JPH01127717A - Preventing work for liquidizing of sandy ground - Google Patents

Preventing work for liquidizing of sandy ground

Info

Publication number
JPH01127717A
JPH01127717A JP28312187A JP28312187A JPH01127717A JP H01127717 A JPH01127717 A JP H01127717A JP 28312187 A JP28312187 A JP 28312187A JP 28312187 A JP28312187 A JP 28312187A JP H01127717 A JPH01127717 A JP H01127717A
Authority
JP
Japan
Prior art keywords
drain
water
belt
shaped drain
gravel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28312187A
Other languages
Japanese (ja)
Other versions
JPH0577807B2 (en
Inventor
Toshimitsu Fujiwara
敏光 藤原
Masaaki Mitsufuji
正明 三藤
Takumi Kajitani
梶谷 卓美
Masaru Yoshimura
賢 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP28312187A priority Critical patent/JPH01127717A/en
Publication of JPH01127717A publication Critical patent/JPH01127717A/en
Publication of JPH0577807B2 publication Critical patent/JPH0577807B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PURPOSE:To raise the draining function of water by a method in which a specific structure of belt-like drain is set in a gravel drain to form a composite drain. CONSTITUTION:A belt-like drain 1 is made up of water-permeable material 2 having mutually facing water-permeable wide plates 2A of a nearly rectangular cross section and a nonwoven fabric material 3 covering the surface of the material 2. The drain 1 is set in a gravel drain 16 to form a composite drain 17. The draining function of water can thus be enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は砂質地盤の液状化を防止するための砂質地盤の
液状化防止工法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for preventing liquefaction of sandy ground.

(従来技術) 地震による繰り返し剪断力によって、水で飽和された低
密度の砂質地盤は土粒子間に存在する間隙水の圧力が急
激に上昇するために有効応力を失い、あたかも液体のよ
うに挙動する。これの現象を液状化現象という。この液
状化現象によって、地盤が破壊し、構造物が転倒、破壊
、不同沈下することが、新潟地震1日本海中部地震等で
報告されている。
(Prior art) Due to repeated shearing forces caused by earthquakes, water-saturated, low-density sandy ground loses its effective stress due to the sudden increase in the pressure of pore water existing between soil particles, causing it to become as if it were a liquid. behave. This phenomenon is called liquefaction phenomenon. It has been reported that this liquefaction phenomenon causes the ground to fail, causing structures to overturn, be destroyed, and to sink unevenly, such as in the Niigata Earthquake 1 and the Chubu Japan Sea Earthquake.

この液状化防止工法の1つとして、グラベルドレーン工
法がある。この工法は、地盤中に直径40〜60cmの
グラベルパイルを1〜2m間隔で打設し、地震時に発生
する過剰間隙水圧の早期逸散を目的としたものである。
One of the liquefaction prevention methods is the gravel drain method. This construction method involves placing gravel piles with a diameter of 40 to 60 cm in the ground at intervals of 1 to 2 m, with the aim of quickly dissipating excess pore water pressure that occurs during an earthquake.

(発明が解決しようとする問題点) しかし、この工法は、グラベルドレーンに使用する砕石
の透水性によって効果が異なり、透水係数の大なる砕石
を用いると、土中内の砂粒子が間隙に流入し、いわゆる
目詰まり現象を起こす問題点がある。また、透水係数の
小なる砕石を用いると、排水能力に限界を生じ、十分に
液状化が防止出来るとは言い難い問題点がある。通常、
グラベルドレーンに使用する砕石の透水係数は、対象地
盤の200〜400倍が適切と考えられているが、この
程度の透水係数では排水に時間的遅れが生じるために、
ドレーンのウェルレジスタンスを考慮しなければならな
い。最近、このウェルレジスタンスを考慮した設計が行
われているが、従来に比べてドレーンの打設間隔が小さ
くなる問題点がある。
(Problem to be solved by the invention) However, the effectiveness of this construction method varies depending on the permeability of the crushed stone used for gravel drains, and if crushed stone with a high permeability coefficient is used, sand particles in the soil will flow into the gaps. However, there is a problem that a so-called clogging phenomenon occurs. Furthermore, when crushed stone with a low hydraulic conductivity is used, there is a problem in that the drainage capacity is limited and liquefaction cannot be sufficiently prevented. usually,
It is considered appropriate for the hydraulic conductivity of crushed stone used for gravel drains to be 200 to 400 times that of the target ground, but this level of hydraulic conductivity causes a time delay in drainage.
Drain well resistance must be considered. Recently, designs have been made that take this well resistance into consideration, but there is a problem in that the intervals between drains are smaller than in the past.

この発明の目的は、グラベルドレーンの排水能力をより
向上させ、しかも、打設間隔を太き(しても地震時に発
生する過剰間隙水の排水を効果的に行わせることができ
る砂質地盤の液状化防止工法を提供することにある。
The purpose of this invention is to further improve the drainage capacity of gravel drains, and to improve the drainage capacity of gravel drains (even if the interval between drains is wide), it is possible to effectively drain excess pore water that occurs during earthquakes. The purpose is to provide a liquefaction prevention method.

(問題点を解決するための手段) 上記の目的を達成するための本発明の詳細な説明すると
、本発明は、横断面がほぼ矩形状をしていて相対向する
広面が通水板面となっている通水材と、前記通水材の表
面を覆う不織布とを備え、前記通水材内にはその長手方
向に連続する通水路が前記両皿水板面間を幅方向に間隔
をおいて連結する複数のリブで仕切られて幅方向に複数
個並設され、前記両通水板面にはその幅方向に沿った溝
が長手方向に間隔をおいて多数それぞれ形成され、前記
善導には前記通水路に通じる多数の通水孔がそれぞれ形
成された構造の帯状ドレーンを用い、前記帯状ドレーン
用のマンドレルを内蔵したケーシングオーガーを用いて
砂質地盤を所定の深さまで堀削し、前記オーガーの引き
上げ時に前記帯状ドレーンを砂中に設置し、更に上部よ
り投じた砕石で前記帯状ドレーンの周辺を囲んでグラベ
ルトレーンを作成することにより、前記帯状ドレーンと
前記グラベルドレーンとの複合ドレーンを形成すること
を特徴とする。
(Means for Solving the Problems) To explain in detail the present invention for achieving the above object, the present invention has a cross section that is approximately rectangular, and the opposing wide surfaces are the water flow plate surfaces. and a non-woven fabric covering the surface of the water-permeable material, and the water-permeable material includes a water passageway that is continuous in the longitudinal direction and spaced apart in the width direction between the surfaces of the water plates. A plurality of grooves are arranged in parallel in the width direction, partitioned by a plurality of ribs connected to each other, and a large number of grooves are formed along the width direction on the surfaces of both water passage plates at intervals in the longitudinal direction. For this purpose, a belt-shaped drain having a structure in which a large number of water holes leading to the water passageway are formed respectively is used, and a casing auger with a built-in mandrel for the belt-shaped drain is used to excavate the sandy ground to a predetermined depth. When the auger is pulled up, the band-shaped drain is installed in the sand, and the periphery of the band-shaped drain is created by surrounding it with crushed stones thrown from above, thereby creating a composite drain of the band-shaped drain and the gravel drain. It is characterized by forming.

(作用) このようにグラベルドレーン中に特殊な帯状ドレーンを
配置して複合構造にすると、該帯状ドレーンの表面の不
織布によるフィルター作用と、通水材の両通水板面とそ
の間の複数のリブによる通水路が拘束圧でつぶされない
ような構造とにより、通水路の確保とが図られて、グラ
ベルドレーンの排水能力と合わせて排水能力が増し、地
震時における過剰間隙水の排水を効率よく行わせて、液
状化防止を有効に図ることができる。また排水能力が大
きくなるため、ウェルレジスタンスを考慮しなくてもよ
(なりドレーン間隔を太き(とった場合でも有効な排水
が行われる。
(Function) When a special strip-shaped drain is arranged in a gravel drain to create a composite structure, the non-woven fabric on the surface of the strip-shaped drain has a filtering effect, and both water-passing plate surfaces of the water-passing material and the plurality of ribs between them can be used. The structure prevents the water passage from being crushed by the confining pressure, ensuring the water passage, increasing the drainage capacity in conjunction with the drainage capacity of the gravel drain, and efficiently draining excess pore water during earthquakes. In addition, liquefaction can be effectively prevented. In addition, since the drainage capacity is increased, there is no need to consider well resistance (and even if the drain spacing is widened, effective drainage will still occur).

(実施例) 以下本発明の実施例を図面を参照して詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明では、従来から軟弱地盤の圧密促進に用いられる
帯状ドレーンを改良して用いるので、先ず、本発明で用
いる新規な帯状ドレーン材1の構造の具体例を第3図乃
至第6図を参照して説明する。
In the present invention, an improved belt-shaped drain conventionally used to promote consolidation of soft ground is used, so first, see FIGS. 3 to 6 for specific examples of the structure of the novel belt-shaped drain material 1 used in the present invention. and explain.

この帯状ドレーンlは、横断面がほぼ矩形状をしていて
相対向する広面が通水板面2Aとなっている通水材2と
、該通水材20表面を覆う不織布3とで構成されている
。通水材2は幅Wが100〜150 鶴、厚さTが10
〜151m程度の矩形状断面形状をなしている。該通水
材2内には、その長手方向に連続する通水路2Bが、両
通水板面2八間を幅方向に間隔をおいて連結する複数の
リブ2Cで仕切られて幅方向に複数個並設されている。
This belt-shaped drain 1 is composed of a water-permeable material 2 whose cross section is approximately rectangular and whose opposing wide surfaces are water-permeable plate surfaces 2A, and a nonwoven fabric 3 that covers the surface of the water-permeable material 20. ing. The water-permeable material 2 has a width W of 100 to 150 mm and a thickness T of 10 mm.
It has a rectangular cross-sectional shape of about 151 m. In the water passage material 2, there are a plurality of water passages 2B that are continuous in the longitudinal direction and partitioned by a plurality of ribs 2C that connect both water passage plate surfaces 28 at intervals in the width direction. They are arranged side by side.

両通水板面2Aには、その幅方向に沿った溝2Dが、5
鶴程度の幅で長手方向に5鰭程度の間隔をおいて多数そ
れぞれ形成されている。溝2Dは両通水板面2Aの長手
方向に相互に存在するように形成されている。善導2D
には、矩形状の通水孔2Eが該溝2Dの長手方向に沿っ
て多数個・それぞれ形成されている。このような通水材
2は、配合によって硬軟がコントロールできる塩化ビニ
ール。
There are 5 grooves 2D along the width direction on both water passage plate surfaces 2A.
They are about the width of a crane and are formed in large numbers at intervals of about five fins in the longitudinal direction. The grooves 2D are formed so as to exist in the longitudinal direction of both water passage plate surfaces 2A. Zendao 2D
A large number of rectangular water holes 2E are formed along the longitudinal direction of the groove 2D. The water-permeable material 2 is made of vinyl chloride whose hardness and softness can be controlled by adjusting its composition.

ポリエチレン等の樹脂材で形成されている。It is made of resin material such as polyethylene.

このような帯状ドレーン1は、通水路2Eが両通水板面
2Aとリブ2Cとで区画されて形成されていて、地盤内
の拘束圧でつぶされないようになっているので、地盤内
で拘束圧が加わっても通水性が低下せず、また長尺化さ
れても通水性の低下を抑制できる利点がある。更に、通
水材2の材質と両通水板面2への表面の溝2Dの存在に
より地盤の変形にも追従でき、且つロール状の巻取りも
容易にでき、運搬も容易である。
Such a belt-shaped drain 1 is formed by partitioning the water passage 2E between both water flow plate surfaces 2A and ribs 2C, and is designed not to be crushed by the restraining pressure in the ground, so it is restrained in the ground. It has the advantage that the water permeability does not decrease even when pressure is applied, and the decrease in water permeability can be suppressed even when the length is increased. Furthermore, due to the material of the water passing material 2 and the presence of the grooves 2D on the surface of both water passing plate surfaces 2, it is possible to follow the deformation of the ground, and it is also easy to wind up into a roll shape and transport it.

第7図は従来型帯状ドレーン材A、B、Cと、この発明
で用いる新規帯状ドレーン材D(試験時は幅100m、
厚さ10++nとしている。)の通水試験結果で、土中
の拘束圧を考慮して試験時の側圧を段階的に増した場合
の各々の通水量を示している。この結果、この発明の新
規帯状ドレーン材りが従来型帯状ドレーン材A、B、C
に比べて3倍程度大きな通水量を示し、且つ側圧に影響
しないことがわかった。
Figure 7 shows conventional strip-shaped drain materials A, B, and C, and the new strip-shaped drain material D used in this invention (100 m wide at the time of testing).
The thickness is 10++n. ) shows the water flow rate when the lateral pressure during the test was increased step by step, taking into account the confining pressure in the soil. As a result, the novel strip-shaped drain material of this invention is different from the conventional strip-shaped drain materials A, B, and C.
It was found that the water flow rate was approximately three times larger than that of the previous model, and that it did not affect the lateral pressure.

第8図A、 B及び第9図A、Bは、帯状ドレーン材を
用いない時と、本発明の新規帯状ドレーン材りを用いた
時の、地震時の砂質地盤の液状化の状態の比較を示した
図である。
Figures 8A and B and Figures 9A and B show the liquefaction state of sandy ground during an earthquake when no belt-shaped drain material is used and when the new belt-shaped drain material of the present invention is used. It is a figure showing a comparison.

第8図Aは土槽4内に緩い密度の飽和砂5を入れ、該飽
和砂5中のP点に間隙水圧計6をセットし、該飽和砂5
中には帯状ドレーン1を挿入してない比較実験設備の例
を示している。
In FIG. 8A, saturated sand 5 with a loose density is placed in a soil tank 4, a pore water pressure gauge 6 is set at point P in the saturated sand 5, and the saturated sand 5 is
An example of comparative experimental equipment in which the belt-shaped drain 1 is not inserted is shown.

第8図Bは第8図Aに示す設備で振動実験をしたときの
P点の過剰間隙水圧比の時間的変化を示した図である。
FIG. 8B is a diagram showing the temporal change in the excess pore water pressure ratio at point P when a vibration experiment was conducted using the equipment shown in FIG. 8A.

ここで、Δμは過剰間隙水圧、σV′は有効上載圧、Δ
U/σV′は過剰間隙水圧比である。この場合、砂中の
ΔU/σV′はほぼ1となり、地盤が完全に液状化して
、水のような挙動を示している。
Here, Δμ is excess pore water pressure, σV′ is effective overburden pressure, Δ
U/σV' is the excess pore water pressure ratio. In this case, ΔU/σV' in the sand is approximately 1, indicating that the ground has completely liquefied and behaves like water.

第9図Aは土槽4内に緩い密度の飽和砂5を入れ、該飽
和砂4中に本発明で用いる新規帯状ドレーン材1 (例
えば、幅100鰭、厚さ10mm)を配置し、且つ帯状
ドレーン材l及び飽和砂5中の21点、P2点、P3点
に間隙水圧計6をセットした実験設備の例を示している
In FIG. 9A, saturated sand 5 with a loose density is placed in a soil tank 4, and a novel strip-shaped drain material 1 (for example, width 100 fins, thickness 10 mm) used in the present invention is placed in the saturated sand 4, and An example of experimental equipment is shown in which pore water pressure gauges 6 are set at points 21, P2, and P3 in a strip of drain material 1 and saturated sand 5.

第9図Bは第9図Aに示す設備で振動実験をしたときの
pt点、P2点、P3点の過剰間隙水圧比の時間的変化
を示した図である。
FIG. 9B is a diagram showing temporal changes in the excess pore water pressure ratio at the pt point, P2 point, and P3 point when a vibration experiment was conducted using the equipment shown in FIG. 9A.

図から明らかなように、この発明で用いる新規帯状ドレ
ーン材1を配置しておくと、過剰間隙水圧はあまり上昇
せず、早期に消散していることがわかる。このことより
、この発明で用いる新規帯状ドレーン材1は、液状化防
止効果があることが判明した。
As is clear from the figure, when the novel strip-shaped drain material 1 used in the present invention is placed, the excess pore water pressure does not increase much and is quickly dissipated. From this, it was found that the novel strip-shaped drain material 1 used in the present invention has a liquefaction prevention effect.

次に本発明の工法について第1図(A)〜(IE)及び
第2図を参照して説明する。
Next, the construction method of the present invention will be explained with reference to FIGS. 1(A) to (IE) and FIG. 2.

本発明で用いる打設装置は、先端にオーガー先端蓋8を
有するケーシングオーガー9と、該ケーシングオーガー
9内に同心配置されたマンドレル10を用いる。
The driving device used in the present invention uses a casing auger 9 having an auger tip cap 8 at its tip, and a mandrel 10 arranged concentrically within the casing auger 9.

第1図(A)に示すように、マンドレル10内には本発
明で用いる新規な帯状ドレーン1を通し、該帯状ドレー
ン1の下端にはアンカー1)を取付けて打設準備を行う
As shown in FIG. 1(A), a novel strip-shaped drain 1 used in the present invention is passed through a mandrel 10, and an anchor 1) is attached to the lower end of the strip-shaped drain 1 to prepare for pouring.

第1図(B)に示すように、ケーシングオーガー9を回
転しながら所定の深度まで飽和砂質地盤12を堀削する
。この時、マンドレル10は回転制御値ff13により
回転することはなく、所定の深さに到達する。
As shown in FIG. 1(B), the saturated sandy ground 12 is excavated to a predetermined depth while rotating the casing auger 9. At this time, the mandrel 10 does not rotate due to the rotation control value ff13 and reaches a predetermined depth.

第1図(C)に示すように、所定の深度まで堀削ができ
たら、ケーシングオーガー9の回転を止め、マンドレル
10がケーシングオーガー9の先端より50〜100c
m程度突出するように圧入する。
As shown in FIG. 1(C), when the excavation is completed to a predetermined depth, the rotation of the casing auger 9 is stopped, and the mandrel 10 is moved 50 to 100 cm from the tip of the casing auger 9.
Press in so that it protrudes by about m.

第1図(0)に示すように、ケーシングオーガー9の上
部における砕石投入用蓋14を開口し、砕石15を適量
投入する。その後、ケーシングオーガー9を逆転しなが
ら、砕石投入量に相当する深度まで該ケーシングオーガ
ー9を上昇させ、同時にマンドレル10を引き上げる。
As shown in FIG. 1(0), the crushed stone loading lid 14 at the top of the casing auger 9 is opened, and an appropriate amount of crushed stone 15 is loaded. Thereafter, while reversing the casing auger 9, the casing auger 9 is raised to a depth corresponding to the amount of crushed stone input, and at the same time the mandrel 10 is pulled up.

ケーシングオーガー9の回転時には、帯状ドレーン1は
マンドレル10によって保護されている。この作業を繰
り返し、グラベルドレーン16の形成とケーシングオー
ガー9及びマンドレル10の引き抜きを行う。
During rotation of the casing auger 9, the strip drain 1 is protected by a mandrel 10. This operation is repeated to form the gravel drain 16 and pull out the casing auger 9 and mandrel 10.

第1図(E)に示すように、かくして帯状ドレ−ン1と
グラベルドレーン16との複合ドレーン17が形成され
、その後、飽和砂質地盤12の上に砕石マント18を敷
いて一連、の工法を終了する。
As shown in FIG. 1(E), a composite drain 17 consisting of the belt-shaped drain 1 and the gravel drain 16 is formed, and then a crushed stone mantle 18 is laid on the saturated sandy ground 12. end.

このように複合ドレーン17を形成すると、第2図に示
すように、矢印19で示す如く地震力が加わった場合に
は、飽和砂質地盤12の間隙水はグラベルドレーン16
内に矢印20で示す如く流れ込み、グラベルドレーン1
6内の水は帯状ドレーン1内に矢印21で示す如く流れ
込む。帯状ドレーンlに流れ込んだ水は、該帯状ドレー
ン1の排水効果によって矢印22で示す如く上部へ排出
される。なお、一部の水はグラベルドレーン16によっ
て矢印23で示す如く上部に排出される。
When the composite drain 17 is formed in this way, as shown in FIG.
Gravel drain 1 flows into the gravel drain 1 as shown by arrow 20.
The water in the drain 6 flows into the strip drain 1 as shown by an arrow 21. The water that has flowed into the strip drain 1 is discharged upward as shown by an arrow 22 due to the drainage effect of the strip drain 1. Note that some of the water is drained upward by the gravel drain 16 as indicated by an arrow 23.

この2つのドレーン1.16の排水効果により、砂質地
盤12内に生じる過剰間隙水圧を早急に逸散させること
ができ、液状化防止が可能になり、グラベルドレーン1
6の問題点を解決できる。
Due to the drainage effect of these two drains 1.16, excess pore water pressure generated in the sandy ground 12 can be quickly dissipated, making it possible to prevent liquefaction.
6 problems can be solved.

(発明の効果) 以上のように本発明では、グラベルドレーン中に特殊構
造の帯状ドレーンを設置して複合ドレーンを形成するの
で、グラベルドレーンの排水能力に合わせて帯状ドレー
ンの排水能力が加重される。
(Effects of the Invention) As described above, in the present invention, a specially structured belt-shaped drain is installed in a gravel drain to form a composite drain, so that the drainage capacity of the belt-shaped drain is weighted in accordance with the drainage capacity of the gravel drain. .

特に、この帯状ドレーンは表面の不織布によるフィルタ
ー作用と、内部の通水材の両皿水板面とその間の複数の
リブによる通水路が拘束圧でつぶされないような構造と
により、大きい通水路の確保が図られて、排水を効率よ
く行わせることができる。従って、本発明の複合ドレー
ンによれば、グラベルドレーンのウェルレジスタンスを
考慮しなくてもよくなり、ドレーン間隔を大きくとるこ
とができ、複合ドレーンの設置数を減らして、施工費を
低減させることができる。
In particular, this belt-shaped drain has a filtering effect due to the non-woven fabric on the surface, and a structure that prevents the water passageway from being crushed by confining pressure due to the water plate surfaces of the internal water-permeable material and the multiple ribs between them. This ensures that drainage can be carried out efficiently. Therefore, according to the composite drain of the present invention, there is no need to consider the well resistance of gravel drains, the drain spacing can be increased, the number of composite drains installed can be reduced, and construction costs can be reduced. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(E)は本発明の工法の一例の工程を示
す縦断面図、第2図は本発明の工法で形成された複合ド
レーンの一例を示す縦断面図、第3図は本発明で用いる
帯状ドレーンの一例の不織布を一部除去した状態を示す
平面図、第4図は同側面図、第5図は同縦断側面図、第
6図は第5図中の■−■線断面図、第7図は本発明で用
いる帯状ドレーンと従来の帯状ドレーンの側圧に対する
通水量の変化の比較図、第8図A及び第9図Aは帯状ド
レーンを用いない場合と用いた場合の実験設備の縦断面
図、第8図B及び第9図Bは第8図A及び第9図Aに示
す実験設備での加震時における過剰間隙水圧比の変化を
示す過剰間隙水圧比特性図である。 ■・・・帯状ドレーン、2・・・通水材、2A・・・通
水板面、2B・・・通水路、2C・・・リブ、2D・・
・溝、2E・・・通水孔、3・・・不織布、8・・・オ
ーガー先端蓋、9・・・ケーシングオーガー、10・・
・マンドレル、1)・・・アンカー、12・・・砂質地
盤、14・・・砕石、16・・・グラベルドレーン、1
7・・・複合ドレーン、18・・・砕石マット。
Figures 1 (A) to (E) are longitudinal sectional views showing steps of an example of the construction method of the present invention, Figure 2 is a longitudinal sectional view showing an example of a composite drain formed by the construction method of the invention, and Figure 3. is a plan view showing an example of the belt-shaped drain used in the present invention with a portion of the non-woven fabric removed, FIG. 4 is a side view of the same, FIG. 5 is a longitudinal cross-sectional side view of the same, and FIG. ■ Line cross-sectional view, Figure 7 is a comparison diagram of the change in water flow rate with respect to lateral pressure between the belt-shaped drain used in the present invention and the conventional belt-shaped drain, and Figures 8A and 9A are the case where the belt-shaped drain is not used and the case where the belt-shaped drain is used. Figures 8B and 9B are vertical cross-sectional views of the experimental equipment for the case, and the excess pore water pressure ratio shows the change in the excess pore water pressure ratio during shaking in the experimental equipment shown in Figures 8A and 9A. It is a characteristic diagram. ■... Band-shaped drain, 2... Water passing material, 2A... Water passing plate surface, 2B... Water passage, 2C... Rib, 2D...
・Groove, 2E...Water hole, 3...Nonwoven fabric, 8...Auger tip cover, 9...Casing auger, 10...
・Mandrel, 1)...Anchor, 12...Sandy ground, 14...Crushed stone, 16...Gravel drain, 1
7... Composite drain, 18... Crushed stone mat.

Claims (1)

【特許請求の範囲】[Claims] (1)横断面がほぼ矩形状をしていて相対向する広面が
通水板面となっている通水材と、前記通水材の表面を覆
う不織布とを備え、前記通水材内にはその長手方向に連
続する通水路が前記両通水板面間を幅方向に間隔をおい
て連結する複数のリブで仕切られて幅方向に複数個並設
され、前記両通水板面にはその幅方向に沿った溝が長手
方向に間隔をおいて多数それぞれ形成され、前記各溝に
は前記通水路に通じる多数の通水孔がそれぞれ形成され
た構造の帯状ドレーンを用い、 前記帯状ドレーン用のマンドレルを内蔵したケーシング
オーガーを用いて砂質地盤を所定の深さまで堀削し、前
記オーガーの引き上げ時に前記帯状ドレーンを砂中に設
置し、更に上部より投じた砕石で前記帯状ドレーンの周
辺を囲んでグラベルドレーンを作成することにより、前
記帯状ドレーンと前記グラベルドレーンとの複合ドレー
ンを形成することを特徴とする砂質地盤の液状化防止工
法。
(1) A water-permeable material having a substantially rectangular cross section and opposite wide surfaces serving as water-permeable plate surfaces, and a nonwoven fabric covering the surface of the water-permeable material; has a plurality of water passages that are continuous in the longitudinal direction and are partitioned by a plurality of ribs that connect the two water passage plate surfaces at intervals in the width direction, and are arranged in parallel in the width direction; uses a band-shaped drain having a structure in which a large number of grooves are formed along the width direction at intervals in the longitudinal direction, and each groove has a large number of water holes communicating with the water passage, A casing auger with a built-in mandrel for the drain is used to excavate sandy ground to a predetermined depth, and when the auger is pulled up, the belt-shaped drain is installed in the sand, and crushed stones thrown from above are used to dig the belt-shaped drain. A method for preventing liquefaction of sandy ground, characterized by forming a composite drain of the belt-shaped drain and the gravel drain by creating a gravel drain surrounding the surrounding area.
JP28312187A 1987-11-11 1987-11-11 Preventing work for liquidizing of sandy ground Granted JPH01127717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28312187A JPH01127717A (en) 1987-11-11 1987-11-11 Preventing work for liquidizing of sandy ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28312187A JPH01127717A (en) 1987-11-11 1987-11-11 Preventing work for liquidizing of sandy ground

Publications (2)

Publication Number Publication Date
JPH01127717A true JPH01127717A (en) 1989-05-19
JPH0577807B2 JPH0577807B2 (en) 1993-10-27

Family

ID=17661497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28312187A Granted JPH01127717A (en) 1987-11-11 1987-11-11 Preventing work for liquidizing of sandy ground

Country Status (1)

Country Link
JP (1) JPH01127717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125741A (en) * 1991-05-28 1993-05-21 Misawa Homes Co Ltd Drainage structure of basement
JP2016044405A (en) * 2014-08-20 2016-04-04 株式会社不動テトラ Countermeasure construction method against ground liquefaction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125741A (en) * 1991-05-28 1993-05-21 Misawa Homes Co Ltd Drainage structure of basement
JP2016044405A (en) * 2014-08-20 2016-04-04 株式会社不動テトラ Countermeasure construction method against ground liquefaction

Also Published As

Publication number Publication date
JPH0577807B2 (en) 1993-10-27

Similar Documents

Publication Publication Date Title
JPH0454004B2 (en)
JP6164949B2 (en) Filling reinforcement structure
JPS6248008B2 (en)
JPS6321764B2 (en)
US5017046A (en) Method of protecting a structure constructed on ground liable to be liquefied
KR102057674B1 (en) Stone net structure
JPH01127717A (en) Preventing work for liquidizing of sandy ground
JP2000136541A (en) Liquefaction preventing construction method
JPH0352256Y2 (en)
JPH03286016A (en) Liquefaction preventive pile and sheet-pile
JPH0138926B2 (en)
JPH0463162B2 (en)
JP2789386B2 (en) Sand pile forming bag structure
JPH01125415A (en) Preventing work for liquefaction of ground by banded drain material
JPS61146910A (en) Method of preventing liquefaction of sand ground
JPS6128624A (en) Slope-stabilizing construction
JP2881224B2 (en) Structure liquefaction countermeasure system and its construction method
JP2765327B2 (en) Ground surface drainage method
JP2668922B2 (en) Seismic structure of excavated road
JPS60144412A (en) Liquefaction preventive foundation structure for ground
JP2625615B2 (en) Ground compaction method
JPS63142115A (en) Prevention work for liquefaction of ground
JPH09273140A (en) Preventive method of liquefaction of ground
JPS6013114A (en) Liquefaction preventive work for sandy ground
JP2764498B2 (en) Liquefaction countermeasures for underground structures

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 15