JPH0576970B2 - - Google Patents

Info

Publication number
JPH0576970B2
JPH0576970B2 JP61041467A JP4146786A JPH0576970B2 JP H0576970 B2 JPH0576970 B2 JP H0576970B2 JP 61041467 A JP61041467 A JP 61041467A JP 4146786 A JP4146786 A JP 4146786A JP H0576970 B2 JPH0576970 B2 JP H0576970B2
Authority
JP
Japan
Prior art keywords
polymer
polymethylsilazane
cyclic
trimer
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61041467A
Other languages
Japanese (ja)
Other versions
JPS62199623A (en
Inventor
Yasuaki Nakaido
Takashi Enoki
Rieko Shimizu
Sugiro Ootani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Original Assignee
Toshiba Silicone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Silicone Co Ltd filed Critical Toshiba Silicone Co Ltd
Priority to JP4146786A priority Critical patent/JPS62199623A/en
Publication of JPS62199623A publication Critical patent/JPS62199623A/en
Publication of JPH0576970B2 publication Critical patent/JPH0576970B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明はセラミツクス製造用の前駆体として有
用な環状ポリメチルシラザン構造を有する重合体
の製造方法に関する。 [発明の技術的背景とその問題点] 互いに摺動もしくは接触して動作せしめる各種
の機械部品、電子部品の表面には高度の耐摩耗性
が要求される。 また、近年、省エネルギーの観点から、各種機
器の高効率化が求められる中で、それに用いられ
る材料の軽量化は重要な課題である。 各種のセラミツクス、例えば窒化ケイ素、炭化
ケイ素等の非酸化物系セラミツクスは、一般に軽
量で化学安定性に富み耐熱性にも優れているの
で、従来汎用されてきた金属材料にに代わつて各
種部品材料として脚光を浴びている。 このような窒化ケイ素等のセラミツクスは、例
えばその原料粉体を成形型に充填したのち窒素気
流中で加熱・焼結せしめることにより製造され
る。しかしながらこのような原料粉末は一般に難
焼結性であるため、通常は、原料粉体中に焼結助
剤を添加したのち焼結を行うか、または高温高圧
下で焼結を行う方法が適用されている。 したがつて、このような従来の方法では所望の
形状の特に複雑な形状の焼結体を得ることが困難
である。このような問題を解消するためシラザン
系ポリマーを製造原料として用いる方法が考えら
れている。たとえば、特開昭57−117532号公報で
は塩素含有ジシランとジシラザン、特開昭58−
63725号公報では、塩素含有ジシランとアンモニ
アを接触反応させる方法が開示されている。ま
た、特開昭57−139124号公報では、オルガノクロ
ロシランとジシラザンを接触反応させる方法が開
示されている。しかしながらこれらの従来方法で
は得られるポリシラザンの分子量をコントロール
することが困難である。このため、最終的に一定
した品質のセラミツクスを得ることができない。
また、得られたポリシラザンは有機溶媒に不溶の
ガラス状の固体であることから、ポリメチルシラ
ザンを有機溶媒に溶解させ、この溶解液を所望の
形状の成形型に充填する通常の成形方法では、成
形が困難であり、所望の形状の、特に複雑な形状
の焼結体を得ることが困難である。 [発明の目的] 本発明は上記の問題点を解消し、所望の形状の
セラミツクスを比較的緩やかな条件で、より容易
に製造することができる。セラミツクス製造用の
前駆体として有用な環状ポリメチルシラザン構造
を有する重合体の提供を目的とする。 [発明の構成] すなわち本発明の環状ポリメチルシラザン構造
を有する重合体の製造方法は、 (A) ヘキサメチルシクロトリシラザン;および (B) 式(CH3aSiCl4-a()(ただし、式中aは
0,1または2である)で示されるクロロシラ
ン化合物;を塩化水素受容体の存在下で加熱・
重合せしめたのち、前記塩化水素受容体を除い
た残部にアンモニアを反応させることを特徴と
する。 本発明の製造方法において出発原料となるヘキ
サメチルシクロトリシラザン(以下、「三量体」
という)は、例えばジヨン・シー・バラー、ジエ
イアール他、インオーガニツク シンセシス
61(1953)[JOHN C.BALAR、Jr.et al、
Inorganic synthesis 61(1953)]に記載の
ブレワーおよびハーバー(Brewer and
Harber)改良法を適用して製造することができ
る。 このようにして得られる三量体を前述の式
()で示されるクロロシラン化合物と反応させ、
環状ポリメチルシラザン構造を有する重合体を製
造する。この式()で示されるクロロシラン化
合物は、具体的にはジメチルジクロロシラン、メ
チルトリクロロシランまたはテトラクロロシラン
である。このクロロシラン化合物は、三量体の窒
素原子に結合した水素原子と脱塩化水素反応を行
うことにより、架橋剤として作用するものである
ことから、上記の化合物の中でもより官能基が多
い、メチルトリクロロシラン、テトラクロロシラ
ン、特にテトラクロロシランが好ましい。 本発明の製造方法においては、三量体とクロロ
シラン化合物の反応を塩化水素受容体の存在下で
行うものであれば、その個々の操作手順は特に制
限されない。以下、本発明の製造方法についてそ
の一例を掲げ説明する。 まず、三量体と塩化水素受容体(以下、「受容
体」という)を反応容器中に投入する。ここで用
いる受容体は、三量体とクロロシラン化合物との
反応により発生する塩化水素を吸収するためのも
のである。この受容体としては、一般に用いられ
ている第3級アミン、例えば、ピリジン、1,8
−ジアザビシクロ〔5.4.0〕−ウンデセン−7
(DBU)またはN,N−ジメチルアセトアミド
(DMAC)等を挙げることができる。これらの受
容体の中でも、生成物である環状ポリメチルシラ
ザン構造を有する重合体の熱重量減少率が小さい
ことからDMACが好ましい。この受容体は三量
体とクロロシラン化合物との反応により発生する
塩化水素を完全に吸収できる量、すなわち理論量
か、または過剰量を加える。また、受容体は溶媒
を兼ねて用いてもよいし、ベンゼン、トルエンの
ような他の有機溶媒を併用してもよい。 次いで、反応系内を乾燥雰囲気にする。これは
系内の空気を不活性ガス、例えば窒素ガスに置換
することにより行う。その後、系内を加熱・還流
しながら、クロロシラン化合物を添加する。この
場合の加熱温度は用いる受容体により異なる。例
えば上述した各受容体のうち、ピリジンを用いた
場合は沸点温度まで、その他の受容体の場合は約
80℃程度まで加熱する。添加は、例えば滴下法等
により少量ずつ添加することが良好な反応を行う
ために好ましい。添加量は、目的とする環状ポリ
メチルシラザン構造を有する重合体の分子量に応
じて、三量体の添加量に関連して適宜決定するこ
とができる。例えば、三量体1モルに対して、テ
トラクロロシランを0.75モル用いると、分子量約
900の環状ポリメチルシラザン構造を有する重合
体ないし、それらがさらに架橋重合した重合体を
製造することができる。またこの場合に受容体例
えばピリジンは3モル以上必要である。 クロロシラン化合物を添加したのち、さらに系
内を60〜120℃、好ましくは80〜115℃で6〜12時
間加熱・撹拌還流し、反応を完結させる。その後
受容体を除去したのち、液状の生成物をベンゼ
ン、トルエン、キシレン、シクロヘキサン等の有
機溶媒に溶解させる。次いでこの溶液をアンモニ
アで処理する。このアンモニア処理は、生成物の
分子末端に結合するSi−Cl基をSi−NH2基に変
換し、その後の塩化水素の発生を防止するもので
ある。この処理はたとえば前記溶液中にアンモニ
アガスを吹き込むことによつて行う。次いで、
過を行い前記反応で副生した塩化アンモニウムを
分離する。その後、溶媒を除去したのち、加熱下
で減圧蒸留することにより、未反応の三量体等を
除去し、環状ポリメチルシラザン構造を有する重
合体を得ることができる。 [発明の実施例] 以下、実施例を掲げ本発明をさらに詳述する。 実施例 1〜5 三量体は、前述したブレワーおよびハーバー改
良法を適用し、ジメチルジクロロシランのアンモ
ノリシスにより合成したものを用いた。受容体お
よびクロロシラン化合物はそれぞれ表に示すもの
を用いた。また、実施例1,2では理論量の1.5
倍の受容体とベンゼンの混合物を、実施例3〜5
では受容体をそれぞれクロロシラン化合物100容
量部に対して400容量部加え、クロロシラン化合
物は三量体に対して表に示すモル比で添加し、反
応を行つた。 まず冷却管、温度計および滴下漏斗を備えた三
ツ口フラスコに受容体を投入し、続いて三量体を
投入した。次いで、フラスコの空気を完全に窒素
ガスに置換した。その後、実施例1および2では
約80℃、実施例3〜5では約115℃まで加熱し、
還流しながら、滴下漏斗から所定量のクロロシラ
ン化合物を2時間かけて滴下した。次いで、さら
にそのままの温度で8時間加熱・還流し、反応を
完結させた。反応終了後受容体を除去し、反応生
成物を含む残液を500mlのベンゼンに溶解させた。
次いで、この溶液中にアンモニアガスを70/時
間で1.5時間吹き込んだ。その後吸引過し、副
生した塩化アンモニウムを除去した。次いでさら
に40〜50℃/250Torrで減圧蒸留を行つてベンゼ
ンを除去し、環状ポリメチルシラザン構造を有す
る重合体を得た。 得られた環状ポリメチルシラザン構造を有する
重合体の分子量、性状、収率および熱重量減少率
を表に示す。なお、熱重量減少率は、窒素ガス雰
囲気下、5℃/分の割合で800℃まで加熱したの
ち測定した。
[Technical Field of the Invention] The present invention relates to a method for producing a polymer having a cyclic polymethylsilazane structure useful as a precursor for producing ceramics. [Technical Background of the Invention and its Problems] A high degree of wear resistance is required on the surfaces of various mechanical parts and electronic parts that operate by sliding or contacting each other. Furthermore, in recent years, there has been a demand for higher efficiency in various types of equipment from the perspective of energy conservation, and reducing the weight of the materials used therein has become an important issue. Various types of ceramics, such as non-oxide ceramics such as silicon nitride and silicon carbide, are generally lightweight, have high chemical stability, and have excellent heat resistance, so they are being used as materials for various parts in place of conventionally widely used metal materials. has been in the spotlight as a Ceramics such as silicon nitride are manufactured by, for example, filling raw material powder into a mold and then heating and sintering it in a nitrogen stream. However, since such raw material powders are generally difficult to sinter, the methods that are usually applied include adding a sintering aid to the raw material powder before sintering it, or sintering it at high temperature and high pressure. has been done. Therefore, with such conventional methods, it is difficult to obtain a sintered body having a particularly complex shape as desired. In order to solve these problems, methods using silazane-based polymers as raw materials have been considered. For example, in JP-A-57-117532, chlorine-containing disilane and disilazane, JP-A-58-117532,
Publication No. 63725 discloses a method of causing a catalytic reaction between chlorine-containing disilane and ammonia. Further, JP-A-57-139124 discloses a method of causing a contact reaction between organochlorosilane and disilazane. However, with these conventional methods, it is difficult to control the molecular weight of the polysilazane obtained. For this reason, it is not possible to finally obtain ceramics of constant quality.
Furthermore, since the obtained polysilazane is a glass-like solid that is insoluble in organic solvents, the usual molding method involves dissolving polymethylsilazane in an organic solvent and filling a mold with the desired shape. Molding is difficult, and it is difficult to obtain a sintered body having a desired shape, particularly a complex shape. [Object of the Invention] The present invention solves the above-mentioned problems and allows ceramics of a desired shape to be manufactured more easily under relatively mild conditions. The object of the present invention is to provide a polymer having a cyclic polymethylsilazane structure that is useful as a precursor for producing ceramics. [Structure of the Invention] That is, the method for producing a polymer having a cyclic polymethylsilazane structure of the present invention includes (A) hexamethylcyclotrisilazane; and (B) the formula (CH 3 ) a SiCl 4-a () (but , where a is 0, 1 or 2) is heated in the presence of a hydrogen chloride acceptor.
After polymerization, the remaining portion except for the hydrogen chloride acceptor is reacted with ammonia. Hexamethylcyclotrisilazane (hereinafter referred to as "trimer"), which is the starting material in the production method of the present invention.
), for example, John C. Baller, GRA et al., Inorganic Synthesis 5
61 (1953) [JOHN C. BALAR, Jr. et al.
Inorganic synthesis 5 61 (1953)] Brewer and Haber
Harber) can be manufactured by applying an improved method. The trimer thus obtained is reacted with the chlorosilane compound represented by the above formula (),
A polymer having a cyclic polymethylsilazane structure is produced. The chlorosilane compound represented by this formula () is specifically dimethyldichlorosilane, methyltrichlorosilane or tetrachlorosilane. This chlorosilane compound acts as a crosslinking agent by performing a dehydrochlorination reaction with the hydrogen atom bonded to the nitrogen atom of the trimer. Chlorosilane, tetrachlorosilane, especially tetrachlorosilane are preferred. In the production method of the present invention, the individual operating procedures are not particularly limited as long as the reaction between the trimer and the chlorosilane compound is carried out in the presence of a hydrogen chloride acceptor. Hereinafter, an example of the manufacturing method of the present invention will be described. First, a trimer and a hydrogen chloride acceptor (hereinafter referred to as "receptor") are charged into a reaction vessel. The receptor used here is for absorbing hydrogen chloride generated by the reaction between the trimer and the chlorosilane compound. As this receptor, commonly used tertiary amines such as pyridine, 1,8
-Diazabicyclo[5.4.0]-Undecene-7
(DBU) or N,N-dimethylacetamide (DMAC). Among these receptors, DMAC is preferred because the thermogravimetric loss rate of the product, a polymer having a cyclic polymethylsilazane structure, is small. The acceptor is added in an amount capable of completely absorbing hydrogen chloride generated by the reaction between the trimer and the chlorosilane compound, ie, a stoichiometric amount, or an excess amount. Further, the receptor may also be used as a solvent, or other organic solvents such as benzene and toluene may be used in combination. Next, a dry atmosphere is created in the reaction system. This is done by replacing the air in the system with an inert gas, such as nitrogen gas. Thereafter, a chlorosilane compound is added while heating and refluxing the system. The heating temperature in this case varies depending on the receptor used. For example, among the above-mentioned receptors, when using pyridine, it is up to the boiling point temperature, and when using other receptors, it is about
Heat to around 80℃. In order to perform a good reaction, it is preferable to add it little by little, for example, by a dropwise addition method. The amount added can be appropriately determined in relation to the amount of trimer added depending on the molecular weight of the desired polymer having a cyclic polymethylsilazane structure. For example, if 0.75 mol of tetrachlorosilane is used for 1 mol of trimer, the molecular weight is approximately
A polymer having a 900 cyclic polymethylsilazane structure or a polymer obtained by further crosslinking polymerization thereof can be produced. In this case, the amount of receptor such as pyridine is required to be 3 moles or more. After adding the chlorosilane compound, the system is further heated, stirred, and refluxed at 60 to 120°C, preferably 80 to 115°C, for 6 to 12 hours to complete the reaction. After removing the receptor, the liquid product is dissolved in an organic solvent such as benzene, toluene, xylene, or cyclohexane. This solution is then treated with ammonia. This ammonia treatment converts the Si--Cl groups bonded to the molecular ends of the product into Si-- NH2 groups and prevents the subsequent generation of hydrogen chloride. This treatment is carried out, for example, by blowing ammonia gas into the solution. Then,
Ammonium chloride produced as a by-product in the reaction is separated by filtration. Thereafter, after removing the solvent, unreacted trimer and the like can be removed by distilling under reduced pressure under heating to obtain a polymer having a cyclic polymethylsilazane structure. [Examples of the Invention] The present invention will be described in further detail below with reference to Examples. Examples 1 to 5 Trimers were synthesized by ammonolysis of dimethyldichlorosilane by applying the above-mentioned Brewer and Haber improved method. The receptors and chlorosilane compounds shown in the table were used. In addition, in Examples 1 and 2, the theoretical amount was 1.5
Examples 3-5
Then, 400 parts by volume of each receptor was added to 100 parts by volume of the chlorosilane compound, and the chlorosilane compound was added at the molar ratio shown in the table to the trimer, and a reaction was carried out. The receptor was first charged into a three-necked flask equipped with a condenser, thermometer, and addition funnel, followed by the trimer. Then, the air in the flask was completely replaced with nitrogen gas. Thereafter, it was heated to about 80°C in Examples 1 and 2, and about 115°C in Examples 3 to 5,
While refluxing, a predetermined amount of a chlorosilane compound was added dropwise from a dropping funnel over 2 hours. Next, the mixture was further heated and refluxed at the same temperature for 8 hours to complete the reaction. After the reaction was completed, the receptor was removed, and the residual liquid containing the reaction product was dissolved in 500 ml of benzene.
Ammonia gas was then bubbled into this solution at 70/hour for 1.5 hours. Thereafter, the mixture was filtered by suction to remove ammonium chloride produced as a by-product. Then, vacuum distillation was further performed at 40 to 50° C./250 Torr to remove benzene, and a polymer having a cyclic polymethylsilazane structure was obtained. The molecular weight, properties, yield, and thermal weight loss rate of the obtained polymer having a cyclic polymethylsilazane structure are shown in the table. The thermogravimetric reduction rate was measured after heating to 800°C at a rate of 5°C/min in a nitrogen gas atmosphere.

【表】 実施例 6 受容体としてピリジンを用い、クロロシラン化
合物としてジメチルジクロロシランを三量体1モ
ルに対して1.5モルを用いて実施例1と同様にし
て環状ポリメチルシラザン構造を有する重合体を
得た。 この生成物は無色透明液体であり、分子量は
600であつた。また収率は42%、熱重量減少率は
92%であつた。この生成物の赤外線吸収スペクト
ルは第2図に示すように、1030cm-1のSi−N(三
量体の環の外)の吸収を生じ、N−Hの吸収が減
少している。また、この生成物の構造式は下記の
とおりであると推定される。ただし、式中Me2
2つのメチル基がケイ素原子に結合していること
を表す。以下同様である。
[Table] Example 6 A polymer having a cyclic polymethylsilazane structure was prepared in the same manner as in Example 1 using pyridine as the acceptor and dimethyldichlorosilane as the chlorosilane compound in an amount of 1.5 mol per 1 mol of trimer. Obtained. This product is a colorless transparent liquid with a molecular weight of
It was 600. In addition, the yield was 42%, and the thermogravimetric reduction rate was
It was 92%. As shown in FIG. 2, the infrared absorption spectrum of this product shows an absorption of Si-N (outside the trimer ring) of 1030 cm -1 and a decrease in absorption of N-H. Moreover, the structural formula of this product is estimated to be as follows. However, in the formula, Me 2 represents two methyl groups bonded to a silicon atom. The same applies below.

【化】 実施例 7 受容体としてピリジンを用い、クロロシラン化
合物としてテトラクロロシランを三量体1モルに
対して0.75モル用いて、実施例1と同様にして環
状ポリメチルシラザン構造を有する重合体を得
た。 この生成物は淡黄色の粘稠液体であり、分子量
は840であつた。また、収率は36%、熱重量減少
率は90%であつた。この生成物の赤外線吸収スペ
クトルを第3図に示した。またこの生成物の構造
式は下記のとおりであると推定される。
Example 7 A polymer having a cyclic polymethylsilazane structure was obtained in the same manner as in Example 1, using pyridine as a receptor and 0.75 mol of tetrachlorosilane per 1 mol of trimer as a chlorosilane compound. Ta. The product was a pale yellow viscous liquid with a molecular weight of 840. Moreover, the yield was 36% and the thermogravimetric reduction rate was 90%. The infrared absorption spectrum of this product is shown in FIG. Moreover, the structural formula of this product is estimated to be as follows.

【化】 実施例 8 受容体としてDMACを用い、クロロシラン化
合物としてテトラクロロシランを三量体1モルに
対して0.75モルを用いて実施例1と同様にして環
状ポリメチルシラザン構造を有する重合体を得
た。 この生成物はゼラチン状であつた。収率は73
%、熱重量減少率は41%であつた。この生成物の
赤外線吸収スペクトルを第4図に示した。また、
この生成物の構造式は、下記のとおりであると推
定される。
Example 8 A polymer having a cyclic polymethylsilazane structure was obtained in the same manner as in Example 1 using DMAC as a receptor and tetrachlorosilane as a chlorosilane compound in an amount of 0.75 mol per 1 mol of trimer. Ta. The product was gelatinous. Yield is 73
%, and the thermogravimetric reduction rate was 41%. The infrared absorption spectrum of this product is shown in FIG. Also,
The structural formula of this product is estimated to be as follows.

【化】 参考例 1 実施例5で得られた環状ポリメチルシラザン構
造を有する重合体を用いてセラミツクスを製造し
た。 メチルシクロポリシラザンを所望の成形型に充
填したのち、窒素ガス雰囲気中で5℃/分の割合
で1000℃まで加熱・昇温せしめる。その後、さら
にこの温度で2時間保持せしめることにより、焼
成した。 このセラミツクスの表面は、SEM観察により
均一な平滑面を有していた。また、ビツカース硬
度は1250Kg/mm2であつた。このことからこのセラ
ミツクスは空孔の少ない緻密な構造を有している
ことがわかつた。 参考例 2 実施例7で得られた環状ポリメチルシラザン構
造を有する重合体を用いて、参考例1と同様にし
てセラミツクスを製造した。ただし、昇温速度は
5℃/分であり、1400℃まで加熱した。また、昇
温後の保持時間は2時間であつた。 このセラミツクスの表面は、SEM観察により
均一な平滑面を有していた。また、ビツカーズ硬
度は1930Kg/mm2であつた。このことからこのセラ
ミツクスは空孔の少ない緻密な構造を有している
ことがわかつた。 [発明の効果] 以上説明したとおり本発明の製造方法によれ
ば、生成物である環状ポリメチルシラザン構造を
有する重合体の分子量を自由にコントロールする
ことができ、これにより焼成後のセラミツクスの
品質を一定化することができる。また、得られた
環状ポリメチルシラザン構造を有する重合体は有
機溶媒に可溶であることから成形が容易であり、
したがつて所望の形状の、特に複雑な形状のセラ
ミツクスを得ることができる。さらに、この環状
ポリメチルシラザン構造を有する重合体は緩やか
な条件(常圧、焼成温度800℃以上)で焼成する
ことにより、高硬度で、かつ緻密な構造を有する
セラミツクスを得ることができ、したがつて種々
の分野への適用が可能となるものである。
Reference Example 1 Ceramics were manufactured using the polymer having a cyclic polymethylsilazane structure obtained in Example 5. After filling a desired mold with methylcyclopolysilazane, it is heated and raised to 1000°C at a rate of 5°C/minute in a nitrogen gas atmosphere. Thereafter, the mixture was further held at this temperature for 2 hours to perform firing. The surface of this ceramic was found to have a uniform smooth surface by SEM observation. Further, the Bitkers hardness was 1250Kg/mm 2 . This indicates that this ceramic has a dense structure with few pores. Reference Example 2 Using the polymer having a cyclic polymethylsilazane structure obtained in Example 7, ceramics were produced in the same manner as in Reference Example 1. However, the temperature increase rate was 5°C/min, and the temperature was raised to 1400°C. Further, the holding time after the temperature increase was 2 hours. The surface of this ceramic was found to have a uniform smooth surface by SEM observation. Further, the Bitkers hardness was 1930 Kg/mm 2 . This indicates that this ceramic has a dense structure with few pores. [Effects of the Invention] As explained above, according to the production method of the present invention, the molecular weight of the product polymer having a cyclic polymethylsilazane structure can be freely controlled, thereby improving the quality of ceramics after firing. can be made constant. In addition, the obtained polymer having a cyclic polymethylsilazane structure is easy to mold because it is soluble in organic solvents.
Ceramics of a desired shape, particularly a complex shape, can therefore be obtained. Furthermore, by firing this polymer having a cyclic polymethylsilazane structure under mild conditions (normal pressure, firing temperature of 800°C or higher), it is possible to obtain ceramics with high hardness and a dense structure. As a result, it becomes possible to apply it to various fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は三量体の赤外線吸収スペクトルを、第
2〜第4図はそれぞれ実施例6〜8で得られた環
状ポリシラザン構造を有する重合体の赤外線吸収
スペクトルを示す。
FIG. 1 shows the infrared absorption spectrum of the trimer, and FIGS. 2 to 4 show the infrared absorption spectra of the polymers having a cyclic polysilazane structure obtained in Examples 6 to 8, respectively.

Claims (1)

【特許請求の範囲】 1 (A) ヘキサメチルシクロトリシラザン;およ
び (B) 式(CH3aSiCl4-a(ただし、式中aは0,1
または2である)で示されるクロロシラン化合
物;を塩化水素受容体の存在下で加熱・重合せ
しめたのち、前記塩化水素受容体を除いた残部
にアンモニアを反応させることを特徴とする環
状ポリメチルシラザン構造を有する重合体の製
造方法。 2 塩化水素受容体がN,N−ジメチルアセトア
ミドである特許請求の範囲第1項記載の製造方
法。 3 クロロシラン化合物がテトラクロロシランで
ある特許請求の範囲第1項記載の製造方法。
[Scope of Claims] 1 (A) hexamethylcyclotrisilazane; and (B) formula (CH 3 ) a SiCl 4-a (wherein a is 0, 1
or 2); is heated and polymerized in the presence of a hydrogen chloride acceptor, and then the remainder after removing the hydrogen chloride acceptor is reacted with ammonia. A method for producing a polymer having a structure. 2. The manufacturing method according to claim 1, wherein the hydrogen chloride acceptor is N,N-dimethylacetamide. 3. The manufacturing method according to claim 1, wherein the chlorosilane compound is tetrachlorosilane.
JP4146786A 1986-02-28 1986-02-28 Production of polymer having cyclic polymethyl silazane structure Granted JPS62199623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4146786A JPS62199623A (en) 1986-02-28 1986-02-28 Production of polymer having cyclic polymethyl silazane structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4146786A JPS62199623A (en) 1986-02-28 1986-02-28 Production of polymer having cyclic polymethyl silazane structure

Publications (2)

Publication Number Publication Date
JPS62199623A JPS62199623A (en) 1987-09-03
JPH0576970B2 true JPH0576970B2 (en) 1993-10-25

Family

ID=12609174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4146786A Granted JPS62199623A (en) 1986-02-28 1986-02-28 Production of polymer having cyclic polymethyl silazane structure

Country Status (1)

Country Link
JP (1) JPS62199623A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742143A (en) * 1986-11-04 1988-05-03 Dow Corning Corporation Preceramic polymers derived from cyclic silazanes, and halosilanes and a method for their preparation
JP2507762B2 (en) * 1987-10-31 1996-06-19 新技術事業団 Method for producing methylpolysilazane
DE3824614A1 (en) * 1988-07-20 1990-01-25 Hoechst Ag METHOD FOR THE PRODUCTION OF CERAMIC MATERIAL CONTAINING SILICON NITRIDE FROM POLYMER HYDRIDOCHLORSILAZANES

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156136A (en) * 1985-11-28 1987-07-11 ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク Two-process production of organopolysilazane reticulated polymer having improved heat resistance and usable especially as ceramic precursor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156136A (en) * 1985-11-28 1987-07-11 ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク Two-process production of organopolysilazane reticulated polymer having improved heat resistance and usable especially as ceramic precursor

Also Published As

Publication number Publication date
JPS62199623A (en) 1987-09-03

Similar Documents

Publication Publication Date Title
US5008422A (en) Polysilazanes and related compositions, processes and uses
EP0259366B1 (en) Polysilazanes and related compositions, processes and uses
JPH037221B2 (en)
JPH0647621B2 (en) Method for producing preceramic organosilazane polymer
JPS62290730A (en) Production of organosilazane polymer and production of ceramics using said polymer
US4656300A (en) Process for a thermal treatment of a polysilazane containing .tbd.SiH groups and .tbd.Si--NH-- groups
JPH0725893B2 (en) Synthesis of polymers based on boron and nitrogen precursors of boron and nitrogen and novel materials obtained from them.
JP2504688B2 (en) Method for producing polysilazane and polysilazane
JPH01188531A (en) Polysilazane, its production, silicon nitride-containing ceramics material capable of produced therefrom and production thereof
JPS6357454B2 (en)
US4861844A (en) Cationic catalysis process for the treatment of a polysilazane containing on average at least two .tbd.SiH groups per molecule
US8354489B2 (en) Silicon-boron-carbon-nitrogen ceramics and precursor compounds, methods for the salt-free polymerisation of RnHal3-nSi-X-BRmHal2-m
US5464918A (en) Peroxide-substituted polysilazanes
JP2511074B2 (en) Pre-ceramic polymer, ceramic material and methods for producing the same
JPH0363576B2 (en)
EP0262914A1 (en) Cross-linked organosilazane polymers
EP0417526B1 (en) Methods for preparing polytitanocarbosilazane polymers and ceramics therefrom
JPH049169B2 (en)
JPH0426612B2 (en)
FR2581386A1 (en) PROCESS FOR TREATING POLYORGANOSILAZANES AND / OR POLYORGANO (DISILYL) SILAZANES BY TREATING POLYORGANOSILAZANS BY A CATALYTIC SYSTEM COMPRISING A ION MINERAL SALT AND A COMPLEXING COMPOUND
JPH0576970B2 (en)
US5250648A (en) Preparation of organic silizane polymers and ceramic materials therefrom
JPH05132560A (en) Preparation of functional silazane polymer
JPS6158086B2 (en)
JPH0649766B2 (en) A method for producing polymers based on boron and nitrogen, precursors of boron nitride.