JPH0577807B2 - - Google Patents

Info

Publication number
JPH0577807B2
JPH0577807B2 JP28312187A JP28312187A JPH0577807B2 JP H0577807 B2 JPH0577807 B2 JP H0577807B2 JP 28312187 A JP28312187 A JP 28312187A JP 28312187 A JP28312187 A JP 28312187A JP H0577807 B2 JPH0577807 B2 JP H0577807B2
Authority
JP
Japan
Prior art keywords
water
drain
belt
shaped drain
gravel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28312187A
Other languages
Japanese (ja)
Other versions
JPH01127717A (en
Inventor
Toshimitsu Fujiwara
Masaaki Mitsufuji
Takumi Kajitani
Masaru Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP28312187A priority Critical patent/JPH01127717A/en
Publication of JPH01127717A publication Critical patent/JPH01127717A/en
Publication of JPH0577807B2 publication Critical patent/JPH0577807B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は砂質地盤の液状化を防止するための砂
質地盤の液状化防止工法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for preventing liquefaction of sandy ground.

(従来技術) 地震による繰り返し剪断力によつて、水で飽和
された低密度の砂質地盤は土粒子間に存在する間
隔水の圧力が急激に上昇するために有効応力を失
い、あたかも液体のように挙動する。これの現象
を液状化現象という。この液状化現象によつて、
地盤が破壊し、構造物が転倒、破壊、不同沈下す
ることが、新潟地震、日本海中部地震等で報告さ
れている。
(Prior art) Due to repeated shearing forces caused by earthquakes, water-saturated, low-density sandy ground loses its effective stress due to the sudden increase in the pressure of the interspace water between soil particles, causing it to become as if it were a liquid. It behaves like this. This phenomenon is called liquefaction phenomenon. Due to this liquefaction phenomenon,
Ground failure and structures toppling, destruction, and uneven settling have been reported in the Niigata Earthquake, the Chubu Japan Sea Earthquake, and other events.

この液状化防止工法の1つとして、グラベルド
レーン工法がある。この工法は、地盤中に直径40
〜60cmのグラベルパイルを1〜2m間隔で打設
し、地震時に発生する過剰間隔水圧の早期逸散を
目的としたものである。
One of the liquefaction prevention methods is the gravel drain method. This construction method uses a diameter of 40 mm in the ground.
~60cm gravel piles are placed at 1 to 2m intervals, with the aim of quickly dissipating excess water pressure that occurs during earthquakes.

(発明が解決しようとする問題点) しかし、この工法は、グラベルドレーンに使用
する砕石の透水性によつて効果が異なり、透水係
数の大なる砕石を用いると、土中内の砂粒子が間
隔に流入し、いわゆる目詰まり現象を起こす問題
点がある。また、透水係数の小なる砕石を用いる
と、排水能力に限界を生じ、十分に液状化が防止
出来るとは言い難い問題点がある。通常、グラベ
ルドレーンに使用する砕石の透水係数は、対象地
盤の200〜400倍が適切と考えられているが、この
程度の透水係数では排水に時間的遅れが生じるた
めに、ドレーンのウエルレジスタンスを考慮しな
ければならない。最近、このウエルレジスタンス
を考慮した設計が行われているが、従来に比べて
ドレーンの打設間隔が小さくなる問題点がある。
(Problem to be solved by the invention) However, the effectiveness of this construction method varies depending on the permeability of the crushed stone used for the gravel drain, and if crushed stone with a high permeability coefficient is used, the sand particles in the soil There is a problem that the liquid flows into the water, causing a so-called clogging phenomenon. Furthermore, when crushed stone with a low hydraulic conductivity is used, there is a problem in that the drainage capacity is limited and liquefaction cannot be sufficiently prevented. Normally, it is considered appropriate for the hydraulic conductivity of crushed stone used for gravel drains to be 200 to 400 times that of the target ground, but this level of hydraulic conductivity causes a time delay in drainage, so the well resistance of the drain is must be taken into account. Recently, designs have been made that take this well resistance into consideration, but there is a problem in that the intervals between drains are smaller than in the past.

この発明の目的は、グラベルドレーンの排水能
力をより向上させ、しかも、打設間隔を大きくし
ても地震時に発生する過剰間隔水の排水を効果的
に行わせることができる砂質地盤の液状化防止工
法を提供することにある。
The purpose of this invention is to further improve the drainage capacity of gravel drains, and to liquefy sandy ground, which can effectively drain excess water that occurs during earthquakes even if the drainage interval is increased. The purpose is to provide a prevention method.

(問題点を解決するための手段) 上記の目的を達成するための本発明の手段を説
明すると、本発明は、横断面がほぼ矩形状をして
いて相対向する広面が通水板面となつている通水
材と、前記通水材の表面を覆う不織布とを備え、
前記通水材内にはその長手方向に連続する通水路
が前記両通水板面間を幅方向に間隔をおいて連結
する複数のリブで仕切られて幅方向に複数個並設
され、前記両通水板面にはその幅方向に沿つた溝
が長手方向に間隔をおいて多数それぞれ形成さ
れ、前記各溝には前記通水路に通じる多数の通水
孔がそれぞれ形成された構造の帯状ドレーンを用
い、 前記帯状ドレーン用のマンドレルを内蔵したケ
ーシングオーガーを用いて砂質地盤を所定の深さ
まで堀削し、前記オーガーの引き上げ時に前記帯
状ドレーンを砂中に設置し、更に上部より投じた
砕石で前記帯状ドレーンの周辺を囲んでグラベル
ドレーンを作成することにより、前記帯状ドレー
ンと前記グラベルドレーンとの複合ドレーンを形
成することを特徴とする。
(Means for Solving the Problems) To explain the means of the present invention for achieving the above object, the present invention has a cross section that is approximately rectangular, and the opposing wide surfaces are the water flow plate surfaces. comprising a water-permeable material and a nonwoven fabric covering the surface of the water-permeable material,
A plurality of water passages continuous in the longitudinal direction are arranged in the water passage material in parallel in the width direction, partitioned by a plurality of ribs connecting the two water passage plate surfaces at intervals in the width direction, and A belt-like structure having a structure in which a large number of grooves are formed along the width direction of both water passage plates at intervals in the longitudinal direction, and each groove has a large number of water passage holes that communicate with the water passage. Using a drain, the sandy ground is excavated to a predetermined depth using a casing auger with a built-in mandrel for the belt-shaped drain, and when the auger is pulled up, the belt-shaped drain is installed in the sand, and then the belt-shaped drain is thrown from above. The invention is characterized in that a composite drain of the belt-shaped drain and the gravel drain is formed by surrounding the belt-shaped drain with crushed stone to create a gravel drain.

(作用) このようにグラベルドレーン中に特殊な帯状ド
レーンを設置して複合構造にすると、該帯状ドレ
ーンの表面の不織布によるフイルター作用と、通
水材の両通水板面とその間の複数のリブによる通
水路が拘束圧でつぶされないような構造とによ
り、通水路の確保とが図られて、グラベルドレー
ンの排水能力と合わせて排水能力が増し、地震時
における過剰間隔水の排水を効率よく行わせて、
液状化防止を有効に図ることができる。また排水
能力が大きくなるため、ウエルレジスタンスを考
慮しなくてもよくなりドレーン間隔を大きくとつ
た場合でも有効な排水が行われる。
(Function) When a special strip-shaped drain is installed in a gravel drain to create a composite structure, the filter action of the non-woven fabric on the surface of the strip-shaped drain and the multiple ribs between the two water-passing plate surfaces of the water-passing material and the The structure prevents the water passageway from being crushed by the confining pressure, which secures the water passageway, increases the drainage capacity along with the drainage capacity of the gravel drain, and efficiently drains excess water at intervals during an earthquake. In addition,
Liquefaction can be effectively prevented. Furthermore, since the drainage capacity is increased, there is no need to consider well resistance, and effective drainage can be performed even when the drain interval is large.

(実施例) 以下本発明の実施例を図面を参照して詳細に説
明する。
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

本発明では、従来から軟弱地盤の圧密促進に用
いられる帯状ドレーンを改良して用いるので、先
ず、本発明で用いる新規な帯状ドレーン材1の構
造の具体例を第3図乃至第6図を参照して説明す
る。
In the present invention, an improved belt-shaped drain conventionally used to promote consolidation of soft ground is used, so first, see FIGS. 3 to 6 for specific examples of the structure of the novel belt-shaped drain material 1 used in the present invention. and explain.

この帯状ドレーン1は、横断面がほぼ矩形状を
していて相対向する広面が通水板面2Aとなつて
いる通水材2と、該通水材2の表面を覆う不織布
3とで構成されている。通水材2は幅Wが100〜
150mm、厚さTが10〜15mm程度の矩形状断面形状
をなしている。該通水材2内には、その長手方向
に連続する通水路2Bが、両通水板面2A間を幅
方向に間隔をおいて連結する複数のリブ2Cで仕
切られて幅方向に複数個並設されている。両通水
板面2Aには、その幅方向に沿つた溝2Dが、5
mm程度の幅で長手方向に5mm程度の間隔をおいて
多数それぞれ形成されている。溝2Dは両通水板
面2Aの長手方向に相互に存在するように形成さ
れている。各溝2Dには、矩形状の通水孔2Eが
該溝2Dの長手方向に沿つて多数個それぞれ形成
されている。このような通水材2は、配合によつ
て硬軟がコントロールできる塩化ビニール、ポリ
エチレン等の樹脂材で形成されている。
This belt-shaped drain 1 is composed of a water-permeable material 2 whose cross section is approximately rectangular and whose opposing wide surfaces are water-permeable plate surfaces 2A, and a nonwoven fabric 3 that covers the surface of the water-permeable material 2. has been done. Water-permeable material 2 has a width W of 100~
It has a rectangular cross-sectional shape of 150 mm and a thickness T of about 10 to 15 mm. In the water passage material 2, there are a plurality of water passages 2B that are continuous in the longitudinal direction and partitioned by a plurality of ribs 2C that connect both water passage plate surfaces 2A at intervals in the width direction. They are installed in parallel. There are 5 grooves 2D along the width direction on both water passage plate surfaces 2A.
A large number of holes are formed with a width of about mm and spaced apart from each other by about 5 mm in the longitudinal direction. The grooves 2D are formed so as to exist in the longitudinal direction of both water passage plate surfaces 2A. A large number of rectangular water passage holes 2E are formed in each groove 2D along the longitudinal direction of the groove 2D. The water-permeable material 2 is made of a resin material such as vinyl chloride or polyethylene whose hardness and softness can be controlled by adjusting the composition.

このような帯状ドレーン1は、通水路2Eが両
通水板面2Aとリブ2Cとで区画されて形成され
ていて、地盤内の拘束圧でつぶされないようにな
つているので、地盤内で拘束圧が加わつても通水
性が低下せず、また長尺化されても通水性の低下
を抑制できる利点がある。更に、通水材2の材質
と両通水板面2Aの表面の溝2Dの存在により地
盤の変形にも追従でき、且つロール状の巻取りも
容易にでき、運搬も容易である。
Such a belt-shaped drain 1 is formed by partitioning the water passage 2E between both water passage plate surfaces 2A and ribs 2C, and is designed not to be crushed by the restraining pressure in the ground, so it is restrained in the ground. It has the advantage that the water permeability does not decrease even when pressure is applied, and the decrease in water permeability can be suppressed even when the length is increased. Furthermore, due to the material of the water passing material 2 and the presence of the grooves 2D on the surfaces of both water passing plate surfaces 2A, it is possible to follow the deformation of the ground, and it is also easy to wind up into a roll shape, making it easy to transport.

第7図は従来型帯状ドレーン材A,B,Cと、
この発明で用いる新規帯状ドレーン材D(試験時
は幅100mm、厚さ10mmとしている。)の通水試験結
果で、土中の拘束圧を考慮して試験時の側圧を段
階的に増した場合の各々の通水量を示している。
この結果、この発明の新規帯状ドレーン材Dが従
来型帯状ドレーン材A,B,Cに比べて3倍程度
大きな通水量を示し、且つ側圧に影響しないこと
がわかつた。
Figure 7 shows conventional strip-shaped drain materials A, B, and C.
The water flow test results of the new strip-shaped drain material D used in this invention (width 100 mm and thickness 10 mm at the time of the test), where the lateral pressure during the test was increased stepwise in consideration of the confining pressure in the soil. The amount of water flowing through each area is shown.
As a result, it was found that the novel strip-shaped drain material D of the present invention exhibited a water flow rate approximately three times larger than that of the conventional strip-shaped drain materials A, B, and C, and did not affect the lateral pressure.

第8図A,B及び第9図A,Bは、帯状ドレー
ン材を用いない時と、本発明の新規帯状ドレーン
材Dを用いた時の、地震時の砂質地盤の液状化の
状態の比較を示した図である。
Figures 8A and B and 9A and B show the liquefaction state of sandy ground during an earthquake when no belt-shaped drain material is used and when the new belt-shaped drain material D of the present invention is used. It is a figure showing a comparison.

第8図Aは土槽4内に緩い密度の飽和砂5を入
れ、該飽和砂5中のP点に間隔水圧計6をセツト
し、該飽和砂5中には帯状ドレーン1を挿入して
ない比較実験設備の例を示している。
In Fig. 8A, a saturated sand 5 with a loose density is placed in a soil tank 4, a water pressure gauge 6 is set at a point P in the saturated sand 5, and a strip drain 1 is inserted into the saturated sand 5. An example of no comparative experimental equipment is shown.

第8図Bは第8図Aに示す設備で振動実験をし
たときのP点の過剰間隔水圧比の時間的変化を示
した図である。ここで、Δuは過剰間隙水圧、
σv′は有効上載圧、Δu/σv′は過剰間隔水圧比で
ある。この場合、砂中のΔu/σv′はほぼ1とな
り、地盤が完全に液状化して、水のような挙動を
示している。
FIG. 8B is a diagram showing temporal changes in the excess spacing water pressure ratio at point P when a vibration experiment was conducted using the equipment shown in FIG. 8A. Here, Δu is excess pore water pressure,
σv′ is the effective overburden pressure and Δu/ σv ′ is the excess spacing water pressure ratio. In this case, Δu/σ v ' in the sand is approximately 1, indicating that the ground has completely liquefied and behaves like water.

第9図Aは土槽4内に緩い密度の飽和砂5を入
れ、該飽和砂4中に本発明で用いる新規帯状ドレ
ーン材1(例えば、幅100mm、厚さ10mm)を配置
し、且つ帯状ドレーン材1及び飽和砂5中のP1
点、P2点、P3点に間隔水圧計6をセツトした実
験設備の例を示している。
In FIG. 9A, a soil tank 4 is filled with saturated sand 5 of a loose density, a new strip-shaped drain material 1 (for example, width 100 mm, thickness 10 mm) used in the present invention is placed in the saturated sand 4, and a strip-shaped drain material 1 (for example, width 100 mm, thickness 10 mm) P1 in drain material 1 and saturated sand 5
An example of experimental equipment is shown in which interval water pressure gauges 6 are set at points P2, P2, and P3.

第9図Bは第9図Aに示す設備で振動実験をし
たときのP1点、P2点、P3点の過剰間隔水圧比の
時間的変化を示した図である。
FIG. 9B is a diagram showing temporal changes in the excess interval water pressure ratio at points P1, P2, and P3 when a vibration experiment was conducted using the equipment shown in FIG. 9A.

図から明らかなように、この発明で用いる新規
帯状ドレーン材1を配置しておくと、過剰間隔水
圧はあまり上昇せず、早期に消散していることが
わかる。このことより、この発明で用いる新規帯
状ドレーン材1は、液状化防止効果があることが
判明した。
As is clear from the figure, when the novel strip-shaped drain material 1 used in the present invention is placed, the excess spacing water pressure does not increase much and is quickly dissipated. From this, it was found that the novel strip-shaped drain material 1 used in the present invention has a liquefaction prevention effect.

次に本発明の工法について第1図A〜E及び第
2図を参照して説明する。
Next, the construction method of the present invention will be explained with reference to FIGS. 1A to 1E and FIG. 2.

本発明で用いる打設装置は、先端にオーガー先
端蓋8を有するケーシングオーガー9と、該ケー
シングオーガー9内に同心配置されたマンドレル
10を用いる。
The driving device used in the present invention uses a casing auger 9 having an auger tip cap 8 at its tip, and a mandrel 10 arranged concentrically within the casing auger 9.

第1図Aに示すように、マンドレル10内には
本発明で用いる新規な帯状ドレーン1を通し、該
帯状ドレーン1の下端にはアンカー11を取付け
て打設準備を行う。
As shown in FIG. 1A, a novel strip-shaped drain 1 used in the present invention is passed through a mandrel 10, and an anchor 11 is attached to the lower end of the strip-shaped drain 1 to prepare for casting.

第1図Bに示すように、ケーシングオーガー9
を回転しながら所定の深度まで飽和砂質地盤12
を堀削する。この時、マンドレル10は回転制御
装置13により回転することはなく、所定の深さ
に到達する。
As shown in FIG. 1B, the casing auger 9
While rotating the saturated sandy ground 12 to a predetermined depth.
to excavate. At this time, the mandrel 10 is not rotated by the rotation control device 13 and reaches a predetermined depth.

第1図Cに示すように、所定の深度まで堀削が
できたら、ケーシングオーガー9の回転を止め、
マンドレル10がケーシングオーガー9の先端よ
り50〜100cm程度突出するように圧入する。
As shown in FIG. 1C, when the excavation is completed to a predetermined depth, the rotation of the casing auger 9 is stopped, and
The mandrel 10 is press-fitted so that it protrudes from the tip of the casing auger 9 by about 50 to 100 cm.

第1図Dに示すように、ケーシングオーガー9
の上部における砕石投入用蓋14を開口し、砕石
15を適量投入する。その後、ケーシングオーガ
ー9を逆転しながら、砕石投入量に相当する深度
まで該ケーシングオーガー9を上昇させ、同時に
マンドレル10を引き上げる。ケーシングオーガ
ー9の回転時には、帯状ドレーン1はマンドレル
10によつて保護されている。この作業を繰り返
し、グラベルドレーン16の形成とケーシングオ
ーガー9及びマンドレル10の引き抜きを行う。
As shown in FIG. 1D, the casing auger 9
The crushed stone loading lid 14 at the top of the container is opened, and an appropriate amount of crushed stone 15 is loaded. Thereafter, while reversing the casing auger 9, the casing auger 9 is raised to a depth corresponding to the amount of crushed stone input, and at the same time the mandrel 10 is pulled up. During rotation of the casing auger 9, the strip drain 1 is protected by a mandrel 10. This operation is repeated to form the gravel drain 16 and pull out the casing auger 9 and mandrel 10.

第1図Eに示すように、かくして帯状ドレーン
1とグラベルドレーン16との複合ドレーン17
が形成され、その後、飽和砂質地盤12の上に砕
石マツト18を敷いて一連の工法を終了する。
As shown in FIG.
is formed, and then crushed stone mats 18 are laid on the saturated sandy ground 12 to complete the series of construction methods.

このように複合ドレーン17を形成すると、第
2図に示すように、矢印19で示す如く地震力が
加わつた場合に、飽和砂質地盤12の間隔水はグ
ラベルドレーン16内に矢印20で示す如く流れ
込み、グラベルドレーン16内の水は帯状ドレー
ン1内に矢印21で示す如く流れ込む。帯状ドレ
ーン1に流れ込んだ水は、該帯状ドレーン1の排
水効果によつて矢印22で示す如く上部へ排出さ
れる。なお、一部の水はグラベルドレーン16に
よつて矢印23で示す如く上部に排出される。こ
の2つのドレーン1,16の排水効果により、砂
質地盤12内に生じる過剰間隔水圧を早急に逸散
させることができ、液状化防止が可能になり、グ
ラベルドレーン16の問題点を解決できる。
When the composite drain 17 is formed in this way, as shown in FIG. The water in the gravel drain 16 flows into the strip drain 1 as shown by the arrow 21. The water that has flowed into the strip drain 1 is discharged upward as shown by an arrow 22 due to the drainage effect of the strip drain 1. Note that some of the water is discharged to the upper part by the gravel drain 16 as shown by an arrow 23. Due to the drainage effect of these two drains 1 and 16, the excessive spacing water pressure generated in the sandy ground 12 can be quickly dissipated, making it possible to prevent liquefaction and solving the problem of the gravel drain 16.

(発明の効果) 以上のように本発明では、グラベルドレーン中
に特殊構造の帯状ドレーンを設置して複合ドレー
ンを形成するので、グラベルドレーンの排水能力
に合わせて帯状ドレーンの排水能力が加重され
る。特に、この帯状ドレーンは表面の不織布によ
るフイルター作用と、内部の通水材の両通水板面
とその間の複数のリブによる通水路が拘束圧でつ
ぶされないような構造とにより、大きい通水路の
確保が図られて、排水を効率よく行わせることが
できる。従つて、本発明の複合ドレーンによれ
ば、グラベルドレーンのウエルレジスタンスを考
慮しなくてもよくなり、ドレーン間隔を大きくと
ることができ、複合ドレーンの設置数を減らし
て、施工費を低減させることができる。
(Effects of the Invention) As described above, in the present invention, a specially structured belt-shaped drain is installed in a gravel drain to form a composite drain, so that the drainage capacity of the belt-shaped drain is weighted in accordance with the drainage capacity of the gravel drain. . In particular, this belt-shaped drain has a filter effect due to the nonwoven fabric on the surface, and a structure that prevents the water passageway from being crushed by confining pressure due to both water passage plate surfaces of the internal water passage material and a plurality of ribs between them. This ensures that drainage can be carried out efficiently. Therefore, according to the composite drain of the present invention, there is no need to consider the well resistance of gravel drains, the drain interval can be increased, the number of composite drains installed can be reduced, and construction costs can be reduced. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A〜Eは本発明の工法の一例の工程を示
す縦断面図、第2図は本発明の工法で形成された
複合ドレーンの一例を示す縦断面図、第3図は本
発明で用いる帯状ドレーンの一例の不織布を一部
除去した状態を示す平面図、第4図は同側面図、
第5図は同縦断側面図、第6図は第5図中の−
線断面図、第7図は本発明で用いる帯状ドレー
ンと従来の帯状ドレーンの側圧に対する通水量の
変化の比較図、第8図A及び第9図Aは帯状ドレ
ーンを用いない場合と用いた場合の実験設備の縦
断面図、第8図B及び第9図Bは第8図A及び第
9図Aに示す実験設備での加震時における過剰間
隔水圧比の変化を示す過剰間隔水圧比特性図であ
る。 1……帯状ドレーン、2……通水材、2A……
通水板面、2B……通水路、2C……リブ、2D
……溝、2E……通水孔、3……不織布、8……
オーガー先端蓋、9……ケーシングオーガー、1
0……マンドレル、11……アンカー、12……
砂質地盤、14……砕石、16……グラベルドレ
ーン、17……複合ドレーン、18……砕石マツ
ト。
1A to 1E are longitudinal sectional views showing steps of an example of the construction method of the present invention, FIG. 2 is a longitudinal sectional view showing an example of a composite drain formed by the construction method of the invention, and FIG. A plan view showing an example of the belt-shaped drain to be used with a portion of the nonwoven fabric removed, FIG. 4 is a side view of the same,
Figure 5 is a vertical sectional side view of the same, Figure 6 is - in Figure 5.
Line sectional view, Figure 7 is a comparison diagram of the change in water flow rate with respect to lateral pressure between the belt-shaped drain used in the present invention and the conventional belt-shaped drain, and Figures 8A and 9A are the cases where the belt-shaped drain is not used and when it is used. Figures 8B and 9B are longitudinal cross-sectional views of the experimental equipment shown in Figures 8A and 9A. It is a diagram. 1... Band-shaped drain, 2... Water-permeable material, 2A...
Water passage plate surface, 2B... Water passage, 2C... Rib, 2D
...Groove, 2E...Water hole, 3...Nonwoven fabric, 8...
Auger tip lid, 9...Casing auger, 1
0...Mandrel, 11...Anchor, 12...
Sandy ground, 14...crushed stone, 16...gravel drain, 17...composite drain, 18...crushed stone pine.

Claims (1)

【特許請求の範囲】 1 横断面がほぼ矩形状をしていて相対向する広
面が通水板面となつている通水材と、前記通水材
の表面を覆う不織布とを備え、前記通水材内には
その長手方向に連続する通水路が前記両通水板面
間を幅方向に間隔をおいて連結する複数のリブで
仕切られて幅方向に複数個並設され、前記両通水
板面にはその幅方向に沿つた溝が長手方向に間隔
をおいて多数それぞれ形成され、前記各溝には前
記通水路に通じる多数の通水孔がそれぞれ形成さ
れた構造の帯状ドレーンを用い、 前記帯状ドレーン用のマンドレルを内蔵したケ
ーシングオーガーを用いて砂質地盤を所定の深さ
まで堀削し、前記オーガーの引き上げ時に前記帯
状ドレーンを砂中に設置し、更に上部より投じた
砕石で前記帯状ドレーンの周辺を囲んでグラベル
ドレーンを作成することにより、前記帯状ドレー
ンと前記グラベルドレーンとの複合ドレーンを形
成することを特徴とする砂質地盤の液状化防止工
法。
[Scope of Claims] 1. A water-permeable material comprising: a water-permeable material having a substantially rectangular cross section and opposite wide surfaces serving as water-permeable plate surfaces, and a nonwoven fabric covering the surface of the water-permeable material; Inside the water material, a plurality of water passages that are continuous in the longitudinal direction are partitioned by a plurality of ribs that connect the two water passage plate surfaces at intervals in the width direction, and are arranged in parallel in the width direction. A large number of grooves are formed along the width direction of the water plate at intervals in the longitudinal direction, and each groove has a belt-shaped drain having a structure in which a large number of water holes communicating with the water passage are formed respectively. A casing auger with a built-in mandrel for the belt-shaped drain is used to excavate sandy ground to a predetermined depth, and when the auger is pulled up, the belt-shaped drain is placed in the sand, and crushed stone thrown from above is used to excavate the sandy ground to a predetermined depth. A method for preventing liquefaction of sandy ground, characterized by forming a composite drain of the belt-shaped drain and the gravel drain by creating a gravel drain surrounding the belt-shaped drain.
JP28312187A 1987-11-11 1987-11-11 Preventing work for liquidizing of sandy ground Granted JPH01127717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28312187A JPH01127717A (en) 1987-11-11 1987-11-11 Preventing work for liquidizing of sandy ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28312187A JPH01127717A (en) 1987-11-11 1987-11-11 Preventing work for liquidizing of sandy ground

Publications (2)

Publication Number Publication Date
JPH01127717A JPH01127717A (en) 1989-05-19
JPH0577807B2 true JPH0577807B2 (en) 1993-10-27

Family

ID=17661497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28312187A Granted JPH01127717A (en) 1987-11-11 1987-11-11 Preventing work for liquidizing of sandy ground

Country Status (1)

Country Link
JP (1) JPH01127717A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125741A (en) * 1991-05-28 1993-05-21 Misawa Homes Co Ltd Drainage structure of basement
JP6420090B2 (en) * 2014-08-20 2018-11-07 株式会社不動テトラ Ground liquefaction countermeasure method

Also Published As

Publication number Publication date
JPH01127717A (en) 1989-05-19

Similar Documents

Publication Publication Date Title
JPH0454004B2 (en)
JP3031336B2 (en) Sheet pile with drainage function, method of mounting filter for sheet pile, and drainage member
JPH0424330A (en) Earthquake-proof reinforcing structure of construction
JPS6248008B2 (en)
JPS6321764B2 (en)
JP2803409B2 (en) Liquefaction countermeasure structure for embankment
JP2789803B2 (en) Liquefaction control piles and plugs for liquefaction control piles
JPH0577807B2 (en)
JPS6311710A (en) Earthquake-proofing and reinforcing work for existing structure
JPH0352256Y2 (en)
JPH0138926B2 (en)
JP2751652B2 (en) Liquefaction prevention structure for lifeline structures
JPH0463162B2 (en)
JP4024064B2 (en) Revetment structure and revetment method
JPH08302661A (en) Mat constructing method for prevention of sand spout
JPH01125415A (en) Preventing work for liquefaction of ground by banded drain material
JP7046037B2 (en) Honeycomb reinforcement slope
JPS63142115A (en) Prevention work for liquefaction of ground
JP2765327B2 (en) Ground surface drainage method
JPS6128624A (en) Slope-stabilizing construction
JPS60144412A (en) Liquefaction preventive foundation structure for ground
JP2022031495A (en) Honeycomb reinforced sloped face
JP2881224B2 (en) Structure liquefaction countermeasure system and its construction method
JP3431905B2 (en) Improved soil structure of sandy soil layer and improvement method
JP2764498B2 (en) Liquefaction countermeasures for underground structures

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20081027

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 15