JPH0576966B2 - - Google Patents

Info

Publication number
JPH0576966B2
JPH0576966B2 JP25820985A JP25820985A JPH0576966B2 JP H0576966 B2 JPH0576966 B2 JP H0576966B2 JP 25820985 A JP25820985 A JP 25820985A JP 25820985 A JP25820985 A JP 25820985A JP H0576966 B2 JPH0576966 B2 JP H0576966B2
Authority
JP
Japan
Prior art keywords
polymerization
vinyl chloride
suspension polymerization
polymer
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25820985A
Other languages
Japanese (ja)
Other versions
JPS62119211A (en
Inventor
Saburo Kusudo
Katsunori Takeuchi
Yukio Noro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Vinyl Co
Original Assignee
Mitsubishi Kasei Vinyl Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Vinyl Co filed Critical Mitsubishi Kasei Vinyl Co
Priority to JP25820985A priority Critical patent/JPS62119211A/en
Publication of JPS62119211A publication Critical patent/JPS62119211A/en
Publication of JPH0576966B2 publication Critical patent/JPH0576966B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は乳化重合によつて得られるような好ま
しい諸特性を有した塩化ビニル系樹脂を懸濁重合
によつて得られるような好ましい形態で製造しう
る缶壁付着が少なく、粒子径コントロールが容易
なかつシヤープな粒度分布を有する塩化ビニル系
樹脂の製法に係わる。 「従来の技術」 乳化重合法によつて製造した塩化ビニル系重合
体は、重合体粒子が微細で、優れた加工性を備え
ている。 一方、懸濁重合法によつて、塩化ビニル系重合
体を製造する場合には生成する粒子が粗いため、
重合反応終了後の脱水、洗浄、乾燥などが容易で
得られた重合体の熱安定性、電気特性、透明性及
び耐候性等が優れており、加工時の取扱いが容易
である。 この、乳化重合によつて得られるような好まし
い諸特性を有する塩化ビニル系樹脂を懸濁重合に
よつて得られるような好ましい形態で製造する試
みは例えば、特公昭45−30834号公報記載の通り
公知である。この方法は最終的に得られるべき重
合体全量の5〜90%を乳化重合法によつて生成
し、次いで反応系に水、懸濁剤および油溶性重合
開始剤を添加して残りの重合を懸濁重合法によつ
て生成させている。この公知の方法は諸特性が乳
化重合法による塩化ビニル系樹脂に類似した特徴
を有し、懸濁重合法と同様の後処理を実施し得る
けれども、得られる重合体の粒度分布が一定せ
ず、又粒度分布も相当広範囲にわたるという欠点
があり、技術的進歩の速やかな現在の塩化ビニル
樹脂の加工分野において必ずしも満足できるもの
ではなかつた。具体的に言うと該方法は、乳化重
合法によつて得られた後にラテツクス中に副生し
ている粗粒はそのままで、かつラテツクスの段階
でラテツクス凝集粒子を制御していないために続
いて懸濁重合して製造する塩化ビニル系樹脂の粒
度分布が広く、かつその振れ幅が大きく、これが
成形品にいわゆるブツと称する固まり、フイツシ
ユアイを生起する原因となり、実用に供し得ない
ことが多かつた。更には懸濁重合時にポリマース
ケールの缶壁付着が著しかつた。 「発明が解決しようとする問題点」 本発明者らは、前記従来技術の特徴をそのまま
生かし乳化重合によつて得られる塩化ビニル系重
合体のような好ましい諸特性を有した塩化ビニル
系樹脂で、懸濁重合によつて得られる重合体のよ
うな好ましい形態で製造しうる缶壁付着が少な
く、粒子径コントロールが容易でかつシヤープな
粒度分布を有する塩化ビニル系樹脂の製法につい
て鋭意研究を行い、本発明に到達した。 「問題点を解決するための手段」 しかして、本発明の要旨とするところは、塩化
ビニル又は塩化ビニルと共重合可能な混合物を水
性媒体中で油溶性重合開始剤を用いて懸濁重合し
て塩化ビニル系樹脂を製造する方法において、反
応系に予め別途に乳化重合法又は微細懸濁重合法
によつて製造し、60メツシユ以上の粗粒を除いた
塩化ビニル系重合体ラテツクスを存在させ、反応
前または反応中に電解質を添加することを特徴と
する塩化ビニル系樹脂の製法に存する。 本発明を以下、詳細に説明する。 本発明方法が適用できる単量体としては、塩化
ビニル単独、塩化ビニルとそれに共重合し得るビ
ニル系単量体一種以上との組み合わせも含まれ
る。ここで言うビニル系単量体としては、例えば
酢酸ビニル、スチレン、アクリロニトリル、アク
リル酸エステル、メタクリル酸エステル、エチレ
ン等の油溶性単量体;アクリル酸、メタクリル
酸、マレイン酸、クロトン酸等の水溶性単量体;
アクリル酸ナトリウム、フマル酸ナトリウム、ア
クリル酸カルシウム等のビニル系単量体の無機塩
等があげられる。また、上記単量体としては、塩
化ビニルと共重合可能な多官能基を有するビニル
系単量体、例えば、ジビニルベンゼン、ジアリル
フタレート、ジアリルマレエート等を適用するこ
とができる。これらの多官能基を有するビニル系
単量体は架橋構造を有する重合体をもたらす。 本発明を効果的に達成するためには、先ず乳化
重合又は微細懸濁重合を行なう必要がある。塩化
ビニル単独、又は塩化ビニルと上記単量体群より
選ばれた所望の単量体ならびに水、乳化剤及び水
溶性重合開始剤、又は油溶性重合開始剤、場合に
よつてはPH調節剤を反応器に入れ、不活性気体で
置換を行なつた後に重合を行なう。 乳化重合で使用することができる乳化剤として
は、水溶性乳化剤が適しており、特にアニオン性
乳化剤が望ましい。乳化剤の量としては単量体
100重量部当り2.0重量部以下が望ましい。 水溶性重合開始剤としては、過酸化水素、過硫
酸カリウム、過硫酸アンモニウム等が用いられ
る。 油溶性重合開始剤としては、過酸化ベンゾイ
ル、ラウロイルパーオキサイド、ジーターシヤリ
ーブチルパーオキサイド等のフリーラジカルを発
生する開始剤が用いられる。更に酸化−還元系
(レドツクス)開始剤も用いることができる。 上記の組成物を用いて80%以上乳化重合法又は
微細懸濁重合法で重合させたのち、得られたラテ
ツクスから60メツシユ以上の粗粒を除去してお
く。 次に塩化ビニル単独、又は塩化ビニルと前述単
量体群より選ばれた所望の単量体、ならびに水、
懸濁剤、油溶性重合開始剤を反応器に入れ、不活
性気体で置換を行なつた後の懸濁重合反応系に前
述の塩化ビニル系重合体ラテツクスを添加した
後、反応温度到達後に電解質を添加し、懸濁重合
を行なう。又、ラテツクスと電解質を同時に添加
してもよい。 懸濁剤は懸濁重合に一般に用いられるものを使
用することができる。例えば、ポリ酢酸ビニルの
各種けん化物、各種水溶性セルロース誘導体、マ
レイン酸共重合体、ゼラチン等があげられ、これ
らは単独でも、二種以上を組み合わせて使用する
こともできる。またこれら懸濁剤とある種の界面
活性剤とを併用して用いることもできる。 油溶性重合開始剤は前述のものを使用すること
ができる。 また、電解質としては水溶性の塩類が使用でき
る。これらの塩類は周期律表、、族の水溶
性の塩類であつて製造される樹脂の品質上の目的
に従つて、塩類の種類、数量が選択される。塩類
の種類、数量は予備的な検討によつて決定される
が、少なくとも添加されるラテツクスが重合時間
内に凝集しうる量でなければならない。これらの
塩類の例としては、塩酸、硫酸、塩化カルシウ
ム、酢酸カルシウム、塩化アルミニウム、塩化マ
グネシウム等がある。 本発明方法は前記のごとく、乳化重合法または
微細懸濁重合法と懸濁重合法を組み合わせること
を特徴とするが、乳化重合法と懸濁重合法の重合
条件は任意にかえることができる。 例えば重合温度は異なつてもよいし、乳化重合
法で得られる重合体の重合度とは異なつてもよ
い。また両重合法による重合途中において単量体
を段階的、又は連続的に反応系に追加しながら重
合を続けることもできる。また、共重合体を製造
する場合は乳化重合と懸濁重合でそれぞれ異なつ
た単量体組成の組み合わせで行つてもよい。 「作用」 本発明方法によつて得られる重合体は、乳化重
合または微細懸濁重合法によつて生成する微細粒
子と懸濁重合法によつて生成する粗い粒子との単
なる混合物と異なりそれぞれの重合法がもたらす
好適な特性を併せ有するものである。先ず乳化重
合法によつて重合を行なう場合は、通常の乳化重
合の反応機構に従い、通常の2ミクロン以下の微
細粒子が得られる。また、微細懸濁重合も同様
に、2ミクロン以下の微細粒子が得られる。この
微細粒子を懸濁重合反応系に添加した後、電解質
を添加すると微細粒子が凝集し合い、懸濁重合の
工程で生成する重合体がこれらを包み、懸濁重合
で得られる様な20〜500ミクロン(平均粒子径約
150ミクロン)の大きさになる。従つて、反応終
了後に通常の乳化重合法の様な塩析は必要とせ
ず、かつ脱水、洗浄および乾燥は通常の懸濁重合
法の様に容易に行なうことができる。 「効果」 本発明方法および本発明方法によつて得られた
塩化ビニル系樹脂は次の様なすぐれた特徴を有す
る。 1 従来の技術では粒度分布は一定せず、広範囲
にわたつていたが、本発明により粒度分布はシ
ヤープになりコントロールが容易である。 2 懸濁重合時にポリマースケールの缶壁付着が
著しかつたが本発明では少なくなつた。 3 本発明で得られた重合体の熱安定性は通常の
懸濁重合法によつて得られる重合体と同様、優
れたものである。 次に本発明の実施の態様を実施例によつて詳細
に説明するが、本発明はその要旨を超えない限
り、以下の実施例に限定されるものではない。 実施例 1 水 1000g 塩化ビニル 500g ラウリル硫酸ソーダ 0.5g 過硫酸カリウム 0.3g 重亜硫酸ソーダ 0.3g 重炭酸ソーダ 0.4g 上記組成物を容量3の攪拌機付ステンレスオ
ートクレーブに加え、窒素で置換を行なつた後、
200rpmの攪拌下58℃で5時間乳化重合した後、
未反応塩化ビニルを脱ガス操作によつて分離し
た。最初仕込んだ単量体の重合率は90%で粒子径
0.2ミクロンで固形分30%のラテツクスであり、
この中には粗粒が含まれている為、100メツシユ
で過した。 続いて該ラテツクスを用い3の攪拌機付ステ
ンレスオートクレーブに 水 1400g 塩化ビニルモノマー 700g ラテツクス 400g ポリビニルアルコール2%液 40g ラウロイルパーオキサイド 2.1g それぞれ加え、容器内の温度が58℃に達した後、
酢酸カルシウム10gを添加し、8時間懸濁重合を
行なつた。重合反応終了後、脱塩化ビニルモノマ
ー、洗浄、脱水乾燥して平均重合度1050のポリ塩
化ビニル樹脂を得た。このときの全ポリ塩化ビニ
ル量は700gであつた。 又攪拌機付ステンレスオートクレーブの付着は
ほとんど見られなかつた。得られたポリ塩化ビニ
ルの平均粒子径は150μで粒度分布は表1に示す。
"Industrial Field of Application" The present invention is directed to the production of vinyl chloride resins having desirable properties such as those obtainable by emulsion polymerization in a preferred form such as those obtainable by suspension polymerization. The present invention relates to a method for producing a vinyl chloride resin having a sharp particle size distribution with a small particle size that is easy to control. "Prior Art" Vinyl chloride polymers produced by emulsion polymerization have fine polymer particles and excellent processability. On the other hand, when producing vinyl chloride polymers by suspension polymerization, the particles produced are coarse;
After the polymerization reaction is completed, dehydration, washing, drying, etc. are easy, and the resulting polymer has excellent thermal stability, electrical properties, transparency, weather resistance, etc., and is easy to handle during processing. Attempts to produce vinyl chloride resins having desirable properties such as those obtained by emulsion polymerization in a desirable form such as those obtained by suspension polymerization have been made, for example, as described in Japanese Patent Publication No. 45-30834. It is publicly known. In this method, 5 to 90% of the total amount of the polymer to be finally obtained is produced by emulsion polymerization, and then water, a suspending agent, and an oil-soluble polymerization initiator are added to the reaction system to carry out the remaining polymerization. It is produced by suspension polymerization method. Although this known method has characteristics similar to vinyl chloride resins produced by emulsion polymerization, and can be subjected to post-treatment similar to suspension polymerization, the particle size distribution of the resulting polymer is not constant. Moreover, it has the disadvantage that the particle size distribution is quite wide, and it is not necessarily satisfactory in the current field of vinyl chloride resin processing where technological progress is rapid. Specifically, in this method, the coarse particles that are by-produced in the latex after being obtained by emulsion polymerization remain as they are, and the latex agglomerated particles are not controlled at the latex stage. The particle size distribution of vinyl chloride resin produced by suspension polymerization is wide and has a large variation, which causes lumps and hard eyes in molded products, which often makes them unsuitable for practical use. Ta. Furthermore, during suspension polymerization, polymer scale was significantly attached to the can wall. "Problems to be Solved by the Invention" The present inventors have developed a vinyl chloride-based resin that takes advantage of the characteristics of the above-mentioned prior art and has desirable properties like a vinyl chloride-based polymer obtained by emulsion polymerization. We have conducted intensive research on a method for producing vinyl chloride resin that can be produced in a preferred form such as a polymer obtained by suspension polymerization, has less adhesion to can walls, is easy to control particle size, and has a sharp particle size distribution. , arrived at the present invention. "Means for Solving the Problems" Therefore, the gist of the present invention is to carry out suspension polymerization of vinyl chloride or a mixture copolymerizable with vinyl chloride in an aqueous medium using an oil-soluble polymerization initiator. In the method for producing a vinyl chloride resin, a vinyl chloride polymer latex produced separately by an emulsion polymerization method or a fine suspension polymerization method and from which coarse particles of 60 mesh or more are removed is pre-existing in the reaction system. , a method for producing a vinyl chloride resin characterized by adding an electrolyte before or during the reaction. The present invention will be explained in detail below. Monomers to which the method of the present invention can be applied include vinyl chloride alone, and combinations of vinyl chloride and one or more vinyl monomers copolymerizable therewith. The vinyl monomers mentioned here include, for example, oil-soluble monomers such as vinyl acetate, styrene, acrylonitrile, acrylic esters, methacrylic esters, and ethylene; water-soluble monomers such as acrylic acid, methacrylic acid, maleic acid, and crotonic acid. sexual monomer;
Examples include inorganic salts of vinyl monomers such as sodium acrylate, sodium fumarate, and calcium acrylate. Furthermore, as the monomer, a vinyl monomer having a polyfunctional group copolymerizable with vinyl chloride, such as divinylbenzene, diallyl phthalate, diallyl maleate, etc., can be used. These vinyl monomers having polyfunctional groups yield polymers having a crosslinked structure. In order to effectively achieve the present invention, it is first necessary to carry out emulsion polymerization or microsuspension polymerization. React vinyl chloride alone, or vinyl chloride with a desired monomer selected from the above monomer group, water, an emulsifier and a water-soluble polymerization initiator, or an oil-soluble polymerization initiator, and in some cases a PH regulator. The mixture is placed in a container, and after substitution with an inert gas, polymerization is carried out. As the emulsifier that can be used in emulsion polymerization, water-soluble emulsifiers are suitable, and anionic emulsifiers are particularly desirable. The amount of emulsifier is monomer
The content is preferably 2.0 parts by weight or less per 100 parts by weight. As the water-soluble polymerization initiator, hydrogen peroxide, potassium persulfate, ammonium persulfate, etc. are used. As the oil-soluble polymerization initiator, an initiator that generates free radicals such as benzoyl peroxide, lauroyl peroxide, and tertiary butyl peroxide is used. Additionally, oxidation-reduction (redox) initiators can also be used. After 80% or more of the above composition is polymerized by emulsion polymerization or fine suspension polymerization, coarse particles of 60 mesh or more are removed from the resulting latex. Next, vinyl chloride alone, or vinyl chloride and a desired monomer selected from the above monomer group, and water,
A suspending agent and an oil-soluble polymerization initiator are placed in a reactor, and the above-mentioned vinyl chloride polymer latex is added to the suspension polymerization reaction system after substitution with an inert gas.After the reaction temperature is reached, the electrolyte is added. is added to carry out suspension polymerization. Alternatively, the latex and electrolyte may be added at the same time. As the suspending agent, those commonly used in suspension polymerization can be used. Examples include various saponified products of polyvinyl acetate, various water-soluble cellulose derivatives, maleic acid copolymers, gelatin, etc., and these can be used alone or in combination of two or more. Moreover, these suspending agents and certain surfactants can also be used in combination. As the oil-soluble polymerization initiator, those mentioned above can be used. Furthermore, water-soluble salts can be used as the electrolyte. These salts are water-soluble salts belonging to group 1 of the periodic table, and the type and quantity of the salts are selected according to the purpose of quality of the resin to be produced. The type and amount of salts are determined through preliminary studies, but they must be at least in an amount that will allow the added latex to coagulate within the polymerization time. Examples of these salts include hydrochloric acid, sulfuric acid, calcium chloride, calcium acetate, aluminum chloride, magnesium chloride, and the like. As described above, the method of the present invention is characterized by a combination of emulsion polymerization or fine suspension polymerization and suspension polymerization, but the polymerization conditions for emulsion polymerization and suspension polymerization can be changed as desired. For example, the polymerization temperature may be different and the degree of polymerization of the polymer obtained by emulsion polymerization may be different. Further, during the polymerization by both polymerization methods, the polymerization can be continued while adding monomers to the reaction system stepwise or continuously. Furthermore, when producing a copolymer, emulsion polymerization and suspension polymerization may be carried out using different combinations of monomer compositions. "Function" The polymer obtained by the method of the present invention is different from a mere mixture of fine particles produced by emulsion polymerization or fine suspension polymerization and coarse particles produced by suspension polymerization. It also has favorable properties brought about by the polymerization method. First, when polymerization is carried out by emulsion polymerization, fine particles of 2 microns or less are obtained according to the reaction mechanism of ordinary emulsion polymerization. Similarly, fine particles of 2 microns or less can be obtained by fine suspension polymerization. After adding these fine particles to the suspension polymerization reaction system, when an electrolyte is added, the fine particles aggregate together, and the polymer produced in the suspension polymerization process wraps them, resulting in a 500 microns (average particle size approx.
150 microns). Therefore, after the completion of the reaction, salting out as in the usual emulsion polymerization method is not required, and dehydration, washing and drying can be easily carried out as in the usual suspension polymerization method. "Effects" The method of the present invention and the vinyl chloride resin obtained by the method of the present invention have the following excellent characteristics. 1. In the conventional technology, the particle size distribution was not constant and varied over a wide range, but according to the present invention, the particle size distribution becomes sharp and can be easily controlled. 2. During suspension polymerization, there was a significant amount of polymer scale attached to the can wall, but this was reduced in the present invention. 3. The thermal stability of the polymer obtained according to the present invention is as excellent as that of a polymer obtained by a conventional suspension polymerization method. Next, embodiments of the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. Example 1 Water 1000g Vinyl chloride 500g Sodium lauryl sulfate 0.5g Potassium persulfate 0.3g Sodium bisulfite 0.3g Sodium bicarbonate 0.4g The above composition was added to a stainless steel autoclave with a capacity of 3 equipped with a stirrer, and after purging with nitrogen,
After emulsion polymerization at 58°C for 5 hours with stirring at 200 rpm,
Unreacted vinyl chloride was separated by degassing. The polymerization rate of the initially charged monomer was 90% and the particle size
It is a latex with a diameter of 0.2 microns and a solid content of 30%.
Since this contains coarse grains, it was used at 100 mesh. Next, using the latex, 1400 g of water, 700 g of vinyl chloride monomer, 400 g of latex, 40 g of 2% polyvinyl alcohol solution, and 2.1 g of lauroyl peroxide were added to the stainless steel autoclave equipped with a stirrer in Step 3, and after the temperature inside the container reached 58°C,
10 g of calcium acetate was added and suspension polymerization was carried out for 8 hours. After the polymerization reaction was completed, the dechlorinated vinyl monomer was washed, dehydrated and dried to obtain a polyvinyl chloride resin with an average degree of polymerization of 1050. The total amount of polyvinyl chloride at this time was 700 g. In addition, almost no adhesion was observed in the stainless steel autoclave equipped with a stirrer. The average particle diameter of the obtained polyvinyl chloride was 150μ, and the particle size distribution is shown in Table 1.

【表】 又、このポリ塩化ビニル100重量部にジブチル
錫マレエート3重量部を加え、加熱ロールで混練
りした後、180℃のギヤオーブン中で熱安定性を
試験した結果、実施例1で得られた重合体は90分
で淡黄に着色し、その着色度は市販懸濁重合法に
よる重合体より若干劣るが、40分で同様に着色し
た市販乳化法による重合体に比較してはるかに良
好な熱安定性を示した。 また、上記と同様の配合物を用いて、ブラベン
ダープラストグラフにより、170℃においてのゲ
ル化時間を測定したところ、80秒であり、これと
比較するために市販懸濁重合法によつて得られた
平均重合度1050の重合体のゲル化時間は150秒で
あつた。この結果、本発明で得られた重合体の加
工性は懸濁重合法によつて得られた重合体よりは
るかに優れていることを示している。 比較例 1 3の攪拌機付ステンレスオートクレーブに 水 1400g 塩化ビニルモノマー 700g ポリビニルアルコール2%液 40g ラウロイルパーオキサイド 2.1g をそれぞれ加え、容器内の温度が58℃に達した
後、実施例1で得られた100メツシユで過した
ラテツクス400gを添加し、8時間懸濁重合した。 重合反応終了後、攪拌機付ステンレスオートク
レーブには付着が多く又排水は白濁し、排水中の
ポリ塩化ビニル量は20gであつた。 得られた製品ポリ塩化ビニル量は600gで平均
粒子径は300ミクロンと非常に粗かつた。粒度分
布は表2に表わす。
[Table] In addition, 3 parts by weight of dibutyltin maleate was added to 100 parts by weight of this polyvinyl chloride, and after kneading with a heated roll, the thermal stability was tested in a gear oven at 180°C. The resulting polymer was colored pale yellow in 90 minutes, and although the degree of coloration was slightly inferior to that of the commercially available suspension polymerization method, it was much more colored than the commercially available emulsion method polymer that was similarly colored in 40 minutes. It showed good thermal stability. In addition, using the same formulation as above, the gelation time was measured at 170°C using a Brabender plastograph, and it was 80 seconds. The gelation time of the polymer with an average degree of polymerization of 1050 was 150 seconds. The results show that the processability of the polymer obtained by the present invention is far superior to that of a polymer obtained by suspension polymerization. Comparative Examples 1400g of water, 700g of vinyl chloride monomer, 40g of 2% polyvinyl alcohol solution, and 2.1g of lauroyl peroxide were added to the stainless steel autoclave with a stirrer in Comparative Examples 1 and 3, and after the temperature inside the container reached 58°C, the mixture obtained in Example 1 was added. 400 g of latex passed through a 100 mesh was added, and suspension polymerization was carried out for 8 hours. After the polymerization reaction was completed, there was a lot of adhesion to the stainless steel autoclave equipped with a stirrer, and the waste water became cloudy, and the amount of polyvinyl chloride in the waste water was 20 g. The amount of polyvinyl chloride obtained was 600 g, and the average particle size was 300 microns, which was very coarse. The particle size distribution is shown in Table 2.

【表】 実施例 2 3の攪拌機付ステンレスオートクレーブに 水 1400g 塩化ビニルモノマー 700g メチルセルロース2%液 40g ラウロイルパーオキサイド 2.1g それぞれ加え、実施例1で得られたラテツクス
400gを加え、容器内の温度が58℃に達した後、
酢酸カルシウム10gを添加し、8時間懸濁重合し
た。重合反応終了後、脱塩化ビニルモノマー、洗
浄、脱水乾燥して平均重合度1050のポリ塩化ビニ
ル樹脂を得た。又、攪拌機付ステンレスオートク
レーブの缶壁付着はほとんど見られなかつた。得
られたポリ塩化ビニルの平均粒子径は150ミクロ
ンで粒度分布を表3に示す。
[Table] Example 2 1400 g of water, 700 g of vinyl chloride monomer, 40 g of 2% methylcellulose solution, and 2.1 g of lauroyl peroxide were added to the stainless steel autoclave equipped with a stirrer in Example 2, and the latex obtained in Example 1 was prepared.
After adding 400g and the temperature inside the container reaching 58℃,
10 g of calcium acetate was added and suspension polymerization was carried out for 8 hours. After the polymerization reaction was completed, the dechlorinated vinyl monomer was washed, dehydrated and dried to obtain a polyvinyl chloride resin with an average degree of polymerization of 1050. In addition, almost no adhesion to the can wall of the stainless steel autoclave equipped with an agitator was observed. The average particle diameter of the obtained polyvinyl chloride was 150 microns, and the particle size distribution is shown in Table 3.

【表】 次に、このポリ塩化ビニル100重量部にジブチ
ル錫マレエート3重量部を加え、加熱ロールで混
練りした後、180℃のギヤオーブン中で熱安定性
を試験した結果、実施例2で得られた重合体は25
分で淡黄に着色し、その着色度は市販懸濁重合法
による重合体より若干劣るが、40分で同様に着色
した市販乳化法による重合体に比較してはるかに
良好な熱安定性を示した。 また、上記と同様の配合物を用いて、ブラベン
ダープラストグラフによる、170℃でゲル化時間
を測定したところ、75秒であり、これと比較する
ために市販懸濁重合法によつて得られた平均重合
度1050の重合体のゲル化時間は150秒であつた。
この結果、本発明で得られた重合体の加工性は懸
濁重合法によつて得られた重合体よりはるかに優
れていることを示している。 実施例 3 容量3の攪拌機付ステンレスオートクレーブ
に 水 1000g 塩化ビニル 475g 酢酸ビニル 25g ラウリル硫酸ソーダ 0.5g 過硫酸カリウム 0.3g 重亜硫酸ソーダ 0.3g 重炭酸ソーダ 0.4g をそれぞれ加え、窒素で置換を行なつた後、
200rpmの攪拌下、58℃で5時間乳化重合した後、
未反応塩化ビニル、酢酸ビニルを脱ガス操作によ
つて分離した。 最初仕込んだ単量体の重合率は90%で粒子径が
0.2ミクロンで固形分30%のラテツクスであつた。
このラテツクス中には粗粒が含まれている為、
100メツシユで過した。 続いて3の攪拌機付ステンレスオートクレー
ブに 水 1400g 塩化ビニルモノマー 700g ポリビニルアルコール2%液 40g ラウロイルパーオキサイド 2.1g をそれぞれ加え、前記で得られたラテツクス400
gを加え、容器内の温度が58℃に達した後、酢酸
カルシウム10gを添加し、8時間懸濁重合をし
た。重合反応終了後、脱塩化ビニルモノマー、洗
浄、脱水乾燥して、ポリ塩化ビニル樹脂を得た。 このときの全ポリ塩化ビニル量は700gであつ
た。又、攪拌機付ステンレスオートクレーブの缶
壁付着はほとんど見られなかつた。 得られたポリ塩化ビニルの平均粒子径は150ミ
クロンで粒度分布を表4に示す。
[Table] Next, 3 parts by weight of dibutyltin maleate was added to 100 parts by weight of this polyvinyl chloride, and after kneading with heated rolls, the thermal stability was tested in a gear oven at 180°C. The obtained polymer is 25
The degree of coloration is slightly inferior to that of the commercially available suspension polymerization method, but the thermal stability is much better than that of the commercially available emulsification method polymer, which is similarly colored within 40 minutes. Indicated. In addition, using the same formulation as above, gelation time was measured at 170°C using a Brabender plastograph, and it was 75 seconds.For comparison, the gelation time was 75 seconds. The gelation time of the polymer with an average degree of polymerization of 1050 was 150 seconds.
The results show that the processability of the polymer obtained by the present invention is far superior to that of a polymer obtained by suspension polymerization. Example 3 1000 g of water, 475 g of vinyl chloride, 25 g of vinyl acetate, 0.5 g of sodium lauryl sulfate, 0.3 g of potassium persulfate, 0.3 g of sodium bisulfite, and 0.4 g of sodium bicarbonate were added to a stainless steel autoclave with a capacity of 3 and equipped with a stirrer, and after purging with nitrogen,
After emulsion polymerization at 58°C for 5 hours under stirring at 200 rpm,
Unreacted vinyl chloride and vinyl acetate were separated by degassing operation. The polymerization rate of the initially charged monomer was 90%, and the particle size was
The latex was 0.2 microns and had a solids content of 30%.
Because this latex contains coarse particles,
I spent 100 meals. Next, 1400 g of water, 700 g of vinyl chloride monomer, 40 g of 2% polyvinyl alcohol solution, and 2.1 g of lauroyl peroxide were added to the stainless steel autoclave equipped with a stirrer in step 3, and the latex obtained above was mixed with 400 g of lauroyl peroxide.
After the temperature inside the container reached 58° C., 10 g of calcium acetate was added and suspension polymerization was carried out for 8 hours. After the polymerization reaction was completed, the dechlorinated vinyl monomer was washed, dehydrated and dried to obtain a polyvinyl chloride resin. The total amount of polyvinyl chloride at this time was 700 g. In addition, almost no adhesion to the can wall of the stainless steel autoclave equipped with an agitator was observed. The average particle diameter of the obtained polyvinyl chloride was 150 microns, and the particle size distribution is shown in Table 4.

【表】 又、このポリ塩化ビニル100重量部にジブチル
錫マレエート3重量部を加え、加熱ロールで混練
りした後、180℃のギヤオーブン中で熱安定性を
試験した結果、実施例3で得られた重合体は80分
で淡黄に着色し、その着色度は市販懸濁重合法に
よる重合体より若干劣るが40分で同様に着色した
市販乳化法による重合体に比較してはるかに良好
な熱安定性を示した。 また、上記と同様の配合物を用いて、ブラベン
ダープラストグラフにより、170℃でゲル化時間
を測定したところ75秒であり、これと比較した市
販懸濁重合法によつて得られた平均重合度1050の
重合体のゲル化時間は150秒であつた。この結果、
本発明で得られた重合体の加工性が懸濁重合法に
よつて得られた重合体よりはるかに優れているこ
と示している。 実施例 4 容量3の攪拌機付ステンレスオートクレーブ
に 水 1000g ラウロイルパーオキサイド 9g ラウリル硫酸ソーダ 6g ラウリルアルコール 3g を加え、窒素で置換を行なつた後、塩化ビニル
600gを加え、200rpmで攪拌しながら35℃に保持
した。均一に攪拌後、乳化機を使用し、所望の液
滴径に分散しながら、予め、窒素で置換しておい
た攪拌機付3のステンレスオートクレーブに移
した。分散液の移送完了後、反応容器の温度を58
℃に昇温し、微細懸濁重合を行なつた。 粒子径0.4ミクロンで固形分32%のラテツクス
であつた。このラテツクス中には粗粒が含まれて
いる為、100メツシユで過した。 続いて3の攪拌機付ステンレスオートクレー
ブに 水 1400g 塩化ビニルモノマー 700g ポリビニルアルコール2%液 40g ラウロイルパーオキサイド 2.1g を加え、前述のラテツクス400gを加え、容器内
の温度が58℃に達した後、酢酸カルシウム10gを
添加し、8時間懸濁重合した。重合反応終了後、
脱塩化ビニルモノマー、洗浄、脱水乾燥して平均
重合度1050のポリ塩化ビニル樹脂を得た。得られ
たポリ塩化ビニルの平均粒子径は150ミクロンで
粒度分布を表5に示す。
[Table] In addition, 3 parts by weight of dibutyltin maleate was added to 100 parts by weight of this polyvinyl chloride, and after kneading with a heating roll, the thermal stability was tested in a gear oven at 180°C. The resulting polymer was colored pale yellow in 80 minutes, and the degree of coloration was slightly inferior to that of the commercially available suspension polymerization method polymer, but it was much better than the commercially available emulsion method polymer that was similarly colored in 40 minutes. It showed excellent thermal stability. In addition, using the same formulation as above, gelation time was measured at 170°C using a Brabender plastograph, and it was 75 seconds, compared to the average polymerization time obtained by a commercially available suspension polymerization method. The gel time for the 1050 degree polymer was 150 seconds. As a result,
This shows that the processability of the polymers obtained according to the present invention is far superior to that of polymers obtained by suspension polymerization. Example 4 1000g of water, 9g of lauroyl peroxide, 6g of sodium lauryl sulfate, and 3g of lauryl alcohol were added to a stainless steel autoclave with a capacity of 3 and equipped with a stirrer, and after purging with nitrogen, vinyl chloride was added.
600g was added and maintained at 35°C while stirring at 200rpm. After stirring uniformly, the mixture was dispersed into a desired droplet size using an emulsifier and transferred to a stainless steel autoclave equipped with a stirrer 3, which had been purged with nitrogen in advance. After the transfer of the dispersion is completed, the temperature of the reaction vessel is set to 58°C.
The temperature was raised to 0.degree. C., and fine suspension polymerization was carried out. The latex had a particle size of 0.4 microns and a solids content of 32%. Since this latex contained coarse particles, 100 mesh was used. Next, add 1400 g of water, 700 g of vinyl chloride monomer, 40 g of 2% polyvinyl alcohol solution, and 2.1 g of lauroyl peroxide to the stainless steel autoclave equipped with a stirrer in step 3, add 400 g of the aforementioned latex, and after the temperature inside the container reaches 58°C, add calcium acetate. 10 g was added and suspension polymerization was carried out for 8 hours. After the polymerization reaction is complete,
The dechlorinated vinyl monomer was washed, dehydrated and dried to obtain a polyvinyl chloride resin with an average degree of polymerization of 1050. The average particle diameter of the obtained polyvinyl chloride was 150 microns, and the particle size distribution is shown in Table 5.

【表】 次にこのポリ塩化ビニル100重量部にジブチル
錫マレエート3重量部を加え、加熱ロールで混練
りした後、180℃のギヤオーブン中で熱安定性を
試験した結果、実施例4で得られた重合体は90分
で淡黄に着色し、その着色度は市販懸濁重合法に
よる重合体とほぼ同等であり、40分で同様に着色
した市販乳化法による重合体と比較してはるかに
良好な熱安定性を示した。 また、上記と同様の配合物を170℃でブラベン
ダープラストグラフにより、ゲル化時間を測定し
たところ85秒であり、これと比較した市販懸濁重
合法によつて得られた平均重合度1050の重合体の
ゲル化時間は150秒であつた。この結果、本発明
で得られた重合体の加工性が懸濁重合法によつて
得られた重合体よりはるかに優れていることを示
している。
[Table] Next, 3 parts by weight of dibutyltin maleate was added to 100 parts by weight of this polyvinyl chloride, and after kneading with a heating roll, the thermal stability was tested in a gear oven at 180°C. The resulting polymer was colored pale yellow in 90 minutes, and the degree of coloration was almost the same as that of the commercially available suspension polymerization method, and it was far more colored than the commercially available emulsion method polymer that was similarly colored in 40 minutes. It showed good thermal stability. In addition, the gelation time of the same formulation as above was measured at 170°C using a Brabender plastograph, and it was 85 seconds. The gelation time of the polymer was 150 seconds. The results show that the processability of the polymer obtained by the present invention is far superior to that of the polymer obtained by suspension polymerization.

Claims (1)

【特許請求の範囲】[Claims] 1 塩化ビニル又は塩化ビニルと共重合可能な混
合物を水性媒体中で油溶性重合開始剤を用いて懸
濁重合して塩化ビニル系樹脂を製造する方法にお
いて、反応系に、予め別途乳化重合法又は微細懸
濁重合法によつて製造した60メツシユ以上の粗粒
を除いた塩化ビニル系重合体ラテツクスを存在さ
せ、反応前または反応中に電解質を添加すること
を特徴とする塩化ビニル系樹脂の製法。
1. In a method for producing a vinyl chloride resin by suspension polymerizing vinyl chloride or a mixture copolymerizable with vinyl chloride in an aqueous medium using an oil-soluble polymerization initiator, the reaction system is preliminarily added to an emulsion polymerization method or A method for producing a vinyl chloride resin, characterized by the presence of a vinyl chloride polymer latex produced by a fine suspension polymerization method and excluding coarse particles of 60 mesh or more, and the addition of an electrolyte before or during the reaction. .
JP25820985A 1985-11-18 1985-11-18 Production of vinyl chloride resin Granted JPS62119211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25820985A JPS62119211A (en) 1985-11-18 1985-11-18 Production of vinyl chloride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25820985A JPS62119211A (en) 1985-11-18 1985-11-18 Production of vinyl chloride resin

Publications (2)

Publication Number Publication Date
JPS62119211A JPS62119211A (en) 1987-05-30
JPH0576966B2 true JPH0576966B2 (en) 1993-10-25

Family

ID=17317028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25820985A Granted JPS62119211A (en) 1985-11-18 1985-11-18 Production of vinyl chloride resin

Country Status (1)

Country Link
JP (1) JPS62119211A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257171A (en) * 1990-03-07 1991-11-15 Toyo Ink Mfg Co Ltd Conductive molding and production thereof
CN103130935B (en) * 2013-03-15 2015-11-18 湖南科技大学 A kind of simple method preparing monodisperse anionic polystyrene microsphere

Also Published As

Publication number Publication date
JPS62119211A (en) 1987-05-30

Similar Documents

Publication Publication Date Title
EP0070505B1 (en) Use of hydrophobically modified water soluble polymers in suspension polymerization
JPH06206950A (en) Production of graft copolymer latex of core/shell disperse particle with improved phase bond between core and shell
JPS6232205B2 (en)
CA1056542A (en) Process for forming acrylic elastomer containing interpolymer particles by emulsion polymerization
JPH04266905A (en) Process for polymerization of vinyl polymer resin
JPS61207411A (en) Production of vinyl chloride resin
US4931518A (en) Low molecular weight copolymers of vinyl halide/vinyl acetate produced by aqueous polymerization with mercaptan
JPH0576966B2 (en)
JPH0576965B2 (en)
US3790542A (en) Method for polymerizing vinyl chloride
JPS62116610A (en) Production of vinyl chloride resin
JPS587408A (en) Preparation of blending resin for polyvinyl chloride paste resin
JP3584591B2 (en) Method for producing vinyl chloride polymer
JPH07119250B2 (en) Method for producing vanishable vinyl chloride polymer
JP2910774B2 (en) Method for producing vinyl chloride resin
JP3652832B2 (en) Method for producing chlorinated vinyl chloride resin
JPH0718007A (en) Production of vinyl chloride polymer
JPH0651753B2 (en) Vinyl chloride resin manufacturing method
JP3915225B2 (en) Production method of vinyl chloride polymer
JPH0347808A (en) Production of matte vinyl chloride polymer
JPH03290404A (en) Dispersion stabilizer for suspension polymerization of vinylic compound
JP3414026B2 (en) Method for producing vinyl chloride polymer
JPS61126112A (en) Production of vinyl chloride polymer
JPH07110882B2 (en) Method for producing vinyl chloride polymer
JPS6173714A (en) Production of vinyl chloride resin

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term