリカ粒子を1
重量%含有するポリエステルを得た(ポリエステ
ルA)。この場合、シリカ粒子のエチレングリコ
ールスラリーを調製時のPH値、ナトリウム含量を
変更して、結晶化促進係数の異なるポリエステル
を製造した。 テレフタル酸ジメチル100重量部、エチレング
リコール62重量部に酢酸カルシウム0.06重量部を
触媒として常法によりエステル交換反応を行な
い、その生成物に三酸化アンチモン0.04重量部、
酢酸リチウム0.07重量部および酢酸カルシウム
0.04重量部を添加し、続いて亜リン酸0.02重量
部、リン酸トリメチル0.10重量部とを添加した
後、重縮合を行ない、固有粘度0.618、内部粒子
量0.35重量部(対ポリエステル100重量部)を含
むポリマーを得た。内部粒子中にはカルシウム元
素1.2重量%、リチウム元素1.9重量%、リン元素
4.9重量%を含有されていた(ポリエステル:
B)。 上記ポリエステルAとポリエステルBとをシリ
カ含有量が第1表となるように所定割合で混合し
たペレツトを、180℃で3時間減圧乾燥(3Torr)
した。このペレツトを押出機に供給し300℃で溶
融押出し、静電印加キヤスト法を用いて表面温度
30℃のキヤステイング・ドラムに巻きつけて冷却
固化し、厚さ約170μmの未延伸フイルムを作つ
た。この未延伸フイルムを90℃にて長手方向に
3.4倍延伸した。 この延伸は2組のロール周速差で行なわれ、延
伸速度10000%/分であつた。この一軸フイルム
をステンタを用いて延伸速度2000%/分で100℃
で幅方向に3.6倍延伸し、幅方向に6%弛緩させ
つつ、210℃にて5秒間熱処理し、厚さ14μmのフ
イルムを得た。これらのフイルムの性能は、第1
表に示したとおり、不活性無機粒子の平均粒径、
含有量、結晶化促進係数が本発明範囲の場合は、
滑り性、ドロツプアウトともにすぐれたフイルム
が得られたが(実施例1〜3)、本発明の要件を
満足しない場合は滑り性、ドロツプアウトを両立
したフイルムは得られなかつた(比較例1〜6)。
なお、実施例、比較例ともにポリエステルはポリ
エチレンテレフタレート、厚さ方向屈析率比は
0.945であつた。
[Industrial Field of Application] The present invention relates to a base film for magnetic recording media. [Prior Art] As a base film for a magnetic recording medium, a film made of polyester containing internally precipitated particles and inert material particles is known (for example, Japanese Patent Laid-Open No. 78808/1983). [Problems to be Solved by the Invention] However, with the above-mentioned conventional base film for magnetic recording media, when the coating and calendering speeds in the magnetic recording media manufacturing process are increased in order to increase productivity, dropouts of the magnetic media occur frequently. There was a problem with that. It is an object of the present invention to solve such problems and provide a base film for magnetic recording media that does not cause an increase in dropout of the magnetic medium even when the speed of the calender is increased, has less dropout, and has excellent slipperiness. shall be. [Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration. That is, it is a biaxially oriented film mainly composed of a composition containing polyester and 0.003 to 0.1% by weight of internally precipitated particles and inert inorganic particles with an average particle size of 0.5 to 2.0 μm, the inert inorganic particles is a base film for magnetic recording media characterized by a crystallization promotion coefficient of 15°C or less. The polyester in the present invention is a polyester whose main constituents are ethylene terephthalate, ethylene-α,β-bis(2-chlorophenoxy)ethane 4,4'-dicarboxylate, and ethylene 2,6-naphthalate. However, other components may be copolymerized within a range that does not impede the present invention, preferably within 5 mol%. Also,
It is particularly desirable to use ethylene terephthalate and ethylene-α,β-bis(2-chlorophenoxy)ethane 4,4'-dicarboxylate as the main constituents, since dropout is even better. The internally precipitated particles in the present invention are particles produced by the combination of polyester constituents and at least one compound selected from calcium compounds, magnesium compounds, manganese compounds, and lithium compounds added during polyester synthesis. The internally precipitated particles of the present invention may contain elemental phosphorus and trace amounts of other metal components within a range that does not impede the effects of the present invention.
For example, zinc, cobalt, antimony, germanium, titanium, etc. may be included. Furthermore, the average particle size of the internally precipitated particles of the present invention is 0.2
It is preferable that the internal precipitate particle content be 0.01 to 2% by weight, especially 0.05 to 2% by weight, since the dropout will be even better in the range of ~5 μm, especially 0.3 to 3 μm.
A content in the range of 1% by weight is desirable because dropout becomes even better. The average particle size of the inert inorganic particles in the present invention is
It needs to be in the range of 0.5 to 2.0 μm, preferably 0.55 to 1.7 μm, and more preferably 0.6 to 1.5 μm. If the average particle size is smaller than the above range, the film will have poor slip properties and is not preferred as a base film for magnetic recording media. On the other hand, if the average particle size is larger than the above range, dropout will be poor, which is not preferable. Further, it is even more preferable for dropout to substantially not contain particles having a diameter of 3 μm or more. The content of inert inorganic particles in the present invention is
It is necessary that the amount is 0.003 to 0.1% by weight, preferably 0.005 to 0.08% by weight, and more preferably 0.005 to 0.06% by weight. If the content is less than the above range, the slipperiness of the film will be poor, making it undesirable as a base film for magnetic recording media. On the other hand, if the content is more than the above range, dropout will be poor, which is not preferable. The crystallization promotion coefficient of the inert inorganic particles in the present invention needs to be 15°C or less, preferably 12°C or less, and more preferably 10°C or less. If the crystallization promotion coefficient is larger than the above range, dropout will be poor, which is not preferable. Note that the lower limit of the crystallization promotion coefficient is not particularly limited, but about 0° C. is the manufacturing limit. The types of inert inorganic particles in the present invention are not particularly limited, but include substantially spherical silica particles derived from colloidal silica, rutile-type titanium oxide,
In the case of an oxygen-containing inorganic compound such as tungsten oxide, it is particularly desirable to set the crystallization promotion coefficient within the range of the present invention because the effect is large and the dropout becomes even better. Among them, the above-mentioned silica is particularly desirable. The colloidal silica referred to here is preferably a particle produced in the process of removing alkaline components from sodium silicate as a main raw material. The present invention uses the above-mentioned composition as a main component, but other types of polymers may be blended within a range that does not impede the purpose of the present invention, and antioxidants, heat stabilizers, lubricants, and ultraviolet absorbers may also be blended. Inorganic or organic additives such as these may be added to the extent that they are normally added. The film of the present invention is a film in which the above composition is biaxially oriented. The biaxially oriented film referred to herein is a film whose refractive index ratio in the thickness direction is in the range of 0.935 to 0.970. If the refractive index ratio in the thickness direction is smaller than the above range, dropout will be poor.
Moreover, if it is too large, both dropout and slip properties will be poor, which is not preferable. Further, the film of the present invention is particularly desirable when the refractive index ratio in the thickness direction is in the range of 0.935 to 0.950 because dropout becomes even better. The Young's modulus of the film of the present invention in the width direction is not particularly limited, but the Young's modulus is 450 Kg/mm 2 or more, particularly 500 Kg/mm 2 or more.
Kg/mm 2 or more is particularly desirable because the dropout becomes even better. The melt viscosity of the film of the present invention is not particularly limited, but a melt viscosity of 1,000 poise or more, particularly 2,000 poise or more is particularly desirable because dropout becomes even better. The longitudinal heat shrinkage rate of the film of the present invention at 100°C is not particularly limited, but is 0.8% or less, particularly 0.6%.
The following cases are particularly desirable because the dropout becomes even better. Although the waviness index of the film of the present invention is not particularly limited, a waviness index of 0.50 to 0.95 is particularly desirable because the slipperiness is even better. When silica is used as the inert inorganic particles in the film of the present invention, the surface layer particle concentration of the silica is not particularly limited, but it is particularly preferable that the surface layer particle concentration is in the range of 0.02 to 0.20 because dropout becomes even better. Although the crystal size of the film of the present invention is not particularly limited, it is particularly desirable that the crystal size be 47 Å or more, particularly 50 Å or more, since dropout will be even better. Next, a method for manufacturing the film of the present invention will be explained. First, the following method is effective for generating internally precipitated particles. That is, the internal particles are formed in the process of polycondensation through direct esterification of a predetermined dicarboxylic acid and ethylene glycol, or in the process of polycondensation through transesterification between dimethyl ester of a predetermined dicarboxylic acid and ethylene glycol. It is produced by adding at least one glycol-soluble calcium compound, magnesium compound, manganese compound, lithium compound and preferably a phosphorus acid and/or ester compound in a suitable manner. The addition of compounds for producing internal particles can be carried out at any time from the time when the esterification reaction or transesterification reaction is substantially completed to the early stage when the polycondensation reaction is not very advanced. It is preferable to add at least one of these to the reaction system as a glycol solution. Calcium, magnesium, which can be used here,
Compounds of manganese and lithium include halides, inorganic acid salts such as nitrates and sulfates, acetates,
Organic acid salts such as oxalates and benzoates, and glycol-soluble compounds such as hydrides and oxides are most preferably used, but two or more thereof may be used in combination. In addition, phosphorus compounds include phosphoric acid, phosphorous acid,
One or more of phosphonic acids and their esters and partial esters are used. Next, it is effective to add the inert inorganic particles as a slurry dispersed in ethylene glycol before or during the polymerization reaction to obtain an average particle size within the range of the present invention. Here, the following method is effective for obtaining the crystallization promotion coefficient of the present invention. (1) Inert particles are elements A, A,
When containing any element of group B, B, or B - When 20% ethylene glycol sol (slurry) with particle solid content of 1 g is mixed with 100 c.c. of water.
The pH value should be in the range of 7 to 12, preferably 9 to 11, and the sodium content should be in the range of particle solids.
After adjusting the ethylene glycol sol to a concentration of 0.15 to 0.6% by weight, it is polycondensed with a predetermined dicarboxylic acid (or its ester) to obtain a polyester containing inert inorganic particles. (2) When the inert inorganic particles contain any element from Group A or Group A of the Periodic Table of Elements - Before dispersing the inert inorganic particles in ethylene glycol, wash them with a polar solvent such as methanol or ethanol, After adding 0.1 to 5% by weight of ammonium phosphate to the particles as a dispersion aid, dispersing them in ethylene glycol, dispersing them using fine glass beads, etc. as a media, and then removing the media such as glass beads. Promote dispersion. The ethylene glycol slurry of the particles thus obtained is polycondensed with a predetermined dicarboxylic acid (or its ester) to obtain a polyester containing inert inorganic particles. In the present invention, polyester containing internal particles or inert particles is manufactured separately and kneaded in a melting process, or a high concentration master containing a large amount of polyester containing internal particles and inert particles is used. A method of mixing an appropriate amount of polyester is also preferably employed. The most preferred method is to use a polyester containing substantially no internal particles and a polyester containing inert particles at a high concentration, diluted with a polyester containing internal precipitated particles. After thoroughly drying the polyester pellets containing internal precipitated particles and a predetermined amount of inert inorganic particles, the polyester pellets were supplied to a known melt extruder and
It is extruded into a sheet through a slit-shaped die at ~330°C, and cooled and solidified to produce an unstretched film. In this case, it is extremely effective to use a filter with an overcapacity of 5 μm or less, preferably 4 μm or less, and more preferably 3 μm or less, with a 95% cut particle size measured with a Coulter counter to obtain the waviness index within the desired range of the present invention. It is. Next, this unstretched film is biaxially stretched and biaxially oriented. As the stretching method, a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used. In the case of the sequential biaxial stretching method, it is common to stretch in the longitudinal direction and then in the width direction, but this order may be reversed. The conditions for biaxial stretching are the stretching method,
Although not necessarily constant depending on the type of polymer, the temperature is usually 80 to 160°C, preferably 90 to 150°C in both the longitudinal and width directions, and the stretching ratio is 3.0 to 5.0 times, preferably 3.2 to 4.5. The double range is
Further, a stretching speed of 1×10 3 to 7×10 4 %/min is effective for obtaining the refractive index ratio in the thickness direction within the range of the present invention. Next, the film of the present invention may be heat treated. It is effective to set the heat treatment temperature to 180 to 230°C and the time to 0.5 to 60 seconds to obtain a heat shrinkage rate within the desired range of the present invention. Further, when performing the above heat treatment, a method of performing the heat treatment while relaxing the material by 2.0 to 10% in the width direction is particularly effective for obtaining a thickness direction refractive index ratio within the range of the present invention and a crystal size within the desired range. . [Function] Since the present invention has a biaxially oriented polyester film containing internally precipitated particles and inert inorganic particles having a specific crystallization promotion coefficient, the film surface protrusions make the film resistant to external shearing. It is presumed that the abrasion resistance was improved and the effects of the present invention were obtained. [Method for measuring physical properties and expressing effects] The methods for measuring the characteristic values and evaluating the effects of the present invention are as follows. Particle content Thoroughly wash the sample with methanol to remove surface deposits, wash with water and dry 300g sample .
Add 2.7Kg of chlorophenol and heat to 100℃ while stirring.
After raising the temperature, the polyester portion was allowed to stand for an additional hour to dissolve the polyester portion. However, if the polyester portion does not dissolve, such as when it is highly crystallized, the above-mentioned dissolution operation is performed after dissolving it and rapidly cooling it. Next, coarse insoluble matter such as dust contained in the polyester is separated and removed by a G-1 glass filter, and the weight of the matter on the furnace is subtracted from the sample weight. Hitachi Separation Ultracentrifuge 40p type rotor
Equipped with RP30, and after injecting 30 c.c. of the solution after glass filter furnace separation into each cell, remove the rotor.
Rotate at 4,500 rpm, and after confirming that there are no rotation abnormalities, create a vacuum in the rotor, increase the rotation speed to 30,000 rpm, and perform centrifugal separation of particles at this rotation speed. Separation is completed after approximately 40 minutes, but this can be confirmed, if necessary, by checking that the light transmittance of the liquid after separation at 375 mμ becomes a constant value that is higher than that before separation. After separation, the supernatant liquid is removed by decanting to obtain separated particles. Since the separated particles may be contaminated with polyester components due to insufficient separation, add 0- chlorophenol at room temperature to the collected particles, suspend them almost uniformly, and then perform the ultracentrifuge treatment again. . This operation, which will be described later, must be repeated until a melting peak corresponding to the polymer can no longer be detected by drying the particles and subjecting the particles to scanning differential calorimetry. Finally, the separated particles obtained in this way were
℃, vacuum dry for 16 hours and weigh. Note that the separated particles obtained by the above operation contain both internally precipitated particles and inert inorganic particles. For this reason, it is necessary to separately determine the amount of internal particles and the amount of inert inorganic particles. First, quantitative analysis of the metal content of the separated particles is performed, and the content of Ca, Li, Ca,
Find the metal content other than Li. Next, the separated particles are heated under reflux in 3 times the molar amount of ethylene glycol for 6 hours or more, and then the ethylene glycol is distilled off to a temperature of 200° C. or higher for depolymerization, whereby only the internal particles are melted. The separated particles obtained by stretching and separating the remaining particles are dried and weighed to determine the amount of inert inorganic particles, and the difference from the initial total amount of separated particles is determined as the internal particle amount. In order to confirm whether the depolymerization was completed, quantitative analysis of the metal content was performed on the separated particles after depolymerization. By repeating these operations, the accuracy of particle amount measurement can be improved. Average particle diameter of inert inorganic particles The inert inorganic particles separated by the above method are dispersed in ethanol, and the volume average diameter is measured by a centrifugal sedimentation method (Horiba Seisakusho, using CAPA500). Glass transition point Tg, cooling crystallization temperature Tcc PerkinElmer DSC (differential scanning calorimeter)
Measured using a mold. The DSC measurement conditions are as follows. That is, 10 mg of the sample is placed in a DSC device, dissolved for 5 minutes, and then rapidly cooled in liquid nitrogen. This rapidly cooled sample is heated at a rate of 10°C/min, and the glass transition point Tg is detected. The temperature was further increased, and the exothermic peak temperature of crystallization from the glass state was determined as the cooling crystallization temperature Tcc. Here, the difference between Tcc and Tg (Tcc
−Tg) is defined as △Tcg. Crystallization promotion coefficient By the above method, △Tcg (A) of a polyester containing 1% by weight of inert inorganic particles and △Tcg (B) of a polyester containing no inert inorganic particles of the same viscosity are measured, △Tcg (B) and △Tcg
The difference from (A) [ΔTcg (B) - ΔTcg (A)] was taken as the crystallization promotion coefficient of the inert inorganic particle. Young's modulus Measured at 25° C. and 65% RH using an Instron tensile tester according to ASTM-D-882. Heat shrinkage rate of film Cut a sample film to a width of 10 mm and a length of 250 mm.
Insert two marked lines at an interval of approximately 200 mm, and measure the interval accurately (this is defined as A mm). Place the sample in a hot air oven at 150°C for 30 minutes with a load of 3.0 g applied to the tip. After leaving it for a minute, measure the distance between the marked lines (this is Bmm), 100 x (A-B)/
A was taken as the heat shrinkage rate. Melt viscosity Using a high-temperature flow tester, the temperature was 290℃,
Measured at a shear rate of 200 sec -1 . Waviness Index Measure the surface average roughness (Ra) using a stylus surface roughness meter in accordance with JIS-B-0601. In this case, the ratio of Ra by the following measurement methods A and B is Ra (Method A)/Ra (B
The waviness index was defined as the ratio of [Method A] Equipment: Kosaka Institute High Precision Thin Film Step Measuring Machine ET-
10 Stylus tip radius: 0.5 μm Cut-off: 0.08 mm Measuring length: 0.5 mm [Method B] Equipment: Kosaka Laboratory surface roughness meter SE-3E Stylus tip radius: 2.0 μm Cut-off: 0.08 mm Measuring length: 4 mm Surface particles Concentration Using a secondary ion mass spectrometer (SIMS),
The concentration ratio of the metal element contained in the inert inorganic particles and the carbon element of the polyester is defined as the particle concentration, and the average concentration value from the film surface to a depth of 100 Å obtained by this measurement is
The ratio of CS to the average concentration value CB at a depth of 5,000 to 10,000 Å, CS/CB, was defined as the surface particle concentration. measuring device,
The conditions are as follows. (1) Measurement conditions Secondary ion mass spectrometer (SIMS) A-DIDA3000 manufactured by ATOMIKA, West Germany (2) Measurement conditions Primary ion species: O 2 + Primary ion acceleration voltage: 12KV Primary ion current: 200nA Raster region : 400μm□ Analysis area: Gate 30% Measurement vacuum: 6.0×10 -9 Torr E-GUN: 0.5KV-3.0A Crystal size (100 planes) Determined by wide-angle X-ray diffraction (counter method). (1) X-ray generator Manufactured by Rigaku Denki Co., Ltd. X-ray source: Cu, Kα (Ni filter used) Output: 35KV 15mA (2) Goniometer Manufactured by Rigaku Denki Co., Ltd. Model 2155D1 Slit diameter: 2 mmφ, 1° x 1° (3) ) Crystal size From the value of the half width of the peak with 2θ of 26 to 28° obtained by the transmission method, Scherrer's formula: L (100) = Kλ / βo cosθ (However, βo 2 = βE 2 − βI 2 , βE: Apparent half-width, βI: 1.05×10 -2 , K: 1.0, λ: X-ray wavelength, θ: Bragg angle, L(100): Average in the direction perpendicular to the (100) plane of the microcrystal It was calculated using the size of The incident direction of the X-rays was parallel to the film width direction, and the average size in the direction perpendicular to the crystal (100) plane was defined as the crystal size. (11) Refractive index ratio in the thickness direction Using an Atsube refractometer with sodium D line (wavelength 589 nm) as a light source, the refractive index (referred to as A) of the biaxially oriented film in the thickness direction and after melt pressing were determined. Ten
The refractive index (referred to as B) in the thickness direction of the produced non-oriented (amorphous) film that was rapidly cooled in water at ℃ was measured, and A/B was defined as the refractive index ratio in the thickness direction. Methylene iodide was used as the mounting solution, and 25
Measured at ℃ and 65%RH. (12) Dropout when made into magnetic tape 100 parts by weight of γ-Fe 2 O 3 , 15 parts by weight of vinyl chloride-vinyl acetate copolymer, polyurethane elastomer
15 parts by weight, 8 parts by weight of carbon black, 120 parts by weight of methyl ethyl ketone, methyl isobutyl ketone
A magnetic paint was prepared by thoroughly mixing and dispersing a mixture of 130 parts by weight and 2 parts by weight of myristic acid using a sand mill. 15 parts by weight of polyisocyanate (Coronate L) was added to this magnetic paint, and this was applied to a sample polyester film in a thick layer. Coated with a thickness of 4.0μm (dry thickness) and calendered (temperature 90℃, linear pressure 200Kg/
cm, speed 550 m/min), and was then slit into 1/2 inch width tape. This tape was inserted into a VHS videocassette (120 minutes) to create a videocassette tape. This tape was used to record signals from a TV test signal generator (TG-7/1 model manufactured by Shibasoku Co., Ltd.) using a VTR, and then 100 passes (120
minutes x 100 passes). Using this tape, a dropout counter was used to pick up and drop out those with a dropout width of 5 microseconds or more and a reproduced signal attenuation of -16dB or more. The measurement was performed on 10 video cassettes, and if the number of dropouts per minute is less than 10, the dropout is good.
If the number of samples exceeds 1, it is considered defective. (13) Slip property Using a tape runability tester model TBT-300 (manufactured by Yokohama System Research Institute), the tape was run in an atmosphere of 20°C and 60% RH, and the initial μK was determined from the formula below. μK=0.733log(T 1 /T 0 ) Here, T 0 is the inlet tension and T 1 is the outlet tension.
The guide diameter is 6mmφ, and the guide material is SUS27.
(Surface roughness 0.2S), wrapping angle is 180°, running speed is
3.3cm/sec. When the above μK was 0.23 or less, it was determined that the slip property was good, and when it exceeded 0.23, it was determined that the slip property was poor. [Example] The present invention will be described based on an example. Examples 1-3, Comparative Examples 1-6 100 parts by weight of terephthalic acid and ethylene glycol
43 parts by weight were kneaded to prepare a slurry. The slurry was continuously added at a constant rate to a reactant of 50 parts by weight of terephthalic acid and 21.5 parts by weight of ethylene glycol stored at 245°C in a reactor, and an esterification reaction was carried out at 245°C under normal pressure. The produced water was continuously distilled out of the system from the rectification column. The supply time of the slurry was completed in 3 hours and 30 minutes, and the esterification reaction was completed in 4 hours.
Finished in time. From the obtained reaction product, an esterification reaction product equivalent to 100 parts by weight of terephthalic acid was transferred to a polymerization apparatus, and 0.045 parts by weight of phosphoric acid, 0.023 parts by weight of antimony trioxide, and colloidal silica with different average particle diameters were added as an ethylene glycol slurry. and polycondensation reaction was carried out according to a conventional method. The obtained polymer does not have any internal particles defined in the present invention, and contains 1 silica particle caused by colloidal silica.
A polyester containing % by weight was obtained (Polyester A). In this case, polyesters with different crystallization promotion coefficients were produced by changing the pH value and sodium content during preparation of the ethylene glycol slurry of silica particles. A transesterification reaction is carried out in a conventional manner using 100 parts by weight of dimethyl terephthalate, 62 parts by weight of ethylene glycol and 0.06 parts by weight of calcium acetate as a catalyst, and the resulting product contains 0.04 parts by weight of antimony trioxide,
0.07 parts by weight of lithium acetate and calcium acetate
After adding 0.04 parts by weight, and then adding 0.02 parts by weight of phosphorous acid and 0.10 parts by weight of trimethyl phosphate, polycondensation was performed, and the intrinsic viscosity was 0.618, and the internal particle amount was 0.35 parts by weight (based on 100 parts by weight of polyester). A polymer containing the following was obtained. Internal particles contain 1.2% by weight of calcium element, 1.9% by weight of lithium element, and phosphorus element.
Contained 4.9% by weight (polyester:
B). Pellets prepared by mixing the above polyester A and polyester B in a predetermined ratio so that the silica content is as shown in Table 1 are dried under reduced pressure (3 Torr) at 180°C for 3 hours.
did. The pellets were fed into an extruder, melted and extruded at 300℃, and the surface temperature was adjusted using an electrostatic casting method.
It was wound around a casting drum at 30°C and cooled and solidified to produce an unstretched film with a thickness of approximately 170 μm. This unstretched film was rolled in the longitudinal direction at 90℃.
Stretched 3.4 times. This stretching was carried out with a difference in the circumferential speed of two sets of rolls, and the stretching speed was 10,000%/min. This uniaxial film was stretched at 100℃ using a stenter at a stretching speed of 2000%/min.
The film was stretched 3.6 times in the width direction and heat-treated at 210° C. for 5 seconds while being relaxed by 6% in the width direction to obtain a film with a thickness of 14 μm. The performance of these films is
As shown in the table, the average particle size of the inert inorganic particles,
When the content and crystallization promotion coefficient are within the range of the present invention,
Films with excellent slipperiness and dropout were obtained (Examples 1 to 3), but films with both slipperiness and dropout could not be obtained in cases where the requirements of the present invention were not satisfied (Comparative Examples 1 to 6). .
In both Examples and Comparative Examples, the polyester was polyethylene terephthalate, and the refractive index ratio in the thickness direction was
It was 0.945.

【表】 実施例4〜5、比較例7〜9 実施例1のポリエステルAのシリカの代りにル
チル型酸化チタンを1重量%含有するポリエステ
ルを得た(ポリエステルC)。この場合、酸化チ
タンの平均粒径は0.8μmであり、また、酸化チタ
ンのエチレングリコールスラリーを調整する時の
分散剤の有無により、結晶化促進係数の異なるも
のを製造した。このポリエステルCと実施例1の
ポリエステルBとを酸化チタン含有量が第2表と
なるように所定割合で混合したペレツトを用い
て、長手方向、幅方向の延伸倍率以外は実施例1
と同様にして、厚さ14μmのフイルムを得た。こ
れらのフイルムの性能は、第2表に示したとお
り、不活性無機粒子の平均粒径、含有量、結晶化
促進係数、厚さ方向屈析率比が本発明範囲内の場
合は滑り性、ドロツプアウトともにすぐれたフイ
ルムが得られたが(実施例4〜5)、本発明の要
件を満足しない場合は滑り性、ドロツプアウトを
両立したフイルムは得れなかつた(比較例7〜
9)。
[Table] Examples 4 to 5, Comparative Examples 7 to 9 A polyester containing 1% by weight of rutile titanium oxide in place of the silica of polyester A of Example 1 was obtained (polyester C). In this case, the average particle size of titanium oxide was 0.8 μm, and products with different crystallization promotion coefficients were produced depending on the presence or absence of a dispersant when preparing the titanium oxide ethylene glycol slurry. Example 1 was prepared using pellets prepared by mixing this polyester C and polyester B of Example 1 in a predetermined ratio so that the titanium oxide content was as shown in Table 2, except for the stretching ratio in the longitudinal direction and the width direction.
A film with a thickness of 14 μm was obtained in the same manner as above. As shown in Table 2, the performance of these films is as follows: when the average particle size, content, crystallization promotion coefficient, and refractive index ratio in the thickness direction of the inert inorganic particles are within the range of the present invention, the slip property, Films with excellent dropout were obtained (Examples 4 and 5), but films with both slipperiness and dropout could not be obtained when the requirements of the present invention were not satisfied (Comparative Examples 7 and 5).
9).

【表】 [発明の効果] 本発明は、ポリエステルと、内部析出粒子およ
び不活性無機粒子とからなるフイルムにおいて、
不活性無機粒子の平均粒径、含有量、結晶化促進
係数を特定範囲としたので、カレンダー等の速度
を速くしても、磁気記録媒体とした時のドロツプ
アウトが少なく良好で、かつ、滑り性のすぐれた
磁気記録媒体用ベースフイルムが得られたもので
ある。 本発明フイルムは、各種磁気記録媒体に適用で
きるが、特に、バツクコート処理をしないビデオ
テープ用において、その真価が発揮されるもので
ある。また、本発明フイルムは磁気記録媒体製造
時のカレンダー速度を500m/分以上の高速で行
なつてもドロツプアウトが少なく良好であるの
で、生産性向上にも寄与できるものである。
[Table] [Effects of the Invention] The present invention provides a film comprising polyester, internally precipitated particles, and inert inorganic particles.
Since the average particle diameter, content, and crystallization promotion coefficient of the inert inorganic particles are set within specific ranges, even if the speed of the calender is increased, there is little dropout when used as a magnetic recording medium, and it has good slip properties. A base film for magnetic recording media with excellent properties was obtained. Although the film of the present invention can be applied to various magnetic recording media, its true value is particularly demonstrated in video tapes that are not subjected to back coating. Furthermore, the film of the present invention exhibits good performance with little dropout even when the calendering speed is high at 500 m/min or higher during the production of magnetic recording media, and therefore can contribute to improved productivity.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエステルと、内部析出粒子および平均粒
径が0.5〜2.0μmの不活性無機粒子を0.003〜0.1重
量%含有する組成物を主成分とする二軸配向フイ
ルムであつて、該不活性無機粒子は結晶化促進係
数が15℃以下であることを特徴とする磁気記録媒
体用ベースフイルム。
1 A biaxially oriented film mainly composed of a composition containing polyester and 0.003 to 0.1% by weight of internal precipitated particles and inert inorganic particles with an average particle size of 0.5 to 2.0 μm, the inert inorganic particles A base film for magnetic recording media characterized by a crystallization promotion coefficient of 15°C or less.
JP26978586A 1986-11-14 1986-11-14 Base film for magnetic recording medium Granted JPS63124214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26978586A JPS63124214A (en) 1986-11-14 1986-11-14 Base film for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26978586A JPS63124214A (en) 1986-11-14 1986-11-14 Base film for magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS63124214A JPS63124214A (en) 1988-05-27
JPH0578089B2 true JPH0578089B2 (en) 1993-10-28

Family

ID=17477122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26978586A Granted JPS63124214A (en) 1986-11-14 1986-11-14 Base film for magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS63124214A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516612B2 (en) * 1987-02-12 1996-07-24 ダイアホイルヘキスト株式会社 Biaxially stretched polyester film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341355A (en) * 1976-09-29 1978-04-14 Toray Ind Inc Biaxilialy streched polyester film
JPS57208213A (en) * 1981-06-18 1982-12-21 Diafoil Co Ltd Biaxially stretched polyester film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341355A (en) * 1976-09-29 1978-04-14 Toray Ind Inc Biaxilialy streched polyester film
JPS57208213A (en) * 1981-06-18 1982-12-21 Diafoil Co Ltd Biaxially stretched polyester film

Also Published As

Publication number Publication date
JPS63124214A (en) 1988-05-27

Similar Documents

Publication Publication Date Title
DE69020590T2 (en) Biaxially oriented polyethylene-2,6-naphthalate film.
JPH06182952A (en) Laminated polyester film for magnetic recording medium
DE3750319T2 (en) Polyester compositions, processes for their production, polyester films, polyester films for magnetic tapes and films made therefrom for capacitors.
JPH07114723A (en) Polyester film for magnetic recording medium
JPH05301330A (en) Laminated film
DE69202628T2 (en) Multi-layer polyester film for HD magnetic disk.
JPH05117421A (en) Polyethylene 2,6-naphthalate film
DE69306648T2 (en) Laminated polyester film and magnetic recording medium using this film as a substrate
JPH0578089B2 (en)
JP2595511B2 (en) Base film for magnetic recording media
JP2675216B2 (en) Polyethylene-2,6-naphthalate film
JP2625686B2 (en) Base film for magnetic recording media
JPH0360859B2 (en)
JPH0458811B2 (en)
JPS63215732A (en) Polyester film
JP2525461B2 (en) Biaxially oriented polyester film
JPH07249218A (en) Polyester film for magnetic recording medium
JP2803274B2 (en) Oxide coated magnetic recording media
JP2513837B2 (en) Biaxially oriented polyester film
JPH0836738A (en) Polyester film for magnetic recording medium
JPH01198637A (en) Biaxially oriented polyester film
JPH01230641A (en) Biaxially oriented polyester film
JP2615651B2 (en) Biaxially oriented polyester film
JP2520415B2 (en) Polyester film
JPH0760926A (en) Laminated polyester film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees