JPH0577087A - Extremely fine solder wire and production thereof - Google Patents

Extremely fine solder wire and production thereof

Info

Publication number
JPH0577087A
JPH0577087A JP3159127A JP15912791A JPH0577087A JP H0577087 A JPH0577087 A JP H0577087A JP 3159127 A JP3159127 A JP 3159127A JP 15912791 A JP15912791 A JP 15912791A JP H0577087 A JPH0577087 A JP H0577087A
Authority
JP
Japan
Prior art keywords
solder
wire
less
fine wire
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3159127A
Other languages
Japanese (ja)
Other versions
JP2913908B2 (en
Inventor
Akira Mori
暁 森
Kiyoshi Takaku
潔 高久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP3159127A priority Critical patent/JP2913908B2/en
Publication of JPH0577087A publication Critical patent/JPH0577087A/en
Application granted granted Critical
Publication of JP2913908B2 publication Critical patent/JP2913908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/745Apparatus for manufacturing wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/45109Indium (In) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/45111Tin (Sn) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/45116Lead (Pb) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01008Oxygen [O]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To produce the extremely fine solder wire which has <=0.1mm wire diameter, is small in the fluctuation of the wire diameter and has the low probability to generate a software error. CONSTITUTION:The extremely fine solder wire is produced by subjecting a solder material consisting essentially of any of Pb, In and Sn and having <=20ppm oxygen concn. and <=0.5CPH/cm<2> count number of radioactive alphaparticles to drawing under a condition of <=10 deg.C. The probability to generate a tension breakage and voids is low and the production over a long size is possible. The probability to generate the software error is small even when the wire is used for a connecting material of memory elements, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、HIC(ハイブリッド
IC)、TAB(テープ・オートメイテッド・ボンディ
ング)、フリップチップ等におけるバンプ形成や、超電
導用IC、センサ等における配線材として好適に用いら
れる半田極細線およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a solder suitable for forming bumps in HIC (hybrid IC), TAB (tape automated bonding), flip chips, etc., and as wiring materials in superconducting ICs, sensors, etc. The present invention relates to an ultrafine wire and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来より、半導体装置等の接続用半田材
料として、Pb,In,Snや、これらのいずれかを主
成分とした材料が用いられている。
2. Description of the Related Art Conventionally, Pb, In, Sn, or a material containing any of these as a main component has been used as a soldering material for connecting semiconductor devices and the like.

【0003】このような半田材料は、一般に室温で伸線
加工が施されて直径が0.1mm程度のワイヤにされ、
そのまま配線材として使用されたり、このワイヤの先端
部に線径の2〜3倍の径を有するボールを形成して、バ
ンプ形成用ボールとされる。
Such a solder material is generally drawn at room temperature to form a wire having a diameter of about 0.1 mm,
The ball is used as it is as a wiring material, or a ball having a diameter of 2 to 3 times the wire diameter is formed at the tip of the wire to form a ball for bump formation.

【0004】[0004]

【発明が解決しようとする課題】さらに、近年、電子機
器の小型化に伴い、用いられる半田線の細線化が要望さ
れており、線径が30μm〜100μm程度のものが望
まれている。しかしながら、前述したようなPb,I
n,Snや、これらのいずれかを主成分とした材料では
材料自体の強度が不足しているために、伸線加工により
線径が0.1mm以下の半田線を製造しようとすると、
テンション切れが多発してしまうという問題点があっ
た。このため、このような材料を急冷凝固して細線化し
ようとする試みも行われている。しかしこの急冷凝固法
により製造された半田線では、線径の変動が大きいもの
となってしまい、また長尺化するために大掛かりな装置
が必要になってしまう。
Furthermore, in recent years, with the miniaturization of electronic equipment, there has been a demand for thinner solder wires to be used, and wire diameters of about 30 μm to 100 μm are desired. However, as described above, Pb, I
Since the strength of the material itself is insufficient with n, Sn, or a material containing any of these as a main component, if a solder wire having a wire diameter of 0.1 mm or less is manufactured by wire drawing,
There was a problem that tension was often cut. Therefore, attempts have been made to rapidly cool and solidify such materials to form fine wires. However, the solder wire manufactured by this rapid solidification method has a large variation in wire diameter, and a large-scale device is required for lengthening the wire.

【0005】また、一方、Pb等の半田材料には、不可
避不純物としてU,Th等の放射性同位元素が含まれて
いるため、この半田材料を半導体チップ周辺の接続材料
として使用した際に、上記U,Th等のα放射によりメ
モリー素子等のソフトエラーを引き起こす場合があっ
た。
On the other hand, since the solder material such as Pb contains radioactive isotopes such as U and Th as unavoidable impurities, when this solder material is used as a connecting material around the semiconductor chip, In some cases, α radiation such as U and Th causes a soft error in a memory device or the like.

【0006】本発明は前記事情に鑑みてなされたもの
で、線径が0.1mm以下であり線径のばらつきが小さ
くかつソフトエラーを生じる確率が小さい半田極細線お
よびその製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a solder extra fine wire having a wire diameter of 0.1 mm or less, a small variation in the wire diameter, and a low probability of causing a soft error, and a manufacturing method thereof. With the goal.

【0007】[0007]

【課題を解決するための手段】請求項1記載の半田極細
線では、Pb,In,Snのいずれかを主成分とし、表
面酸化皮膜の酸素を含む酸素濃度を100ppm以下、線
径を10〜100μmにすることを課題解決の手段とし
た。
According to a first aspect of the present invention, in a solder fine wire according to claim 1, any one of Pb, In, and Sn is a main component, and the surface oxide film has an oxygen concentration including oxygen of 100 ppm or less and a wire diameter of 10 to 10. Setting the thickness to 100 μm was used as a means for solving the problem.

【0008】請求項2記載の半田極細線では、Pb,I
n,Snのいずれかを主成分とし、表面酸化皮膜の酸素
を含む酸素濃度を100ppm以下、放射性α粒子のカウ
ント数を0.5CPH/cm2以下、線径を10〜100μm
にすることを課題解決の手段とした。
In the solder fine wire according to claim 2, Pb, I
n or Sn as the main component, the oxygen concentration of the surface oxide film containing oxygen is 100 ppm or less, the count number of radioactive α particles is 0.5 CPH / cm 2 or less, and the wire diameter is 10 to 100 μm.
Was adopted as the means for solving the problem.

【0009】請求項3記載の半田極細線では、請求項1
または2記載の半田極細線の表面に、10Å〜100Å
径の界面活性剤をコーティングすることを課題解決の手
段とした。
In the solder extra fine wire according to claim 3,
Or 10 Å ~ 100 Å on the surface of the solder fine wire described in 2.
Coating with a surfactant having a diameter was used as a means for solving the problem.

【0010】請求項4記載の半田極細線の製造方法で
は、Pb,In,Snのいずれかを主成分とし酸素濃度
が20ppm以下の半田材料に、10℃以下の温度条件で
伸線加工を施して半田極細線を製造することを課題解決
の手段とした。
In the method for manufacturing a solder extra fine wire according to the present invention, a solder material containing Pb, In or Sn as a main component and having an oxygen concentration of 20 ppm or less is subjected to wire drawing under a temperature condition of 10 ° C. or less. The method of solving the problem was to manufacture a solder extra fine wire.

【0011】請求項5記載の半田極細線の製造方法で
は、Pb,In,Snのいずれかを主成分とし酸素濃度
が20ppm以下で放射性α粒子のカウント数が0.5CPH
/cm2以下の半田材料に、温度10℃以下の条件で伸線加
工を施して半田極細線を製造することを課題解決の手段
とした。
In the method for producing a solder extra fine wire according to the present invention, the main component is any one of Pb, In and Sn, the oxygen concentration is 20 ppm or less, and the count number of radioactive α particles is 0.5 CPH.
A means for solving the problem was to produce a solder fine wire by subjecting a solder material having a density of / cm 2 or less to a temperature of 10 ° C. or less to perform wire drawing.

【0012】請求項6記載の半田極細線の製造方法で
は、請求項4または5記載の半田極細線の製造方法より
得られた半田極細線の表面に、10Å〜100Å径の界
面活性剤をコーティングすることを課題解決の手段とし
た。
In the method for producing a solder extra fine wire according to claim 6, a surface of the solder extra fine wire obtained by the method for producing a solder extra fine wire according to claim 4 or 5 is coated with a surfactant having a diameter of 10Å to 100Å. This was taken as a means to solve the problem.

【0013】請求項1記載の半田極細線において、表面
酸化皮膜の酸素を含む酸素濃度を100ppm以下に規定
したのは、酸素濃度が100ppmを越えると、細線内に
ボイドや酸化物が発生し易くなるため、伸線可能な長さ
が大幅に低下してしまうと共に線径を100μm以下に
出来なくなるためである。
In the solder fine wire according to the first aspect, the oxygen concentration of oxygen contained in the surface oxide film is specified to be 100 ppm or less. When the oxygen concentration exceeds 100 ppm, voids and oxides are easily generated in the fine wire. Therefore, the wire drawable length is significantly reduced, and the wire diameter cannot be 100 μm or less.

【0014】請求項2記載の半田極細線において、放射
性α粒子のカウント数を0.5CPH/cm2以下に規定した
のは、0.5CPH/cm2を越えると、メモリー素子等の配
線材に用いた場合に、ソフトエラーを生じ易くなるため
である。
[0014] In the solder fine wire according to claim 2, of defining the count of radioactive α particles 0.5CPH / cm 2 or less, exceeds 0.5CPH / cm 2, a wiring material such as memory devices This is because soft errors are likely to occur when used.

【0015】請求項3記載の半田極細線において、界面
活性剤の径を10Å〜100Åに規定したのは、10Å
より小さくなると、半田極細線を保護する効果が得られ
なくなるためであり、100Åを越えると、除去工程の
手間が増すだけで効果は向上していかないためである。
In the solder extra fine wire according to the third aspect, the diameter of the surfactant is defined to be 10Å to 100Å is 10Å.
This is because if it becomes smaller, the effect of protecting the solder fine wire cannot be obtained, and if it exceeds 100 Å, the effect is not improved only by increasing the labor of the removing step.

【0016】請求項4記載の半田極細線の製造方法にお
いて、酸素濃度を20ppm以下に設定したのは、酸素濃
度が20ppmを越えると、得られた半田極細線の酸素濃
度が100ppmを越えてしまい、前述したように伸線可
能な長さが大幅に低下してしまうと共に線径を100μ
m以下に出来なくなるためである。
In the method for manufacturing a solder fine wire according to claim 4, the oxygen concentration is set to 20 ppm or less. When the oxygen concentration exceeds 20 ppm, the oxygen concentration of the obtained solder fine wire exceeds 100 ppm. As mentioned above, the wire drawable length is greatly reduced and the wire diameter is 100μ.
This is because it cannot be less than m.

【0017】また、請求項4ないし請求項6の半田極細
線の製造方法において、10℃以下の温度条件に設定し
たのは、温度条件が10℃を越えると、低温での加工硬
化が期待できず、材料自体の強度不足のためにテンショ
ン切れを生じ易くなるためである。
Further, in the method for manufacturing a solder extra fine wire according to any one of claims 4 to 6, the temperature condition of 10 ° C or lower is set. When the temperature condition exceeds 10 ° C, work hardening at low temperature can be expected. The reason is that tension breakage easily occurs due to insufficient strength of the material itself.

【0018】[0018]

【作用】Pb,In,Snのいずれかを主成分とし酸素
濃度が20ppm以下で放射性α粒子のカウント数が0.
5CPH/cm2以下の半田材料に、10℃以下の温度条件で
伸線加工を施して半田極細線を製造すると、表面酸化皮
膜の酸素を含む酸素濃度が100ppm以下、放射性α粒
子のカウント数が0.5CPH/cm2以下、線径が10〜1
00μmの半田極細線をテンション切れやボイドを生じ
ることなく長尺にわたって製造することができる。
The main component is any of Pb, In, and Sn, the oxygen concentration is 20 ppm or less, and the count number of radioactive α particles is 0.
When a solder extra fine wire is manufactured by subjecting a solder material of 5 CPH / cm 2 or less to a temperature condition of 10 ° C. or less, the oxygen concentration in the surface oxide film including oxygen is 100 ppm or less, and the number of radioactive α particles counted is 0.5 CPH / cm 2 or less, wire diameter 10 to 1
It is possible to produce a solder fine wire of 00 μm over a long length without breaking tension or generating voids.

【0019】また、半田極細線の表面に、10Å〜10
0Å径の界面活性剤をコーティングすると、半田表面の
酸化を防止すると共にすべりを良くし、伸線時の半田粉
発生を抑制し、半田極細線自身への半田粉混入が防止さ
れる。
On the surface of the solder fine wire, 10Å-10
Coating with a 0 Å diameter surfactant prevents oxidation of the solder surface, improves slippage, suppresses generation of solder powder during wire drawing, and prevents solder powder from mixing into the solder extra fine wire itself.

【0020】[0020]

【実施例】以下、図面を参照して本発明の半田極細線お
よびその製造方法について詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The solder extra fine wires and the method for producing the same according to the present invention will be described in detail below with reference to the drawings.

【0021】[0021]

【実施例1】本発明の半田極細線の製造に使用される製
造装置の一例を図1(a),(b)に示す。 この図におい
て、符号1は装置本体であり、この装置本体1には液体
窒素等の冷却液2が満たされている。装置本体1の内部
には、ハンダワイヤ6に伸線加工を施すためのダイス
9,10,11が設けられ、低温状態で行うために、冷
却液2に浸した状態となっている。さらに装置本体1内
には、ハンダワイヤ6を移動させるためのローラ12,
13が設置されている。このローラ12,13は、装置
本体1外部で、ベルト14を介してモータ15の動力が
伝達されるようになっている。また、装置本体1の外部
には、冷却液2の温度を一定に保つための熱交換器3が
接続されている。さらに、装置本体1の上部には、ハン
ダワイヤ6を巻き出すための巻き出し器4と、ハンダワ
イヤ6を低温伸線する前に予め所定量だけ室温伸線して
おくためのダイス7、低温伸線されたハンダワイヤ6を
最終的に室温伸線して線径を整えるためのダイス8、製
造されたハンダワイヤ6を巻き取るための巻き取り器5
が設けられている。
Example 1 An example of a manufacturing apparatus used for manufacturing a solder extra fine wire of the present invention is shown in FIGS. 1 (a) and 1 (b). In this figure, reference numeral 1 is an apparatus main body, and the apparatus main body 1 is filled with a cooling liquid 2 such as liquid nitrogen. Inside the apparatus main body 1, dies 9, 10 and 11 for drawing the solder wire 6 are provided, and the die is immersed in the cooling liquid 2 in order to perform at a low temperature. Further, inside the apparatus main body 1, rollers 12 for moving the solder wire 6,
13 are installed. The power of the motor 15 is transmitted to the rollers 12 and 13 via the belt 14 outside the apparatus main body 1. A heat exchanger 3 for keeping the temperature of the cooling liquid 2 constant is connected to the outside of the apparatus body 1. Further, on the upper part of the apparatus body 1, an unwinder 4 for unwinding the solder wire 6, a die 7 for drawing the solder wire 6 at room temperature by a predetermined amount before the low temperature wire drawing, and a low temperature wire drawing. A die 8 for finally drawing the formed solder wire 6 at room temperature to adjust the wire diameter, and a winder 5 for winding up the manufactured solder wire 6.
Is provided.

【0022】このように構成された製造装置を用いて半
田極細線を製造するには、まず、予め巻き出し器4より
取り出したハンダワイヤ6を図に示すように装置本体1
内に配して巻き取り器5にセットした後、冷却液2を満
たして、熱交換器3により装置本体1内を一定温度に保
つ。次に、モータ15を作動させてローラ12,13を
一定速度で同じ向きに回転させると共に、巻き出し器4
および巻き取り器5を一定速度で矢印の向きに回転さ
せ、ハンダワイヤ6を一定速度で送り出す。すると、ハ
ンダワイヤ6は、ダイス7を通って室温伸線された後、
冷却液2で冷却された雰囲気で、ダイス9,10,11
を通されて低温伸線される。その後、ダイス8により最
終的に室温伸線されて線径を調整され、巻き取り器5に
よって回収される。
In order to manufacture a solder extra fine wire using the manufacturing apparatus configured as described above, first, the solder wire 6 taken out from the unwinder 4 in advance is used as shown in FIG.
After being placed inside and set on the winder 5, the cooling liquid 2 is filled and the inside of the apparatus main body 1 is kept at a constant temperature by the heat exchanger 3. Next, the motor 15 is operated to rotate the rollers 12 and 13 in the same direction at a constant speed, and the unwinder 4
And the winder 5 is rotated at a constant speed in the direction of the arrow to feed the solder wire 6 at a constant speed. Then, after the solder wire 6 is drawn at room temperature through the die 7,
In the atmosphere cooled by the cooling liquid 2, the dice 9, 10, 11
And low temperature wire drawing. Then, the wire is finally drawn at room temperature by the die 8 to adjust the wire diameter, and then collected by the winder 5.

【0023】この製造装置では、液体窒素による冷却液
2により冷却された雰囲気でダイス9,10,11によ
り伸線を行っているため、線径が10〜100μmの半
田極細線をテンション切れやボイドを生じることなく長
尺にわたって製造することができる。
In this manufacturing apparatus, wire drawing is performed by the dice 9, 10, and 11 in an atmosphere cooled by the cooling liquid 2 made of liquid nitrogen, so that a solder fine wire having a wire diameter of 10 to 100 μm is not tensioned or voided. It can be manufactured over a long length without causing.

【0024】[0024]

【実施例2】実施例1に記載した製造方法を用いて、下
表に示した組成、酸素濃度、線径の半田極細線を製造
し、線径のばらつき、テンション切れの有無、伸線長さ
を調べた。結果を下表に示す。また比較例として、表面
酸化皮膜の酸素を含む酸素濃度が100ppmを越える半
田極細線を製造した場合の結果も併せて示した(以下余
白)。
Example 2 Using the manufacturing method described in Example 1, a solder fine wire having the composition, oxygen concentration, and wire diameter shown in the table below was manufactured, and there were variations in wire diameter, presence / absence of tension breakage, and wire drawing length. I checked it. The results are shown in the table below. In addition, as a comparative example, the results in the case of manufacturing a solder extra fine wire in which the oxygen concentration of the surface oxide film containing oxygen exceeds 100 ppm are also shown (the margin below).

【0025】[0025]

【表1】 [Table 1]

【0026】以上の結果より、実施例1に示した製造方
法を用いて、Pb,In,Snのいずれかを主成分と
し、表面酸化皮膜の酸素を含む酸素濃度を100ppm
以下、線径を10〜100μmに設定した半田極細線で
は、線径のばらつきが小さいうえ、テンション切れがな
く伸線長さを極めて長くできることが判った。
From the above results, using the manufacturing method shown in Example 1, the oxygen concentration in the surface oxide film containing Pb, In or Sn as the main component and containing oxygen was 100 ppm.
In the following, it has been found that in the solder extra fine wire whose wire diameter is set to 10 to 100 μm, there is little variation in wire diameter, there is no tension breakage, and the wire drawing length can be made extremely long.

【0027】[0027]

【実施例3】実施例1に記載した製造方法を用いて、下
表に示した組成、酸素濃度、放射性α粒子のカウント
数、線径の半田極細線を製造し、メモリー材料の接続材
料に用いた場合に発生するソフトエラーの個数を調べ
た。(全体個数n=10000)結果を下表に示す。ま
た比較例として放射性α粒子のカウント数が0.5CPH/
cm2を越えている半田極細線を製造した場合の結果も併
せて示した(以下余白)。
Example 3 Using the manufacturing method described in Example 1, solder fine wires having the composition, oxygen concentration, count of radioactive α particles and wire diameter shown in the table below were manufactured and used as a connecting material for a memory material. The number of soft errors that occurred when used was examined. (Total number n = 10000) The results are shown in the table below. As a comparative example, the count number of radioactive α particles is 0.5 CPH /
The results of the production of solder fine wires exceeding cm 2 are also shown (margin below).

【0028】[0028]

【表2】 [Table 2]

【0029】以上の結果より、放射性α粒子のカウント
数が0.5CPH/cm2以下の時、ソフトエラーの個数が極
めて少ないことが分かった。
From the above results, it was found that the number of soft errors was extremely small when the count number of radioactive α particles was 0.5 CPH / cm 2 or less.

【0030】[0030]

【実施例4】組成が95%Pb−5%Sn、酸素濃度が
20ppm、線径が30μm、放射性α粒子のカウント
数が0.1CPH/cm2である半田極細線に、さらに10Å
〜100Å径の界面活性材をコーティングして、100
0m伸線した場合の断線回数について調べた。結果を下
表に示す。また比較例として界面活性材をコーティング
していないもの、100Åを越える界面活性材をコーテ
ィングしたものについての結果も併せて示した(以下余
白)。
Example 4 A solder fine wire having a composition of 95% Pb-5% Sn, an oxygen concentration of 20 ppm, a wire diameter of 30 μm, and a radioactive α particle count number of 0.1 CPH / cm 2 was further added with 10Å.
~ 100Å diameter of surface-active agent coated, 100
The number of wire breakages when drawing 0 m was examined. The results are shown in the table below. In addition, as comparative examples, the results of those not coated with a surface active agent and those coated with a surface active agent exceeding 100 liters are also shown (hereinafter referred to as margins).

【0031】[0031]

【表3】 [Table 3]

【0032】以上の結果より、10Å〜100Å径の界
面活性材をコーティングすることにより、断線回数が減
少し、伸線性が向上することが判明した。
From the above results, it was found that coating the surface-active material having a diameter of 10Å to 100Å reduces the number of wire breaks and improves the wire drawability.

【0033】[0033]

【実施例5】組成が90%Pb−10%Sn、酸素濃度
が10ppm、放射性α粒子のカウント数が0.2CPH/
cm2である半田材料に、下表に示した温度で伸線加工し
て製造した半田極細線の線径、線径のばらつき、テンシ
ョン切れの有無、伸線長さを調べた。結果を下表に示
す。なお、比較例として室温で伸線加工して製造した半
田極細線の結果についても併せて示した。(以下余白)
Example 5 Composition 90% Pb-10% Sn, Oxygen concentration 10 ppm, Radioactive α particle count 0.2 CPH /
The solder diameter of the solder material having a cm 2 was drawn at the temperatures shown in the table below, and the wire diameter, the dispersion of the wire diameter, the presence or absence of tension breakage, and the wire drawing length were investigated. The results are shown in the table below. In addition, as a comparative example, the results of solder fine wires manufactured by drawing at room temperature are also shown. (Below margin)

【0034】[0034]

【表4】 [Table 4]

【0035】以上の結果より、10℃以下の温度で伸線
加工を行って製造した半田極細線では、線径のばらつき
が小さいうえ、テンション切れがなく伸線長さを極めて
長くできることが判った。
From the above results, it has been found that the solder fine wire produced by performing the wire drawing process at a temperature of 10 ° C. or less has a small variation in the wire diameter, and the wire drawing length can be made extremely long without breaking the tension. ..

【0036】[0036]

【実験例】冷却液2として−196℃に冷却された液体
窒素を用い、伸線するスピードを30〜50m/min
となるように巻き出しロール4、巻き取りロール5、ロ
ーラ12,13を回転させた。この結果、線径が38±
1μmの半田極細線が破断なく10000m伸線でき
た。この半田極細線のα値は、0.1cpH/cm2のものを
得る事ができた。
[Experimental Example] Liquid nitrogen cooled to -196 ° C was used as the cooling liquid 2, and the drawing speed was 30 to 50 m / min.
The unwinding roll 4, the winding roll 5, and the rollers 12 and 13 were rotated so that As a result, the wire diameter is 38 ±
The 1 μm solder fine wire could be drawn by 10,000 m without breakage. It was possible to obtain an α value of this solder fine wire of 0.1 cpH / cm 2 .

【0037】[0037]

【発明の効果】以上説明したように本発明の半田極細線
では、Pb,In,Snのいずれかを主成分とし、表面
酸化皮膜の酸素を含む酸素濃度を100ppm以下、線径
を10〜100μmにしたものであるため、テンション
切れやボイドを生じる確率が小さく、また長尺にわたっ
て製造することが可能である。
As described above, in the solder fine wire of the present invention, Pb, In, or Sn is the main component, the oxygen concentration of the surface oxide film containing oxygen is 100 ppm or less, and the wire diameter is 10 to 100 μm. Since it is made into a material, the probability of causing tension breakage and voids is small, and it is possible to manufacture over a long length.

【0038】従って本発明の半田極細線によれば、HI
C(ハイブリッドIC)、TAB(テープ・オートメイ
テッド・ボンディング)、フリップチップ等におけるバ
ンプ形成や、超電導用IC、センサ等における配線材と
して好適に用いることができる。また、放射性α粒子の
カウント数を0.5CPH/cm2以下にすると、メモリー素
子等の接続材料に用いても、ソフトエラーを生じる確率
が小さいという効果を奏する。さらに、半田極細線の表
面に10Å〜100Å径の界面活性剤をコーティングす
ると、半田表面の酸化を防止すると共にすべりを良く
し、伸線時の半田粉発生を抑制し半田極細線自身への半
田粉混入を防止できる効果を奏する。
Therefore, according to the solder fine wire of the present invention, HI
It can be preferably used as a bump material in C (hybrid IC), TAB (tape automated bonding), flip chip, etc., or as a wiring material in superconducting ICs, sensors, etc. Further, when the count number of radioactive α particles is 0.5 CPH / cm 2 or less, even if it is used as a connecting material for a memory element or the like, there is an effect that a soft error is unlikely to occur. Furthermore, by coating the surface of the solder extra fine wire with a surfactant having a diameter of 10Å to 100Å, it prevents oxidation of the solder surface and improves slippage, and suppresses the generation of solder powder during wire drawing, and solder to the extra fine solder wire itself. It has the effect of preventing powder mixture.

【0039】また、本発明に係る半田極細線の製造方法
では、Pb,In,Snのいずれかを主成分とし酸素濃
度が20ppm以下の半田材料に、10℃以下の温度条件
で伸線加工を施して半田極細線を製造する方法であるた
め、大掛かりな装置を要せずに、30μm〜100μm
程度の線径を有する半田極細線を、線径のばらつきを小
さくして製造することができる。
In the method for manufacturing a solder extra fine wire according to the present invention, a wire drawing process is performed on a solder material containing Pb, In or Sn as a main component and having an oxygen concentration of 20 ppm or less under a temperature condition of 10 ° C. or less. Since it is a method of manufacturing a solder extra fine wire by applying it, it does not require a large-scale device and is 30 μm to 100 μm.
It is possible to manufacture a solder fine wire having a wire diameter of a degree with a small variation in wire diameter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半田極細線を製造するために使用され
る製造装置の一例を示す図であり、(a)は斜視図、(b)は
断面図である。
FIG. 1 is a diagram showing an example of a manufacturing apparatus used for manufacturing a solder extra fine wire of the present invention, in which (a) is a perspective view and (b) is a sectional view.

【符号の説明】[Explanation of symbols]

6 ハンダワイヤ 6 solder wire

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/321 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01L 21/321

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Pb,In,Snのいずれかを主成分と
し、表面酸化皮膜の酸素を含む酸素濃度が100ppm以
下、線径が10〜100μmであることを特徴とする半
田極細線。
1. A solder extra fine wire comprising Pb, In or Sn as a main component and having an oxygen concentration including oxygen of a surface oxide film of 100 ppm or less and a wire diameter of 10 to 100 μm.
【請求項2】 Pb,In,Snのいずれかを主成分と
し、表面酸化皮膜の酸素を含む酸素濃度が100ppm以
下、放射性α粒子のカウント数が0.5CPH/cm2以下、
線径が10〜100μmであることを特徴とする半田極
細線。
2. The main component of any of Pb, In, and Sn, the oxygen concentration of the surface oxide film containing oxygen is 100 ppm or less, and the count number of radioactive α particles is 0.5 CPH / cm 2 or less,
A solder extra fine wire having a wire diameter of 10 to 100 μm.
【請求項3】 表面に、10Å〜100Å径の界面活性
剤をコーティングしたことを特徴とする請求項1または
請求項2記載の半田極細線。
3. The solder fine wire according to claim 1, wherein the surface is coated with a surfactant having a diameter of 10Å to 100Å.
【請求項4】 Pb,In,Snのいずれかを主成分と
し、酸素濃度が20ppm以下の半田材料に、10℃以下
の温度条件で伸線加工を施して半田極細線を製造するこ
とを特徴とする半田極細線の製造方法。
4. A solder extra fine wire is manufactured by subjecting a solder material containing Pb, In or Sn as a main component and having an oxygen concentration of 20 ppm or less to a wire drawing process at a temperature condition of 10 ° C. or less. A method for manufacturing a solder extra fine wire.
【請求項5】 Pb,In,Snのいずれかを主成分と
し、酸素濃度が20ppm以下、放射性α粒子のカウント
数が0.5CPH/cm2以下の半田材料に、10℃以下の温
度条件で伸線加工を施して半田極細線を製造することを
特徴とする半田極細線の製造方法。
5. A solder material containing Pb, In, or Sn as a main component and having an oxygen concentration of 20 ppm or less and a radioactive α particle count of 0.5 CPH / cm 2 or less under a temperature condition of 10 ° C. or less. A method for manufacturing a solder extra fine wire, which comprises subjecting a wire to a solder extra fine wire.
【請求項6】 半田極細線の表面に、10Å〜100Å
径の界面活性剤をコーティングすることを特徴とする請
求項4または請求項5記載の半田極細線の製造方法。
6. The surface of the solder fine wire is 10Å to 100Å
The method for producing a solder extra fine wire according to claim 4 or 5, wherein a surface active agent having a diameter is coated.
JP3159127A 1991-06-28 1991-06-28 Ultrafine solder wire and method of manufacturing the same Expired - Fee Related JP2913908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3159127A JP2913908B2 (en) 1991-06-28 1991-06-28 Ultrafine solder wire and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3159127A JP2913908B2 (en) 1991-06-28 1991-06-28 Ultrafine solder wire and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0577087A true JPH0577087A (en) 1993-03-30
JP2913908B2 JP2913908B2 (en) 1999-06-28

Family

ID=15686833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3159127A Expired - Fee Related JP2913908B2 (en) 1991-06-28 1991-06-28 Ultrafine solder wire and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2913908B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6148591A (en) * 1995-10-11 2000-11-21 Sealed Air Corporation Packaging structure
JP2007302496A (en) * 2006-05-10 2007-11-22 Nikko Kinzoku Kk High purity stannous oxide, powder of the same, and method for producing the stannous oxide
US9340850B2 (en) 2005-07-01 2016-05-17 Jx Nippon Mining & Metals Corporation Process for producing high-purity tin
US9394590B2 (en) 2010-03-16 2016-07-19 Jx Nippon Mining & Metals Corporation Low α-dose tin or tin alloy, and method for producing same
US9597754B2 (en) 2011-03-07 2017-03-21 Jx Nippon Mining & Metals Corporation Copper or copper alloy, bonding wire, method of producing the copper, method of producing the copper alloy, and method of producing the bonding wire
US9666547B2 (en) 2002-10-08 2017-05-30 Honeywell International Inc. Method of refining solder materials
US10711358B2 (en) 2014-02-20 2020-07-14 Jx Nippon Mining & Metals Corporation Method of producing low alpha-ray emitting bismuth, and low alpha-ray emitting bismuth

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012318023B2 (en) 2011-09-28 2016-04-28 Jx Nippon Mining & Metals Corporation High-purity lanthanum, method for producing same, sputtering target comprising high-purity lanthanum, and metal gate film comprising high-purity lanthanum as main component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6148591A (en) * 1995-10-11 2000-11-21 Sealed Air Corporation Packaging structure
US9666547B2 (en) 2002-10-08 2017-05-30 Honeywell International Inc. Method of refining solder materials
US9340850B2 (en) 2005-07-01 2016-05-17 Jx Nippon Mining & Metals Corporation Process for producing high-purity tin
JP2007302496A (en) * 2006-05-10 2007-11-22 Nikko Kinzoku Kk High purity stannous oxide, powder of the same, and method for producing the stannous oxide
US9394590B2 (en) 2010-03-16 2016-07-19 Jx Nippon Mining & Metals Corporation Low α-dose tin or tin alloy, and method for producing same
US9597754B2 (en) 2011-03-07 2017-03-21 Jx Nippon Mining & Metals Corporation Copper or copper alloy, bonding wire, method of producing the copper, method of producing the copper alloy, and method of producing the bonding wire
US10711358B2 (en) 2014-02-20 2020-07-14 Jx Nippon Mining & Metals Corporation Method of producing low alpha-ray emitting bismuth, and low alpha-ray emitting bismuth

Also Published As

Publication number Publication date
JP2913908B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
US20010001216A1 (en) Method for joining a semiconductor chip to a chip carrier substrate and resulting chip package
DE102012023503A1 (en) Alloyed 2N copper wire for bonding in microelectronic devices
WO2010016306A1 (en) Aluminum ribbon for ultrasonic bonding
JPH0577087A (en) Extremely fine solder wire and production thereof
DE102012023499A1 (en) Doped 4N copper wire for bonding in microelectronic devices
CN104103616A (en) Bonding wire for high-speed signal line
KR20150032900A (en) Bonding wire
DE102012023500A1 (en) 3N copper wire with trace amounts of additives for bonding in microelectronic devices
JP5692467B1 (en) Metal sphere manufacturing method, bonding material, and metal sphere
CN109411437A (en) A kind of silver alloy wire and preparation method thereof with surface recombination film
JP6410692B2 (en) Copper alloy bonding wire
WO2012117636A1 (en) Bonding wire and manufacturing method thereof
JP2708573B2 (en) Bonding wire for semiconductor and method of manufacturing the same
US6692581B2 (en) Solder paste for fabricating bump
JPS61255045A (en) Bonding wire for semiconductor device and manufacture thereof
JP3602892B2 (en) Manufacturing method of bonding wire
WO2012032629A1 (en) Aluminum ribbon for ultrasonic bonding
JP3074626B2 (en) Pt alloy ultrafine wires for semiconductor devices
JP3475511B2 (en) Bonding wire
JP2830520B2 (en) Method of manufacturing bonding wire for semiconductor device
JPH0661292A (en) Ultra-fine wire and cooling device therefor
JPH05175272A (en) Pd superfine wire for semiconductor element use and method of forming ball consisting of that
JP4232731B2 (en) Bonding wire
JP2830502B2 (en) Bonding wire for semiconductor device and method of manufacturing the same
JP3120940B2 (en) Spherical bump for semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990316

LAPS Cancellation because of no payment of annual fees