JPH0576877A - Water treatment method - Google Patents

Water treatment method

Info

Publication number
JPH0576877A
JPH0576877A JP27327391A JP27327391A JPH0576877A JP H0576877 A JPH0576877 A JP H0576877A JP 27327391 A JP27327391 A JP 27327391A JP 27327391 A JP27327391 A JP 27327391A JP H0576877 A JPH0576877 A JP H0576877A
Authority
JP
Japan
Prior art keywords
water
container
treated
titanium oxide
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27327391A
Other languages
Japanese (ja)
Inventor
Hiroshi Taoda
博史 垰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP27327391A priority Critical patent/JPH0576877A/en
Publication of JPH0576877A publication Critical patent/JPH0576877A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an economical water treatment method capable of obtaining safe water by easily and rapidly treating agricultural chemicals, an org. solvent (especially, halocarbon) or a surfactant (especially having a side chain) hard to treat by a present activated sludge method under a mild condition corresponding to worldwise water pollution. CONSTITUTION:Water to be treated such as waste water is introduced into a container having a titanium oxide film applied to the inner surface thereof and hydrogen peroxide and an iron salt are added to the water to be treated and this water to be treated is irradiated with light such as solar rays under heating or non-heating or the water and hydrogen peroxide are introduced into a container having an iron ion added titanium oxide film applied to the inner surface thereof to be irradiated with light under heating or non-heating. By this method, the org. matter contained in the water to be treated is rapidly decomposed to be perfectly oxidized to carbon dioxide and water and purified water is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、上水処理や下水処理な
どの水処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment method such as tap water treatment or sewage treatment.

【0002】[0002]

【従来の技術】近年、生活排水や産業排水による水質汚
染が、地球環境問題の一つとして世界的な問題となって
いる。水資源の豊富な我が国においてもゴルフ場での農
薬汚染やハイテク産業で使われている有機溶剤による地
下水の汚染、合成洗剤(界面活性剤)による水源の汚染
が大きな問題となっており、昔に比べて水道の水質が悪
化し、水がまずくなったと言われている。これは水源の
汚染により昔に比べて上水処理に大量の塩素や消毒薬を
使うため、それらが残留したり、原水中の有機物と反応
して有機塩素化合物が生成したりすることや、湖などの
富栄養化による藻やプランクトン、カビなどの発生など
が原因である。
2. Description of the Related Art In recent years, water pollution caused by domestic wastewater and industrial wastewater has become a global problem as one of global environmental problems. Even in Japan, where water resources are abundant, pollution of pesticides on golf courses, contamination of groundwater by organic solvents used in high-tech industries, and contamination of water sources by synthetic detergents (surfactants) have become major problems. Compared with this, it is said that the water quality of the water supply deteriorated and the water became poor. This is because a large amount of chlorine and disinfectants are used for water treatment due to pollution of water sources compared with the past, so that they remain or react with organic substances in raw water to form organic chlorine compounds, and lakes. The cause is algae, plankton, mold, etc. due to eutrophication.

【0003】現在広く行われている水処理法は活性汚泥
法であるが、この方法は上述の農薬や有機溶剤(特にハ
ロカーボン)、界面活性剤(特に側鎖の付いたもの)な
どを分解・除去しにくく、それらに対して無力であると
いう欠点を持っている。このような生物学的に難分解性
の有機物の処理方法としては、活性炭吸着法、化学酸化
法、逆浸透法などがあるが、いずれも処理効果や経済性
などの点で問題が残されている。化学酸化法において用
いられる酸化剤としては、塩素とオゾンが代表的である
が、塩素は酸化力の点や、アンモニウムイオンとの反応
性や過剰注入による残留塩素などの点、あるいは被処理
水中に含まれる有機物と反応して発ガン性を持つトリハ
ロメタンや有機塩素化合物を生成するなどの問題があ
る。また、オゾンの場合は設備費、運転費がともに高価
であるという欠点を持っている(例えば、北尾高嶺、八
橋亮介、水処理技術、Vol.8, No.8, 35 (1976))。
A widely used water treatment method at present is an activated sludge method. This method decomposes the above-mentioned pesticides, organic solvents (especially halocarbons) and surfactants (especially those with side chains).・ It has the drawback of being difficult to remove and being powerless against them. Methods for treating such biologically difficult-to-decompose organic substances include activated carbon adsorption method, chemical oxidation method, and reverse osmosis method, but all of them have problems in terms of treatment effect and economical efficiency. There is. Chlorine and ozone are typical oxidizers used in the chemical oxidation method. However, chlorine has an oxidizing power, reactivity with ammonium ions, residual chlorine due to excessive injection, or chlorine in the water to be treated. There is a problem that it reacts with the contained organic substances to produce trihalomethane and organochlorine compounds that have carcinogenicity. In addition, ozone has the drawback that both equipment and operating costs are high (for example, Takamine Kitao, Ryosuke Yahashi, Water Treatment Technology, Vol.8, No.8, 35 (1976)).

【0004】1890年代にH. J. H. Fentonによって
発見されたフェントン試薬は、過酸化水素水に第一鉄塩
を加えたもので、強い酸化力を持っていることが知られ
ている(H. J. H. Fenton, J. Chem. Soc., Vol.65, 89
9 (1894))。 過酸化水素は単位有効酸素量当りの価格
もオゾンよりもかなり低廉で、高価な設備を必要としな
いという大きな利点を持っている。しかしながら、これ
までフェントン試薬を用いた水処理であるフェントン処
理の研究が行われてきたが、この方法は反応の進行が遅
く被処理水のpHを2〜4という高い酸性条件にしなけ
ればならない、などの欠点を持っていた。また、フェン
トン処理を実用化するためには、さらに処理コストを低
減させる必要があった。
The Fenton's reagent discovered by HJH Fenton in the 1890s is a hydrogen peroxide solution to which a ferrous salt is added and is known to have strong oxidizing power (HJH Fenton, J. Chem. Soc., Vol.65, 89
9 (1894)). Hydrogen peroxide has a great advantage in that the price per unit amount of available oxygen is considerably lower than that of ozone and expensive equipment is not required. However, research on Fenton treatment, which is a water treatment using Fenton's reagent, has been conducted until now, but in this method, the progress of the reaction is slow and the pH of the water to be treated must be high acidic conditions of 2 to 4, Had drawbacks such as. Further, in order to put the Fenton treatment into practical use, it was necessary to further reduce the treatment cost.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の点に鑑
み、水質汚染に対処して、活性汚泥法では処理しにくい
農薬や有機溶剤(特にハロカーボン)、界面活性剤(特
に側鎖の付いたもの)などを温和な条件で容易にかつ迅
速に処理して安全な水を得ることができる経済的な水処
理方法の提供を目的とするものである。
SUMMARY OF THE INVENTION In view of the above points, the present invention addresses water pollution by treating pesticides and organic solvents (especially halocarbons) and surfactants (especially of side chains) that are difficult to treat by the activated sludge method. It is an object of the present invention to provide an economical water treatment method capable of easily and rapidly treating (e.g., the one attached) and mild water to obtain safe water.

【0006】[0006]

【課題を解決するための手段】この目的は本発明によれ
ば、内側に酸化チタン膜を被覆した容器に廃水などの被
処理水を入れ、過酸化水素と鉄塩を加えて加熱あるいは
無加熱で太陽光などの光を照射すること、あるいは、鉄
イオンを添加した酸化チタン膜を内側に被覆した容器に
被処理水と過酸化水素を入れて加熱あるいは無加熱で光
を照射することによって達成される。
According to the present invention, the object of the invention is to put water to be treated such as waste water in a container coated with a titanium oxide film, and add hydrogen peroxide and iron salt to heat or not heat. It is achieved by irradiating light such as sunlight with, or by putting water to be treated and hydrogen peroxide in a container coated with an iron ion-added titanium oxide film inside and irradiating with or without heating. To be done.

【0007】本発明に用いられる容器の材質は、必要な
強度を持っていればコンクリート、ガラス、プラスチッ
ク、セラミックス、金属など、何でもよい。また、本発
明に用いられる容器は透明であっても不透明であっても
よいが、容器内側に被覆した酸化チタン膜が無色透明の
場合は、容器も透明の方が光が外側から壁を透過して酸
化チタン膜に入射できるため、好都合である。
The container used in the present invention may be made of any material such as concrete, glass, plastic, ceramics and metal as long as it has the required strength. The container used in the present invention may be transparent or opaque, but when the titanium oxide film coated on the inside of the container is colorless and transparent, the transparent container also allows light to pass through the wall from the outside. This is convenient because it can be incident on the titanium oxide film.

【0008】本発明に用いられる容器の形状は、角柱
状、円柱状、球状、円錐状、瓢箪型、ラグビーボール型
など、どのような形であってもよい。また、容器が閉じ
た形であっても、蓋があってもなくてもよく、円管状や
角管状で反応液が流れ出すような形であってもよい。
The container used in the present invention may have any shape such as a prismatic shape, a cylindrical shape, a spherical shape, a conical shape, a gourd shape or a rugby ball shape. Further, the container may be closed, may or may not have a lid, and may be in the shape of a circular tube or a rectangular tube so that the reaction liquid flows out.

【0009】本発明に用いられる内側に酸化チタン膜を
被覆した容器は、四塩化チタンとアルコールとの反応に
よって得られるチタンのアルコキシドからゾル−ゲル法
によってゲルを作り、ディップコーティング法やスピン
コーティング法、塗布法などによって容器の内側にコー
トした後、焼成して製作してもよいし、チタン製の容器
の内側をガス炎などで加熱・酸化して酸化チタンにして
製作してもよい。また超微粒子の酸化チタンの懸濁液を
ディップコーティング法やスピンコーティング法、塗布
法などによって容器の内側にコートした後、焼成して製
作してもよい。その時の焼成温度は500℃程度が最も
好ましい。さらに、上述の方法によって製造した酸化チ
タンを被覆した板あるいは酸化チタン板を組み立てて、
容器を製作してもよい。
The container coated with a titanium oxide film used in the present invention is prepared by a sol-gel method from a titanium alkoxide obtained by the reaction of titanium tetrachloride and alcohol, and is subjected to a dip coating method or a spin coating method. It may be manufactured by coating the inside of the container by a coating method or the like and then firing it, or by heating and oxidizing the inside of the container made of titanium with a gas flame or the like to form titanium oxide. Alternatively, it may be manufactured by coating the inside of the container with a suspension of ultrafine particles of titanium oxide by a dip coating method, a spin coating method, a coating method, or the like. The firing temperature at that time is most preferably about 500 ° C. Furthermore, by assembling a plate or titanium oxide plate coated with titanium oxide produced by the above method,
The container may be manufactured.

【0010】こうして得られた、内側に酸化チタン膜を
被覆した容器に、廃水などの被処理水を入れ、過酸化水
素と鉄塩を加えて太陽光などの光を照射すると、被処理
水に含まれていた有機物が速やかに分解され、炭酸ガス
と水などに完全酸化される。フェントン試薬の場合は過
酸化水素水に第一鉄塩を加えなければならないが、本発
明による方法では第一鉄塩だけでなく第二鉄塩でも第一
鉄塩と第二鉄塩の混合物でも使用することができる。こ
の場合、用いられる鉄塩としては、硫酸塩、硝酸塩、炭
酸塩、酢酸塩、アンモニウム塩、塩化物や臭化物などの
ハロゲン化物など、いろいろな塩が挙げられるが、硝酸
塩や硫酸塩が特に好ましい。また、本発明に用いられる
鉄塩は無水塩であっても含水塩であってもよい。硫酸第
二鉄などの鉄塩は、安価で環境に無害で取扱いが容易と
いう利点を持っている。
The water to be treated such as waste water is placed in the container thus obtained and coated with a titanium oxide film, and hydrogen peroxide and iron salts are added to the container to irradiate it with light such as sunlight. The contained organic matter is rapidly decomposed and completely oxidized into carbon dioxide gas and water. In the case of the Fenton's reagent, the ferrous salt must be added to the hydrogen peroxide solution, but in the method according to the present invention, not only the ferrous salt but also the ferric salt or the mixture of the ferrous salt and the ferric salt is used. Can be used. In this case, examples of the iron salt used include various salts such as a sulfate, a nitrate, a carbonate, an acetate, an ammonium salt, and a halide such as chloride and bromide, and a nitrate and a sulfate are particularly preferable. The iron salt used in the present invention may be an anhydrous salt or a hydrated salt. Iron salts such as ferric sulfate have the advantages of being inexpensive, harmless to the environment, and easy to handle.

【0011】本発明に用いられる鉄イオンは、二価のイ
オンであっても三価のイオンであってもよい。本発明に
用いられる、鉄イオンを添加した酸化チタン膜を内側に
被覆した容器は、上述の方法によって得られた、酸化チ
タン膜を被覆した容器を、第一鉄塩または第二鉄塩また
はそれらの混合物の水溶液に浸した後、乾燥して製作し
てもよい。また、チタンのアルコキシドからゾル−ゲル
法によって作ったゲルに鉄塩またはその水溶液を添加
し、ディップコーティング法やスピンコーティング法、
塗布法などによって容器の内側にコートした後、焼成し
て製作してもよいし、超微粒子の酸化チタンの懸濁液に
鉄塩またはその水溶液を添加し、ディップコーティング
法やスピンコーティング法、塗布法などによって容器の
内側にコートした後焼成して製作してもよい。その時の
焼成温度は500℃程度が最も好ましい。
The iron ions used in the present invention may be divalent ions or trivalent ions. The container used in the present invention, which is coated with an iron ion-added titanium oxide film on the inside, is obtained by the above-mentioned method, and the container coated with the titanium oxide film is a ferrous salt or ferric salt or those. It may be manufactured by immersing the mixture in an aqueous solution of the mixture and then drying. Further, iron salt or an aqueous solution thereof is added to a gel made by a sol-gel method from titanium alkoxide, and a dip coating method or a spin coating method,
It may be manufactured by coating on the inside of the container by a coating method or the like and then baking it, or by adding an iron salt or its aqueous solution to a suspension of ultrafine titanium oxide, dip coating method, spin coating method, coating It may be manufactured by coating the inside of the container by a method and then firing. The firing temperature at that time is most preferably about 500 ° C.

【0012】こうして得られた、鉄イオンを添加した酸
化チタン膜をその内側に被覆した容器に、廃水などの被
処理水を入れ、過酸化水素を加えて太陽光などの光を照
射すると、被処理水に含まれていた有機物が速やかに分
解され、炭酸ガスと水などに完全酸化される。この場合
は、鉄イオンが酸化チタン膜に含まれており、過酸化水
素も最終的には水に変わるため、処理された水は濾過な
どの操作がいらず、そのまま利用できる。
When water to be treated such as waste water is placed in a container obtained by coating the titanium oxide film to which iron ions have been added, the water to be treated is irradiated with light such as sunlight when hydrogen peroxide is added thereto. Organic substances contained in the treated water are rapidly decomposed and completely oxidized into carbon dioxide gas and water. In this case, iron ions are contained in the titanium oxide film, and hydrogen peroxide is finally converted into water, so that the treated water can be used as it is without any operation such as filtration.

【0013】本発明に用いられる光の光源としては、太
陽や白熱灯、蛍光灯、ハロゲンランプ、キセノンラン
プ、水銀灯、UVランプなどが挙げられる。照射する光
は可視光のような波長の長い光でもよいが、水の処理速
度を上げたい場合には紫外線など、短波長の光を多く含
む光を用いてもよい。光の照射は、不透明容器の場合に
は容器の内部あるいは開口部から行い、透明容器の場合
には容器の内部あるいは開口部、外側から行う。このと
き、光の照射と同時に加熱を行うと処理速度を上げるこ
とができるが、その温度は70℃程度が最も好ましい。
また、その際、攪拌を行うと処理速度をさらに上げるこ
とができる。
Examples of light sources used in the present invention include the sun, incandescent lamps, fluorescent lamps, halogen lamps, xenon lamps, mercury lamps and UV lamps. The light to be irradiated may be light having a long wavelength such as visible light, but light including a large amount of light having a short wavelength such as ultraviolet light may be used to increase the treatment speed of water. The light irradiation is performed from the inside or the opening of the container in the case of an opaque container, and from the inside or the opening or the outside of the container in the case of a transparent container. At this time, the processing speed can be increased by heating at the same time as the irradiation of light, but the temperature is most preferably about 70 ° C.
Further, at that time, if stirring is performed, the processing speed can be further increased.

【0014】本発明で用いられる過酸化水素の添加量
は、被処理水に含まれている有機物が炭酸ガスや水など
に無機化される反応式から化学量論的に求められる。フ
ェントン処理の場合は無駄にて反応して失われてしまう
過酸化水素が多いので、それよりもかなり過剰の過酸化
水素が必要であるが、酸化チタン膜を用いる本発明の方
法では被処理水に含まれている有機物の分解反応が効率
的に行われるので、過酸化水素の添加量はほぼ化学量論
量でよい。さらに反応効率を上げるためには、マグネシ
ウムやニオブ、チタン、鉄などをドープした酸化チタン
膜を用いてもよいし、さらに色素や白金膜などをコート
してもよい。また、フェントン試薬の場合は、過酸化水
素水に添加する第一鉄塩の量は過酸化水素の添加量と等
モルであるが、本発明による方法では鉄塩の添加量はそ
れよりもかなり少なくてよい。廃水などの被処理水は既
に鉄イオンを含んでいることが多いので、鉄塩の添加が
必要ないこともある。
The addition amount of hydrogen peroxide used in the present invention is stoichiometrically determined from a reaction formula in which organic matter contained in water to be treated is mineralized into carbon dioxide gas or water. In the case of the Fenton treatment, since a large amount of hydrogen peroxide is lost by reaction in vain, a considerably excess amount of hydrogen peroxide is required, but in the method of the present invention using a titanium oxide film, the water to be treated is treated. Since the decomposition reaction of the organic substances contained in is efficiently performed, the amount of hydrogen peroxide added may be approximately stoichiometric. In order to further increase the reaction efficiency, a titanium oxide film doped with magnesium, niobium, titanium, iron or the like may be used, or a dye or a platinum film may be coated. Further, in the case of Fenton's reagent, the amount of ferrous salt added to the hydrogen peroxide solution is equimolar to the amount of hydrogen peroxide added, but in the method according to the present invention, the amount of iron salt added is considerably higher than that. It can be small. Since treated water such as waste water often already contains iron ions, it may not be necessary to add iron salts.

【0015】[0015]

【実施例】本発明の実施例の内で特に代表的なものを以
下に示す。
EXAMPLES Among the examples of the present invention, particularly representative ones are shown below.

【0016】実施例1 有機リン系の農薬であるジエチルベンジルホスフォナー
トの5ミリモル/lの濃度の水溶液を、内側に酸化チタ
ン膜を被覆したパイレックスガラス製容器に入れ、0.
2モル/lの過酸化水素と0.01モル/lの硝酸第二
鉄を添加し、マグネチックスターラーで攪拌しながら、
500Wのキセノンランプの光を30分間照射した。得
られた反応液のTOC値を全有機炭素計を用いて分析し
た結果、反応液のTOC値は98%減少していた。フェ
ントン試薬を用いて光を照射しない場合は、TOC値は
40%しか減少していなかった。他の有機リン系の農薬
である4−ニトロフェニルジエチルホスフェート(パラ
オキソン)や、ジエチル−p−ニトロフェニル チオホ
スフェート(パラチオン)、O,O−ジメチル−S−
(1,2−ジカルベトキシエチル)ホスフォロジチオエ
ート(マラチオン)の場合も、同様の結果が得られた。
Example 1 An aqueous solution of diethylbenzylphosphonate, which is an organophosphorus pesticide, at a concentration of 5 mmol / l was placed in a Pyrex glass container having a titanium oxide film coated on the inside thereof.
While adding 2 mol / l hydrogen peroxide and 0.01 mol / l ferric nitrate, stirring with a magnetic stirrer,
The light of a 500 W xenon lamp was irradiated for 30 minutes. As a result of analyzing the TOC value of the obtained reaction solution using a total organic carbon meter, the TOC value of the reaction solution was reduced by 98%. When the Fenton's reagent was not used for light irradiation, the TOC value was reduced by only 40%. Other organophosphorus pesticides such as 4-nitrophenyl diethyl phosphate (paraoxon), diethyl-p-nitrophenyl thiophosphate (parathion), O, O-dimethyl-S-
Similar results were obtained with (1,2-dicarbetoxyethyl) phosphorodithioate (malathion).

【0017】実施例2 クリーニング業者から排出されるクリーニング廃液に含
まれる洗剤(アルキルベンゼンスルホン酸)の一般的な
濃度である70ppmの濃度のアルキルベンゼンスルホ
ン酸水溶液を、内側に酸化チタン膜を被覆したパイレッ
クスガラス製容器に入れ、110ppmの過酸化水素と
720ppmの硫酸第二鉄を添加し、マグネチックスタ
ーラーで攪拌しながら太陽光を20分間照射した。得ら
れた反応液のTOC値(Total Organic Carbon)を全有
機炭素計を用いて、また、アルキルベンゼンスルホン酸
の濃度をメチレンブルー法によって分析した。その結
果、反応液のアルキルベンゼンスルホン酸の濃度は10
ppmに減り、TOC値も90%減少していた。
Example 2 Pyrex glass having a titanium oxide film coated on the inside thereof with an aqueous solution of alkylbenzene sulfonic acid having a concentration of 70 ppm, which is a general concentration of a detergent (alkylbenzene sulfonic acid) contained in a cleaning waste liquid discharged from a cleaning company. The mixture was placed in a container, 110 ppm of hydrogen peroxide and 720 ppm of ferric sulfate were added, and sunlight was irradiated for 20 minutes while stirring with a magnetic stirrer. The TOC value (Total Organic Carbon) of the obtained reaction solution was analyzed using a total organic carbon meter, and the concentration of alkylbenzenesulfonic acid was analyzed by the methylene blue method. As a result, the concentration of alkylbenzene sulfonic acid in the reaction solution was 10
It was reduced to ppm and the TOC value was also reduced by 90%.

【0018】実施例3 内側に酸化チタン膜を被覆した石英ガラス製の円管を硫
酸第一鉄アンモニウムの10%溶液に浸して乾燥した
後、その中を染料の原料である2,4−ジメチルアニリ
ンの5ミリモル/lの濃度の水溶液に0.2モル/lの
過酸化水素を添加した50℃の溶液をゆっくり流下させ
ながら、外側から500Wのキセノンランプの光を照射
した。得られた反応液のTOC値を全有機炭素計を用い
て分析した結果、反応液のTOC値は90%減少してい
た。
Example 3 A quartz glass circular tube coated with a titanium oxide film on the inside was dipped in a 10% ferrous ammonium sulfate solution and dried, and then, the content thereof was 2,4-dimethyl as a raw material for dye. While slowly flowing down a solution of aniline having a concentration of 5 mmol / l and 0.2 mol / l of hydrogen peroxide at 50 ° C., 500 W of a xenon lamp was irradiated from the outside. As a result of analyzing the TOC value of the obtained reaction solution using a total organic carbon meter, the TOC value of the reaction solution was reduced by 90%.

【0019】実施例4 硝酸第一鉄を添加した酸化チタン膜をその内側に被覆し
たアルミナ容器に、活性汚泥処理が困難なエチレンジア
ミン四酢酸二ナトリウムの1%溶液を入れ、2%の過酸
化水素を添加し、攪拌しながら、435nmよりも短波
長の光をカットフィルターで除いた500Wのキセノン
ランプの光を上から1時間照射した。得られた反応液の
TOC値を全有機炭素計を用いて、また、COD値(化
学的酸素要求量)をCOD測定装置によって分析した結
果、反応液のTOC値は85%、また、COD値も95
%減少していた。
Example 4 A 1% solution of disodium ethylenediaminetetraacetate, which is difficult to treat with activated sludge, was placed in an alumina container whose inside was coated with a titanium oxide film containing ferrous nitrate. Was added, and with stirring, the light of a 500 W xenon lamp in which light having a wavelength shorter than 435 nm was removed by a cut filter was irradiated from above for 1 hour. The TOC value of the obtained reaction solution was analyzed by using a total organic carbon meter, and the COD value (chemical oxygen demand) was analyzed by a COD measuring device. As a result, the TOC value of the reaction solution was 85%, and the COD value was Also 95
% Had been reduced.

【0020】実施例5 内側に酸化チタン膜を被覆したパイレックスガラス製容
器を2g/lの塩化白金酸カリウムのエタノール水溶液
に入れ、マグネチックスターラーで攪拌しながら、10
0Wの水銀ランプの光を4時間照射し、酸化チタン膜の
表面に白金をコートした。この容器にトリハロメタンの
一種であるクロロホルムの100ppmの濃度の水溶液
を入れ、30ppmの過酸化水素と20ppmの硫酸第
二鉄を添加して、マグネチックスターラーで攪拌しなが
ら太陽光を15分間照射した。得られた反応液のTOC
値を全有機炭素計を用いて分析した結果、反応液のTO
C値は95%減少していた。
Example 5 A Pyrex glass container coated with a titanium oxide film on the inside was placed in a 2 g / l aqueous solution of potassium chloroplatinate in ethanol and stirred with a magnetic stirrer for 10 minutes.
The surface of the titanium oxide film was coated with platinum by irradiating it with light from a 0 W mercury lamp for 4 hours. An aqueous solution of chloroform, which is a type of trihalomethane, having a concentration of 100 ppm was placed in this container, 30 ppm of hydrogen peroxide and 20 ppm of ferric sulfate were added, and sunlight was irradiated for 15 minutes while stirring with a magnetic stirrer. TOC of the obtained reaction solution
As a result of analyzing the values using a total organic carbon meter, the TO
The C value was reduced by 95%.

【0021】[0021]

【発明の効果】本発明は以上説明したように、世界的な
水質汚染に対処して、活性汚泥法では処理しにくい農薬
や有機溶剤(特にハロカーボン)、界面活性剤(特に側
鎖の付いたもの)などを温和な条件で容易にかつ迅速に
処理できる経済的な水処理方法を提供するものである。
内側に酸化チタン膜を被覆した容器に廃水などの被処理
水を入れ、過酸化水素と鉄塩を添加して加熱あるいは無
加熱で太陽光などの光を照射すること、あるいは、鉄イ
オンを添加した酸化チタン膜を内側に被覆した容器に被
処理水と過酸化水素を入れて加熱あるいは無加熱で光を
照射することにより、被処理水に含まれていた有機物を
速やかに炭酸ガスと水などに分解し、浄化された水を得
ることができる。また現在、浄水場では通常、原水に含
まれるアンモニア性窒素を取り除くため、塩素を投入し
ているが、原水中に含まれる有機物との反応によって発
ガン性を持つトリハロメタンや有機塩素化合物を生成す
るため、大きな問題となっている。本発明の方法では、
原水に含まれるアンモニア性窒素は窒素ガスなどになっ
て飛散してゆくため、塩素を投入する必要がない。した
がって、原水中に含まれる有機物と塩素との反応によっ
て生成する発ガン性のあるトリハロメタンや有機塩素化
合物などを含有しない、安全性の高い水が得られる。本
発明による水処理プロセスを行って難分解性の物質を分
解した後、引き続いて、活性汚泥法による水処理を行っ
ても効果が大きい。
INDUSTRIAL APPLICABILITY As described above, the present invention copes with global water pollution, and pesticides and organic solvents (especially halocarbons) that are difficult to treat by the activated sludge method, and surfactants (especially those with side chains). The present invention provides an economical water treatment method capable of easily and quickly treating water) under mild conditions.
Put water to be treated such as waste water in a container coated with titanium oxide film inside, add hydrogen peroxide and iron salt and irradiate light such as sunlight with or without heating, or add iron ion Treated water and hydrogen peroxide are placed in a container coated with a titanium oxide film inside and irradiated with light with or without heating to quickly remove organic substances contained in the treated water such as carbon dioxide gas and water. It can be decomposed into water and purified water can be obtained. At present, water purification plants usually use chlorine to remove ammoniacal nitrogen contained in raw water.However, it reacts with organic substances contained in raw water to produce carcinogenic trihalomethanes and organochlorine compounds. Therefore, it is a big problem. In the method of the present invention,
The ammonia nitrogen contained in the raw water becomes nitrogen gas and scatters, so it is not necessary to add chlorine. Therefore, highly safe water containing no carcinogenic trihalomethane or organochlorine compound produced by the reaction of chlorine with the organic matter contained in the raw water can be obtained. The effect is large even if the water treatment process according to the present invention is carried out to decompose the hardly decomposable substance, and subsequently the water treatment by the activated sludge method is carried out.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内側に酸化チタン膜を被覆した容器に被
処理水と過酸化水素と鉄塩を入れ、光を照射することを
特徴とする水処理方法。
1. A water treatment method comprising irradiating light with water to be treated, hydrogen peroxide and iron salt being placed in a container having a titanium oxide film coated inside.
【請求項2】 鉄イオンを添加した酸化チタン膜を内側
に被覆した容器に、被処理水と過酸化水素を入れ、光を
照射することを特徴とする水処理方法。
2. A water treatment method characterized in that water to be treated and hydrogen peroxide are placed in a container whose inside is coated with a titanium oxide film to which iron ions have been added, and the container is irradiated with light.
【請求項3】 光を照射すると同時に加熱することを特
徴とする請求項1または2記載の水処理方法。
3. The water treatment method according to claim 1 or 2, wherein heating is performed at the same time as irradiation with light.
JP27327391A 1991-09-25 1991-09-25 Water treatment method Pending JPH0576877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27327391A JPH0576877A (en) 1991-09-25 1991-09-25 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27327391A JPH0576877A (en) 1991-09-25 1991-09-25 Water treatment method

Publications (1)

Publication Number Publication Date
JPH0576877A true JPH0576877A (en) 1993-03-30

Family

ID=17525544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27327391A Pending JPH0576877A (en) 1991-09-25 1991-09-25 Water treatment method

Country Status (1)

Country Link
JP (1) JPH0576877A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169146A (en) * 2004-12-14 2006-06-29 Daikin Ind Ltd Method for chain shortening of fluorine-containing organic acid compound
CN102992478A (en) * 2012-11-27 2013-03-27 中国科学院沈阳应用生态研究所 Method for relieving acidic suppression of methanogenic phase during anaerobic digestion of organic wastewater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255117A (en) * 1988-08-22 1990-02-23 Toyo Mach & Metal Co Ltd Method and apparatus for displaying load output of injection molding machine
JPH04244293A (en) * 1990-08-24 1992-09-01 Ems Inventa Ag Method to contact-oxidize organic substance in waste water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255117A (en) * 1988-08-22 1990-02-23 Toyo Mach & Metal Co Ltd Method and apparatus for displaying load output of injection molding machine
JPH04244293A (en) * 1990-08-24 1992-09-01 Ems Inventa Ag Method to contact-oxidize organic substance in waste water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169146A (en) * 2004-12-14 2006-06-29 Daikin Ind Ltd Method for chain shortening of fluorine-containing organic acid compound
CN102992478A (en) * 2012-11-27 2013-03-27 中国科学院沈阳应用生态研究所 Method for relieving acidic suppression of methanogenic phase during anaerobic digestion of organic wastewater

Similar Documents

Publication Publication Date Title
JP2889778B2 (en) Water purification law
US7491335B2 (en) Removal of arsenic from water with oxidized metal coated pumice
Brisset et al. Acidity control of plasma-chemical oxidation: applications to dye removal, urban waste abatement and microbial inactivation
SE7410493L (en)
CA2640071A1 (en) Oxidative treatment method
Kaushik et al. Arsenic removal using advanced reduction process with dithionite/UV—a kinetic study
JP2020124701A (en) Method for removal of chloride in water
Bedner et al. Making chlorine greener: investigation of alternatives to sulfite for dechlorination
JPH0576877A (en) Water treatment method
US3929636A (en) Process for conditioning effluent contaminated by aldehyde compounds
JP2001029944A (en) Method for removing nitrogen compound in water
JPH05253581A (en) Treatment of waste water
CN108975505A (en) Sewage water treatment method that is a kind of while removing nitrite and ammonia nitrogen
Genç Photocatalytic oxidation of a reactive azo dye and evaluation of the biodegradability of photocatalytically treated and untreated dye
Gorre et al. Removal of ammoniacal nitrogen by using albite, activated carbon and resin
Zheng et al. Effects of thiocyanate on the formation of free cyanide during chlorination and ultraviolet disinfection of publicly owned treatment works secondary effluent
JPH05253580A (en) Treatment of waste water
RU2057992C1 (en) Waste solution treatment method
JP7117809B1 (en) Method for producing treated concrete sludge
Aratani et al. The removal of heavy metal, phosphate, and COD substances from wastewater by the lime sulfurated solution (calcium polysulfide) process.
Grebenyuk et al. New ecological problems of desalting and water re-use
Karlsson et al. UV-light induced mineralization of organic matter bound chlorine in Lake Bjän, Sweden––a laboratory study
Yadav et al. Decolourization of dye and textile effluent using advanced oxidation processes
Tao et al. Foreword, Ozone Symposium
Suryawanshi et al. Degradation of Methylene Blue Dye using a Photochemical Reactor