JPH0576791B2 - - Google Patents

Info

Publication number
JPH0576791B2
JPH0576791B2 JP58176102A JP17610283A JPH0576791B2 JP H0576791 B2 JPH0576791 B2 JP H0576791B2 JP 58176102 A JP58176102 A JP 58176102A JP 17610283 A JP17610283 A JP 17610283A JP H0576791 B2 JPH0576791 B2 JP H0576791B2
Authority
JP
Japan
Prior art keywords
region
emitter
collector
contact
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58176102A
Other languages
Japanese (ja)
Other versions
JPS5980978A (en
Inventor
Maikeru Howaito Ansonii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UK Secretary of State for Defence
Original Assignee
UK Secretary of State for Defence
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UK Secretary of State for Defence filed Critical UK Secretary of State for Defence
Publication of JPS5980978A publication Critical patent/JPS5980978A/en
Publication of JPH0576791B2 publication Critical patent/JPH0576791B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は赤外線検出器、特に光導電形検出器の
構造及び使用に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the construction and use of infrared detectors, particularly photoconductive detectors.

テルル化カドミウム水銀(CMT)合金材料で
形成された従来の赤外線検出器は、簡単な二接触
光導電体も単一p−n形ホモ接合ホトダイオード
も共に良く知られている。最近の研究開発では光
導電形素子に含まれる遅延積分機能(time−
delay−integration functions)が注視されてき
た。例えば英国特許第1488258号では検出器がス
トリツプ状であり、ホトキヤリアのドリフト度が
被走査像の速度に適合する。
Conventional infrared detectors formed from cadmium mercury telluride (CMT) alloy materials, both simple two-contact photoconductors and single p-n homojunction photodiodes, are well known. In recent research and development, the delay integration function (time−
delay-integration functions) have been attracting attention. For example, in GB 1488258 the detector is strip-shaped and the degree of drift of the photocarrier is adapted to the speed of the scanned image.

従来の光導電体、特に走査しない「ステアリン
グ(staring)」式用途に使用される光導電体の大
きな問題は入力光束が全く存在しない時でさえ定
在DC出力(暗電流)存在することにある。従来
の長波長真性光導電体の場合はインピーダンスが
低いため通常は定在電流が数ボルトのバイアスに
対応する数ミリアンペアである。比較例として、
バツクグランド光束信号は数ミリボルト、要求さ
れる光信号は数マイクロボルトである。この暗電
流は、容量性の出力結合(capacitative output
coupling)を使用し得る走査システムの場合を除
いては、安定した状態で適切に控除することが極
めて難しい。
A major problem with conventional photoconductors, especially those used in non-scanning "staring" applications, is the presence of a standing DC output (dark current) even when no input flux is present. . Due to the low impedance of conventional long-wavelength intrinsic photoconductors, the standing current is typically a few milliamps, corresponding to a bias of several volts. As a comparative example,
The background flux signal is a few millivolts and the required optical signal is a few microvolts. This dark current is caused by capacitive output coupling.
It is extremely difficult to deduct properly on a steady-state basis, except in the case of scanning systems that can use a coupling.

光起電形検出器、例えばホトダイオードはバイ
アスを必要としない、消費電力が余り多くない、
暗電流がない、という利点を有している。接合形
ダイオード検出器はしかし乍ら製造が難しく、且
つ希少で殆どないp形CMTを大量に必要とする。
この種の検出器はまた、軍事用の使用環境で一般
的にみられる高温保管条件の他長期作動に際して
も安定性に問題がある。
Photovoltaic detectors, such as photodiodes, do not require bias, do not consume much power,
It has the advantage of no dark current. Junction diode detectors, however, are difficult to manufacture and require large amounts of rare and scarce p-type CMT.
This type of detector also has stability issues during long-term operation as well as the high temperature storage conditions commonly found in military environments.

本発明の目的は高インピーダンスの長波長真性
光導電形検出器を提供することにある。インピー
ダンスが高ければ暗電流の問題が最小限に抑えら
れるからである。
It is an object of the present invention to provide a high impedance long wavelength intrinsic photoconductive detector. This is because the problem of dark current is minimized if the impedance is high.

本発明によれば、前述の目的は、赤外線に対し
て感光性を有する材料のn形半導体エミツタ領域
と、コレクタ領域と、エミツタ領域とコレクタ領
域のそれぞれと接触するエミツタコンタクトとコ
レクタコンタクトとを備えた光導電形赤外線検出
器であつて、該検出器が更に、前記エミツタ領域
と前記コレクタ領域を接続するバリヤ領域を含ん
でおり、該バリヤ領域が、p形半導体材料を含
み、エミツタ材料の価電子帯とほぼ共通な価電子
帯を有しており、エミツタ材料より広いバンドギ
ヤツプを有し、ヘテロ接合伝導帯不連続性を前記
エミツタ領域に与え、エミツタ領域およびコレク
タ領域の間の電子流には障壁となるが、正孔流は
ほとんど妨げられないように調整されていること
を特徴とする光導電形赤外線検出器によつて達成
される。
According to the invention, the aforementioned object is to provide an n-type semiconductor emitter region of a material sensitive to infrared radiation, a collector region, an emitter contact and a collector contact in contact with the emitter region and the collector region, respectively. a photoconductive infrared detector comprising: a barrier region connecting the emitter region and the collector region; the barrier region comprising a p-type semiconductor material; It has a valence band that is almost common to the valence band, has a wider band gap than the emitter material, and provides a heterojunction conduction band discontinuity to the emitter region, which affects the electron flow between the emitter region and the collector region. This is achieved by means of a photoconductive infrared detector which is characterized in that it is regulated in such a way that the hole flow is substantially unimpeded, although it is a barrier.

バリヤ領域がエミツタからの多数キヤリヤの流
動を阻止するため、該検出器は高いインピーダン
スを示す。しかし乍ら光を照射し且つ適切にバイ
アスすれば少数キヤリヤがこのバリヤ領域を自由
に通過するため光電流が発生し、その結果該検出
器は光導電体として機能することになる。
The detector exhibits a high impedance because the barrier region prevents the flow of majority carriers from the emitter. However, if illuminated and properly biased, minority carriers will freely pass through this barrier region and a photocurrent will be generated, causing the detector to function as a photoconductor.

エミツタ材料及びバリヤ材料は同一化学種の三
元合金であるのが好ましく、例えばテルル化カド
ミウム水銀、又はヒ化インジウムガリウム、又は
ヒ化ガリウムアルミニウムをn形/n形、n形/
p形、又はp形/n形の如く組合せるとよい。但
しバリヤ材料は、エミツタ材料とバリヤ材料とが
同一の又はほぼ同一の価電子帯を有する限り、異
なる化学種の組成物であつてもよい。該バリヤ材
料は前記三元合金と共通の陰イオンをもつ二元合
金又は化合物であつてもよく、例えばテルル化カ
ドミウム水銀とテルル化カドミウム、ヒ化ガリウ
ムアルミニウムとヒ化ガリウム、又はヒ化インジ
ウムガリウムとヒ化インジウムの如く形成し得
る。
The emitter material and the barrier material are preferably ternary alloys of the same chemical species, for example cadmium mercury telluride, or indium gallium arsenide, or gallium aluminum arsenide, n-type/n-type, n-type/
A combination such as p-type or p-type/n-type is preferable. However, the barrier material may be a composition of different species as long as the emitter material and the barrier material have the same or nearly the same valence band. The barrier material may be a binary alloy or compound having a common anion with the ternary alloy, such as cadmium mercury telluride and cadmium telluride, gallium aluminum arsenide and gallium arsenide, or indium gallium arsenide. and indium arsenide.

コレクタ領域はエミツタ材料と同じ多数キヤリ
ヤタイプの材料でバリヤ材料と共通の又は少なく
ともこれに近いレベルの価電子帯リミツトをもつ
材料により形成し得る。これに代えて、エミツタ
材料と逆の多数キヤリヤタイプの高仕事関数金属
又は同タイプの強くドープした半導体材料を用い
てもよい。金属材料製の場合コレクタ領域はコレ
クタコンタクト自体により構成される。
The collector region may be formed of the same majority carrier type material as the emitter material and with a valence band limit at a level common to, or at least close to, that of the barrier material. Alternatively, a high work function metal of the majority carrier type or a heavily doped semiconductor material of the same type as the emitter material may be used. In the case of metallic material, the collector region is constituted by the collector contact itself.

該検出器の一形態として、エミツタ、バリヤ及
びコレクタの各領域が夫々n形、p形及びn形の
材料層で構成されるプレーナ構造がある。この構
造ではエミツタ領域とコレクタ領域とを同一の、
従つてバンドギヤツプ特性の等しい材料で形成し
得る。このタイプの検出器は照射状態で非線形動
作特性と示し、従つて交流バイアス源又は被変調
ACバイアス源を備えた回路内に具備し得る。こ
の場合はコレクタに続けて積分器、調波フイルタ
又は復調機を配置するとよい。このような形式の
検出器の変形構造では、エミツタ材料とコレクタ
材料とが同一多数キヤリアタイプの材料であり、
一方の材料が3から5μmのバンド内の波長をも
つ赤外線の検出に適した組成を有し、他方が8か
ら14μmのバンド内の波長をもつ赤外線の検出に
適した組成を有する。従つてこの検出器は一度に
1つのバンドに対して応答性を示し、この応答性
はバイアス方向に依存する。この種の検出器は従
つてDCバイアス、即ちウエーブバンドを選択す
べく一方向から他方向へとスイツチできるバイア
ス源を備えた回路に具備し得る。或いは、ACバ
イアス源を有し且つコレクタに接続された位相感
知増幅器又はゲート増幅器を備えた回路でも使用
し得る。ゲートによる制御を別個に受ける回路は
各チヤネルの個々のバンドからデータをもつ2つ
のチヤネル出力を発生させる。
One form of such a detector is a planar structure in which the emitter, barrier, and collector regions are comprised of layers of n-type, p-type, and n-type material, respectively. In this structure, the emitter region and collector region are the same,
Therefore, the band gap can be made of materials with the same characteristics. This type of detector exhibits non-linear operating characteristics in the illuminated condition and therefore cannot be used with an AC bias source or modulated
It may be included in a circuit with an AC bias source. In this case, it is preferable to arrange an integrator, harmonic filter, or demodulator following the collector. In a modified structure of this type of detector, the emitter material and the collector material are the same majority carrier type material;
One material has a composition suitable for the detection of infrared radiation with a wavelength in the band of 3 to 5 μm, and the other has a composition suitable for the detection of infrared radiation with a wavelength in the band of 8 to 14 μm. The detector is therefore responsive to one band at a time, and this responsivity depends on the bias direction. A detector of this type may therefore be implemented in a circuit with a DC bias, ie a bias source that can be switched from one direction to the other to select a waveband. Alternatively, a circuit with an AC bias source and a phase sense amplifier or gate amplifier connected to the collector may be used. Separately gated circuits generate two channel outputs with data from the individual bands of each channel.

該検出器の変形例として、やはりプレーナ構造
ではあるが、異なる多数キヤリヤタイプの材料か
ら成る2つの層を有する構造がある。一方の層は
極めて広いバンドギヤツプをもつ材料から成り、
他方は検出器のエミツタ及びコレクタ領域を規定
すべく形成される。
A variant of the detector is a structure that is still planar, but has two layers of different multi-carrier type materials. One layer consists of a material with an extremely wide bandgap,
The other is formed to define the emitter and collector regions of the detector.

該検出器の別の変形例としてエミツタ領域が長
さの長い材料片で構成され、バリヤ領域及びコレ
クタ領域がこの材料片の読出し構造を構成すべく
配置されたものもある。このような検出器は走査
用光学システムの焦点面上に配置して、前記材料
片内に発生したホトキヤリヤが走査速度に適合し
た割合で移動するようバイアスし得る。このよう
にすれば信号をその場で積分できる。
Another variation of the detector is one in which the emitter region is comprised of an elongated piece of material, and the barrier and collector regions are arranged to form a readout structure for this piece of material. Such a detector may be placed on the focal plane of the scanning optical system and biased so that the photocarriers generated within the piece of material move at a rate compatible with the scanning speed. In this way, the signal can be integrated on the spot.

以下本発明を図面に示す好ましい実施例を用い
て詳述する。
The present invention will be described in detail below using preferred embodiments shown in the drawings.

第1図の光導電形赤外線検出器としての検出デ
バイス1は2個のオーミツクコンタクト3及び5
を備えており、これら接触はテルル化カドミウム
水銀(CMT)材料から成る三層構造体7の両側
に1個ずつ配置されている。三層構造体7の第1
層9は良質の単結晶から切り取つたスライスより
形成したn形のテルル化カドミウム水銀から成
り、その上の2つの層11及び13は夫々p形及
びn形のテルル化カドミウム水銀材料から成つて
いる。バリヤ領域としてのp形層11及びエミツ
タ領域としてのn形層13はスパツタリング又は
エピタキシヤル技術[蒸気相エピタキシ
(VPE)、液相エピタキシ(LPE)、モレキユラビ
ームエピタキシ(MBE)、又は化学的蒸着
(CVD)]により形成したものである。
The detection device 1 as a photoconductive infrared detector shown in FIG. 1 has two ohmic contacts 3 and 5.
These contacts are arranged one on each side of a three-layer structure 7 made of cadmium mercury telluride (CMT) material. The first of the three-layer structure 7
Layer 9 consists of n-type cadmium mercury telluride formed from slices cut from a high quality single crystal, and the two upper layers 11 and 13 consist of p-type and n-type cadmium mercury telluride material, respectively. . The p-type layer 11 as barrier region and the n-type layer 13 as emitter region are formed by sputtering or epitaxial techniques [vapor phase epitaxy (VPE), liquid phase epitaxy (LPE), molecular beam epitaxy (MBE) or chemical vapor deposition. (CVD)].

外側のコレクタ領域としてのn形層9及び13
は0.1eVまでの同等のバンドギヤツプを有してお
り(第2図参照)、8から12μmのバンドにおけ
る赤外線の検出に適したテルル化カドミウム水銀
材料から成つている(CdXHg1-XTe:x=0.20)。
これらの層9及び13のドナー濃度はいずれも5
×1014cm-3のオーダーである。約80°Kの作動温度
(液体窒素による冷却の場合など)では、真性キ
ヤリヤ濃度が通常2.5×1013cm-3、少数キヤリヤ
(正孔)濃度が1.2×1012cm-3である。n形層13
は接合の浅い光検出器の場合の如く厚みが薄い
(≦10μm)。作動中表面に集束赤外線が当てられ
るn形層13は、n形層13の表面での少数キヤ
リヤの発生−再結合を最小限にとどめる接触3を
有しており、広いバンドギヤツプを有する。接触
3は複合構造を有しており、多少広めのバンドギ
ヤツプをもつ強くドープされたn形CMTの薄層
15(例えばn±形CMTでx>0.20、10μmの厚
み)上に金属エツジ又は金属リング状の単一オー
ミツクコンタクト17を形成したもので構成され
ている。
n-type layers 9 and 13 as outer collector regions
is made of a cadmium mercury telluride material (Cd X Hg 1-X Te: x=0.20).
The donor concentrations of these layers 9 and 13 are both 5
It is on the order of ×10 14 cm -3 . At operating temperatures of about 80°K (such as with liquid nitrogen cooling), the intrinsic carrier concentration is typically 2.5×10 13 cm −3 and the minority carrier (hole) concentration is 1.2×10 12 cm −3 . n-type layer 13
The thickness is thin (≦10 μm) as in the case of a photodetector with a shallow junction. The n-type layer 13, the surface of which is illuminated by focused infrared radiation during operation, has a wide bandgap with contacts 3 that minimize the generation-recombination of minority carriers at the surface of the n-type layer 13. The contact 3 has a composite structure, consisting of a metal edge or metal ring on a thin layer 15 of strongly doped n-type CMT with a somewhat wide band gap (e.g. x > 0.20, 10 μm thickness for n±-type CMT). It is constructed by forming a single ohmic contact 17 having a shape.

中間層即ちp形層11は0.5eVまでの極めて広
いバンドギヤツプをもつテルル化カドミウム水銀
から成つている(換言すればこの層はカドミウム
強化材料で形成されている:x〜0.45)。p形層
11は価電子帯(VB)上方にn形層9及び13
と同一の又はほぼ同一のフエルミ準位(FL)を
もつ被ドープp形層である。価電子帯の状態密度
がいずれも類似しているため(組成に拘りなく正
孔有効質量は0.55)、正孔濃度はデバイス全体を
通してかなり一定している。n形層13とp形層
11との間の界面は空乏領域の無い、即ちゼロバ
イアスにおいて空間電荷層が存在しないp−n接
合部である。p形層11の厚みは、バイアス状態
におけるトンネリングと伝導性とトラツピングと
空乏状態との間の均衡を考慮して3から10μmで
ある。
The intermediate or p-type layer 11 consists of cadmium mercury telluride with a very wide bandgap of up to 0.5 eV (in other words, this layer is made of a cadmium-reinforced material: x~0.45). The p-type layer 11 has n-type layers 9 and 13 above the valence band (VB).
is a doped p-type layer with the same or nearly the same Fermi level (FL) as . Because the density of states in the valence band is similar (the effective hole mass is 0.55 regardless of composition), the hole concentration is fairly constant throughout the device. The interface between the n-type layer 13 and the p-type layer 11 is a pn junction without a depletion region, ie, without a space charge layer at zero bias. The thickness of the p-type layer 11 is 3 to 10 μm, taking into account the balance between tunneling, conductivity, trapping, and depletion state in the bias state.

この構造(第1図)では電子流の流れがエネル
ギバリヤ(第2図)によつてブロツクされる。こ
れはヘテロ構造伝導帯の不連続性によるものであ
る。しかし乍ら正孔、即ち光学的吸収プロセスの
1である光変換によりn形層13内に発声する少
数キヤリヤは全くブロツクされない。検出デバイ
ス1は次の如く光導電体として作動する。
In this structure (FIG. 1) the flow of electron current is blocked by an energy barrier (FIG. 2). This is due to the discontinuity of the heterostructure conduction band. However, holes, ie, minority carriers generated in the n-type layer 13 by light conversion, which is one of the optical absorption processes, are not blocked at all. The detection device 1 operates as a photoconductor as follows.

n形層9及び13では電子濃度が比較的高く且
つ電子移動度も大きいため、p形層11に比べて
抵抗が無視し得る程小さい。検出デバイス1に外
から加えられる電圧は全てp形層11を通して出
現する。正孔に対するバリヤが存在しないため正
孔流は流れるが、オーミツクコンタクトによつて
得られる高い濃度に比較して正孔のアベイラビリ
テイ(availability)が小さいためこの流れには
制限がある。n形層9及び13には電界が全く発
生し得ないため、拡散電流のみが流れる。オーミ
ツクコンタクト5(コレクタコンタクト)に対し
正方向にバイアスされたオーミツクコンタクト3
(エミツタコンタクト)を備えた検出デバイス1
の上方から入射光が入射すると仮定する。この場
合正孔はn形層13内に発生し、オーミツクコン
タクト3での再結合か、n形層13のバルクにお
ける再結合か、又はp形層11への転送によつて
消滅する。n形層13の幅は拡散距離(〜30μ
m)に比べて小さいため、バルク再結合プロセス
は少なくとも第1近似値まで無視し得る。光学的
に発生した正孔の濃度は熱により発生した正孔の
濃度よりかなり高いため、後者の濃度も無視し得
ることは明らかであろう。このようにバイアスし
た場合のエネルギ準位のダイヤグラムを第3図a
に示した。
Since the n-type layers 9 and 13 have a relatively high electron concentration and a high electron mobility, their resistance is negligibly small compared to the p-type layer 11. Any voltage applied externally to the detection device 1 appears through the p-type layer 11. The absence of a barrier to holes allows hole flow, but this flow is limited by the low availability of holes compared to the high concentrations provided by ohmic contacts. Since no electric field can be generated in the n-type layers 9 and 13, only a diffusion current flows. Ohmic contact 3 biased in the positive direction with respect to ohmic contact 5 (collector contact)
Detection device 1 equipped with (emitter contact)
Assume that the incident light enters from above. In this case, holes are generated in the n-type layer 13 and disappear by recombination at the ohmic contact 3, in the bulk of the n-type layer 13, or by transfer to the p-type layer 11. The width of the n-type layer 13 is the diffusion distance (~30μ
m), the bulk recombination process can be ignored, at least to a first approximation. It will be clear that since the concentration of optically generated holes is considerably higher than that of thermally generated holes, the latter concentration can also be neglected. The energy level diagram when biased in this way is shown in Figure 3a.
It was shown to.

前述の如くバイアスすると、発生したキヤリヤ
はp形層11を介して一掃される。正孔はこのp
形層11の多数キヤリヤであり、この軽くp形ド
ープした材料中においてはn形CMT内での通常
のライフタイム(1から20マイクロ秒)より長い
バイク再結合ライフタイムを有する。厳密には、
空間電荷制御電流はこの領域に流れ込むが、過度
の電界(10μm当り1ボルト、即ち103V/cm)が
与えられており且つ一般的な電流(300K及び
f/2.5の視野でのバツクランド入射光からの光
束に対応)が流れている場合には、その電界が過
度に変化することはないと理解し得る。従つて、
第1面での連続の方程式を解けば電流の流れの簡
単な説明が得られる。n形層9では小数キヤリヤ
注入により正孔が順方向バイアスされた界面に到
達し、バルクプロセスによる、又はオーミツクコ
ンタクト5における再結合の割合と、電流により
与えられる割合とのバランスがとれるまで蓄積さ
れる。
When biased as described above, the generated carriers are swept away through the p-type layer 11. The hole is this p
It is the majority carrier of the shape layer 11 and has a longer bicycle recombination lifetime in this lightly p-doped material than the typical lifetime in n-type CMTs (1 to 20 microseconds). Strictly speaking,
A space charge control current flows into this region, but with an excessive electric field (1 volt per 10 μm, or 10 3 V/cm) and a typical current (backland incident light at 300 K and f/2.5 field of view). It can be understood that if the electric field (corresponding to the luminous flux from) is flowing, the electric field will not change excessively. Therefore,
Solving the equation of continuity on the first plane provides a simple explanation of the flow of current. In the n-type layer 9, holes reach the forward biased interface by fractional carrier injection and accumulate until the rate of recombination due to the bulk process or in the ohmic contact 5 is balanced with the rate given by the current. be done.

n形層13における少数キヤリヤの発生及び分
布は、逆方向にバイアスした浅接合形ホトダイオ
ードにおける状態に極めて類似している。前述の
バツクグラウンド状態に対応する光学的発生度
は、量子効率0.9の場合、厚み10μmに対し6.8×
1020cm-3-1である。これに比べて熱による発生
度は〜5×1017cm-3-1、即ち約1/103である。従
つて熱による発生度は無視し得る。光学的に発生
したキヤリヤは、表面再結合速度Scによつて特
徴付けられ得るオーミツクコンタクト3まで拡散
するか、界面付近で再結合速度μEの表面として
出現するp形層11との界面まで拡散するか、又
はバルク内で再結合する。尚、Eはp形層11内
の電界、μは正孔の移動度を表わす。
The generation and distribution of minority carriers in n-type layer 13 is very similar to the situation in a reverse biased shallow junction photodiode. The optical incidence corresponding to the background state mentioned above is 6.8× for a thickness of 10 μm when the quantum efficiency is 0.9.
10 20 cm -3- sec1 . In comparison, the degree of generation due to heat is ~5×10 17 cm -3 sec -1 , or about 1/10 3 . Therefore, the degree of generation due to heat can be ignored. The optically generated carriers diffuse to the ohmic contact 3, which can be characterized by a surface recombination rate Sc, or to the interface with the p-type layer 11, which appears as a surface with a recombination rate μE near the interface. or recombine within the bulk. Note that E represents the electric field within the p-type layer 11, and μ represents the mobility of holes.

μ=300cm2/ボルト秒、E=103ボルト/cmの場
合μE=3×105cm/秒である。n形層13及びp
形層11間の界面における除去の一定実効時間は
拡散効果を無視すれば3×10-4/μE=10-9秒とな
る。これは表面に到達するまでの拡散時間、即ち
約3×10-8秒だけ制限されるが、この時間はバル
ク再結合ライフタイムに比べればかなり短い。
Sc≦3×105cm/秒の場合キヤリヤφの大部分は
p形層11に転送される。この場合はJ=φq
あり、J=qpμEからp形層11の正孔濃度pが
求められる。前述の条件下では電流密度を
0.1A/cm2とすればp〜1.1×1013cm-3である。比較
例として、非空乏状のp形層11の正孔濃度は〜
1.3×1012cm-3である。p形層11の高電界では熱
により発生したこれらキヤリヤは信号電流に対し
て無視し得る程度まで減少する。
If μ=300 cm 2 /volt sec and E=10 3 volt/cm then μE=3×10 5 cm/sec. n-type layer 13 and p
The constant effective time for removal at the interface between the shaped layers 11 is 3×10 −4 /μE=10 −9 seconds, ignoring diffusion effects. This is limited by the diffusion time to reach the surface, approximately 3×10 -8 seconds, which is quite short compared to the bulk recombination lifetime.
When Sc≦3×10 5 cm/sec, most of the carrier φ is transferred to the p-type layer 11. In this case, J= φq , and the hole concentration p in the p-type layer 11 can be determined from J=qpμE. Under the conditions mentioned above, the current density is
If it is 0.1 A/cm 2 , then p~1.1×10 13 cm -3 . As a comparative example, the hole concentration of the non-depleted p-type layer 11 is ~
It is 1.3×10 12 cm -3 . At a high electric field in the p-type layer 11, these thermally generated carriers are reduced to a negligible extent with respect to the signal current.

n形層9ではキヤリヤ濃度は再結合度と供給度
とのバランスがとれるまでまで上昇する。この構
造の効果はキヤリヤ発生領域とキヤリヤ再結合領
域との間の区別にある。
In the n-type layer 9, the carrier concentration increases until the degree of recombination and the degree of supply are balanced. The effect of this structure is the distinction between the carrier generation region and the carrier recombination region.

少数キヤリヤがn形層9に注入されると空間電
荷減少が生じる。キヤリヤ濃度が熱平衡を越える
程上昇すると電子濃度も上昇して平衡状態を維持
する。この低バンドギヤツプ材料ではオージエ再
結合が優位を占めるが、これは少数ギヤリヤのラ
イフタイム短縮の原因となる。n形層13には抽
出電界(extraction field)により逆の効果が生
じるが、これは入射光線による過剰正孔の発生に
よつて相殺される。再結合のライフタイムを大幅
に削減するためには、過剰正孔濃度をドーピング
に応じて〜5×1014cm-3の熱平衡電子濃度にしな
ければならない。
When minority carriers are injected into the n-type layer 9, space charge reduction occurs. When the carrier concentration increases beyond thermal equilibrium, the electron concentration also increases to maintain an equilibrium state. Auger recombination predominates in this low bandgap material, which shortens the lifetime of minority gears. An opposite effect occurs in the n-type layer 13 due to the extraction field, but this is offset by the generation of excess holes by the incident light beam. In order to significantly reduce the recombination lifetime, the excess hole concentration must be brought to a thermal equilibrium electron concentration of ˜5×10 14 cm −3 depending on the doping.

ゼロ照射下では漏れ電流も発生する。前述の条
件下ではこの漏れ電流は〜3×10-3アンペア/cm2
であり、これは〜26オームcm2のRoA値に該当す
る。このように抵抗値が高いのは小数電子漏洩が
存在しないためである。50μm四方のプレーナデ
バイスの場合、面積2.5×10-5cm2に関する飽和漏
れ電流は7.5×10-8アンペアである。これに対し
バツクグラウンド誘導電流は2.5×10-6アンペア
である。(該漏れ電流は同一の集光面積をもつが
長手方向に励振される光導電体の定在電流〜5×
10-3アンペアと比肩し得る)。
Leakage current also occurs under zero irradiation. Under the conditions described above, this leakage current is ~3 x 10 -3 amperes/cm 2
, which corresponds to an RoA value of ~26 ohm cm2 . This high resistance value is due to the absence of fractional electron leakage. For a 50 μm square planar device, the saturation leakage current for an area of 2.5×10 −5 cm 2 is 7.5×10 −8 Amps. In contrast, the background induced current is 2.5×10 −6 amperes. (The leakage current is the standing current of a photoconductor that has the same focusing area but is excited in the longitudinal direction ~ 5×
10 -3 amps).

検出デバイス1のノイズは本質的にバツクグラ
ウンド光線のゆらぎ雑音である。
The noise of the detection device 1 is essentially background light fluctuation noise.

検出デバイス1のキヤパシタンスは極めて小さ
く、50μm四方プレートナデバイスの場合〜
0.02pFである。従つてカプセルで包んだ構造にす
るとキヤパシタンスが基本的なデバイスの特性よ
りむしろ包装と構造とよによつて制限されること
になる。
The capacitance of detection device 1 is extremely small, and in the case of a 50 μm square platen device ~
It is 0.02pF. Therefore, encapsulated structures result in capacitance being limited by the packaging and construction rather than by the underlying device characteristics.

検出デバイス1は光導電体にもホトダイオード
にも共通した多くの特性を有しているが、これら
デバイスの最も大きな欠点の幾つかは欠如してい
る。検出デバイス1は入射光照度がゼロの場合に
おいて出力がゼロであり、ホトダイオードにみら
れるトンネリングは無視し得、また最良のヘテロ
接合で一般的に見られるようにゼロ信号時の漏れ
電流もない。更に、キヤパシタンスが極めて小さ
くp−i−n形ダイオード構造の一般的な値程度
であり、空間電荷発生−再結合度も低い。従つて
検出デバイス1は、前述の対称形構造ではバイア
スを与える必要ががあるにしても、多くのダイオ
ード用回路に使用できる。
Although the detection device 1 has many characteristics common to both photoconductors and photodiodes, it lacks some of the most significant drawbacks of these devices. The detection device 1 has zero output when the incident light illumination is zero, the tunneling seen in photodiodes is negligible, and there is no leakage current at zero signal as is commonly found in the best heterojunctions. Furthermore, the capacitance is extremely small and is about the same as a typical value of a pin diode structure, and the degree of space charge generation and recombination is also low. The detection device 1 can therefore be used in many diode circuits, even though the symmetrical structure described above requires biasing.

このように、前述の検出デバイス1はコレクタ
コンタクトのオーミツクコンタクト5がエミツタ
コンタクトのオーミツクコンタクト3に対し負に
バイアスされている場合には高インピーダンス光
導電形赤外線検出器として機能する[第3図a]。
検出デバイス1はまた、接触AC又は被変調ACバ
イアスを用いても作動し得る。これらの作動モー
ドを使用する場合検出デバイス1は非線形検出
器、即ちバイアス方向に依存する応答性をもつ検
出器として作動する。ACサイクル中、p形層1
1及びn形層13間の上方p−n接合部が第3図
aの如く逆バイアスされている間は検出デバイス
1は前述の如く作動し、光電流がコレクタ回路内
に流れる。しかし乍ら、ACサイクル中の別の期
間、即ちp形層11及びn形層13間の上方p−
n接合部が順方向にバイアスされている間は、照
射によりn形層13に生じた小数キヤリヤが第3
図bの如くオーミツクコンタクト3に引き寄せら
れる。従つてヘテロ構造デバイスから生じた出力
は、n形層9内での小数キヤリヤ発生に起因して
単なる漏れ電流となる。但し、n形層9内に光学
的に生じる小数キヤリヤの数は決して多くない。
8〜14μmバンド内の赤外線はn形層13に吸収
され、検出デバイス1を貫通してn形層9に到達
し得るものがあつても極めて少量に過ぎない。従
つて光信号の観点からみると応答性の割合は極め
て高く、多くはn形層13自体に発生した光導電
形信号に限定されるが、これはn形層13内の電
界が無視し得る程小さく、且つn形層13の越え
て貫通する放射が殆んど無いという理由から無視
し得る。
Thus, the aforementioned detection device 1 functions as a high impedance photoconductive infrared detector when the ohmic contact 5 of the collector contact is negatively biased with respect to the ohmic contact 3 of the emitter contact. Figure 3a].
The detection device 1 may also operate with contact AC or modulated AC bias. When using these operating modes, the detection device 1 operates as a nonlinear detector, ie a detector with a response that depends on the bias direction. During AC cycle, p-type layer 1
While the upper p-n junction between 1 and n-type layer 13 is reverse biased as in FIG. 3a, sensing device 1 operates as described above and photocurrent flows in the collector circuit. However, during another period during the AC cycle, i.e., the upper p-
While the n-junction is forward biased, the fractional carriers generated in the n-type layer 13 by irradiation are
It is attracted to the ohmic contact 3 as shown in Figure b. The output produced by the heterostructure device is therefore just a leakage current due to fractional carrier generation in the n-type layer 9. However, the number of optically generated fractional carriers in the n-type layer 9 is by no means large.
Infrared radiation in the 8-14 μm band is absorbed by the n-type layer 13 and only a very small amount, if any, can penetrate the detection device 1 and reach the n-type layer 9. Therefore, from the viewpoint of optical signals, the responsiveness rate is extremely high, and is mostly limited to photoconductive signals generated in the n-type layer 13 itself, but this is because the electric field within the n-type layer 13 can be ignored. It is so small that it can be ignored because almost no radiation penetrates beyond the n-type layer 13.

従つて検出デバイス1はACバイアス回路と組
合わせることができる。この場合はオーミツクン
タクト5に続いて積分回路を配置すれば有効光信
号を抽出し得る。検出器デバイス1は照射状態で
は非線形であるため、時間平均AC信号が照射の
強さに依存する測定可能な有機成分を発生させ
る。但し、入射光線が存在しなければ検出デバイ
ス1の電流電圧特性は過度に線形を示す。このよ
うに、ACバイアスを加えた後で積分すると光線
が存在しない時の出力信号は確実にゼロとなる。
このようなバイアスモードは従つて如何なる暗電
流の問題も回避せしめる。もつともこの暗電流
は、検出デバイス1がその特徴として極めて高い
インピーダンスを有しているため、いずれにしろ
従来の光導電検出器よりは小さい。
The detection device 1 can therefore be combined with an AC bias circuit. In this case, an effective optical signal can be extracted by arranging an integrating circuit following the Ohmic Tact 5. Since the detector device 1 is nonlinear in the irradiated state, the time-averaged AC signal generates a measurable organic component that depends on the intensity of the irradiation. However, in the absence of incident light, the current-voltage characteristic of the detection device 1 is excessively linear. In this way, integrating after applying an AC bias ensures that the output signal is zero when no beam is present.
Such a bias mode thus avoids any dark current problems. However, this dark current is in any case smaller than in conventional photoconductive detectors, since the detection device 1 is characterized by a very high impedance.

前述のACバイアスを加えた回路で積分器を用
いる代りに、コレクタ回路に調波週明数フイルタ
を備えてもよい。検出デバイス1は前述の如く非
線形であるため照射下で測定可能調波を発生す
る。不変ACバイアスに変えて非変調ACバイアス
を使用してもよく、その場合は結果として得られ
る信号が復調されて所望の信号を生じる。この場
合変調波形は該信号がシステム1/f雑音屈曲点
周波数を越える周波数で抽出され得るよう選択す
る。これに変えて、ACバイアスをコード化し且
出力を複合してノイズを除去してもよい。
Instead of using an integrator in the AC biased circuit described above, a harmonic filter may be provided in the collector circuit. The detection device 1 is non-linear as described above and therefore generates measurable harmonics under illumination. An unmodulated AC bias may be used instead of a constant AC bias, in which case the resulting signal is demodulated to yield the desired signal. In this case the modulation waveform is selected such that the signal can be extracted at a frequency above the system 1/f noise knee frequency. Alternatively, the AC bias may be encoded and the output decomposed to remove noise.

前述の検出デバイス1はCMT材料の三層構造
体7から成つているが、p形層11は別の材料、
例えばp形テルル化カドミニウムで形成してもよ
い。このようにCMT材料以外の材料を選択する
上で重要なことは、その材料が広くバンドギヤツ
プ特性を有し、且つp形層11−n形層13間及
びp形層11−n形層9間の各−n形界面を介し
て価値電子帯のひずみを殆ど生じさせないことで
ある。テルル化カドミニウムの場合は、n形
CMT被覆のn形層9及びn形層13の如く、価
電子帯上方に同一又はほぼ同一の深さのフエルミ
準位をもつ低キヤリヤ濃度(被補償)p形材料を
選択するとよい。このテルル化カドウミウのp形
層11のフエルミ準位Ag(Ea〜0.114eV)の如き
アクセプタドナーか又はアクセプタ同志を組合せ
たものにより固定する。これらCMT/CdTe材
料を選択した場合には価電子帯の状態密度がいず
れも類似しているため、正孔濃度は事実上三層構
造体7全体を通して一定である。このようなフエ
ルミ準位の設定と共通陰イオンの法則(これは
CMT/CdTe共通陰イオンテルリウムシステム
に適用)の適用によつて価電子帯は水平になり、
三層構造体7全体を通してひずみをもたない。構
成の斬新的な変化により小さなひずみは減少す
る。
The aforementioned detection device 1 consists of a three-layer structure 7 of CMT material, but the p-type layer 11 is made of another material,
For example, it may be formed of p-type cadmium telluride. In this way, when selecting a material other than CMT material, it is important that the material has wide band gap characteristics and that the material has a wide range of band gap characteristics between the p-type layer 11 and the n-type layer 13 and between the p-type layer 11 and the n-type layer 9. The objective is to cause almost no distortion of the value electron band through each of the -n-type interfaces. In the case of cadmium telluride, n-type
A low carrier concentration (compensated) p-type material with a Fermi level of the same or nearly the same depth above the valence band may be selected, such as n-type layer 9 and n-type layer 13 of the CMT coating. This p-type layer 11 of cadmium telluride is fixed by an acceptor-donor such as Fermi level Ag (Ea ~ 0.114 eV) or a combination of acceptors. When these CMT/CdTe materials are selected, the density of states in the valence band is similar, so the hole concentration is virtually constant throughout the three-layer structure 7. This setting of the Fermi level and the common anion law (this is
By applying CMT/CdTe common anion tellurium system), the valence band becomes horizontal,
There is no strain throughout the three-layer structure 7. Small distortions are reduced by novel changes in configuration.

共通陰イオンの法則に従う別のシステムでも同
様の効果が得られよう。ヒ化ガリウム−ヒ化ガリ
ウムアルミニウム(GaAs−GaAlAs)システム
及びヒ化インジウム−ヒ化イジウムガリウム
(InAs−InGaAs)システムはその好例である。
Similar effects could be obtained with other systems that follow the common anion law. Gallium arsenide-gallium aluminum arsenide (GaAs-GaAlAs) and indium arsenide-idium gallium arsenide (InAs-InGaAs) systems are good examples.

変形例としてCMT/CdTe光検出器21を第
4図に示した。光検出器21は、エミツタ領域と
してのn形テルル化カドミウム水銀材料からなる
半導体層である細長いフイラメント23をその上
面及び下面に真性テルル化カドミニウム材料層2
5及び27を付着することにより不動態化したも
ので構成されている。フイラメント23の一端に
は読出し接触構造体29が具備されている。読出
し接触構造体29はフイラメント23と共に前述
の構造と類似した三層構造の形状を有している。
A CMT/CdTe photodetector 21 is shown in FIG. 4 as a modified example. The photodetector 21 includes an elongated filament 23 which is a semiconductor layer made of an n-type cadmium mercury telluride material as an emitter region, and an intrinsic cadmium telluride material layer 2 on its upper and lower surfaces.
It is made of passivated material by attaching 5 and 27. One end of the filament 23 is provided with a read contact structure 29. The read contact structure 29 together with the filament 23 has a three-layer configuration similar to the previously described structure.

ドーパントの注入又は拡散により真制テルル化
カドミニウム材料層25の一部を変換することに
よつてp形のバリヤ領域31が形成されており、
バリヤ領域31の上に同じくn形CMTのコレク
タ領域33と、複合オーミツクコンタト35とが
具備されている。光検出器21は、例えば英国特
許第1488258号に記載のシステムの如く光学的に
走査が行なわれるシステム内で積分集束面光導電
形検出器(integratingfocal plane
photoconductive detector)として使用し得る。
このようなシステムでは入射光がフイラメント2
3上に集束され、且つフイラメント23にDCバ
イアスが加えられた時に移動する両極性ホトキヤ
リヤの移動速度に適合した速度で読出し接触構造
体29方向へフイラメント23の長手方向沿いに
走査される。これら両極性キヤリヤは光変換の結
果生じ、その密度は像に対する空間的相応関係に
応じて増大する。両極性光電流の成分たる小数キ
ヤリヤは、前記読出し接触構造体29で抽出され
る。このようにして読取り信号、即ち被走査像の
空間的な光の強さの変化に伴う信号が発生する。
A p-type barrier region 31 is formed by converting a portion of the true cadmium telluride material layer 25 by dopant implantation or diffusion;
A collector region 33 of the same n-type CMT and a composite ohmic contact 35 are provided above the barrier region 31. The photodetector 21 may be an integrating focal plane photoconductive detector in an optically scanned system, such as the system described in GB 1488258.
It can be used as a photoconductive detector.
In such a system, the incident light passes through the filament 2
3 and scanned along the length of the filament 23 towards the read contact structure 29 at a speed compatible with the speed of movement of the bipolar photocarrier moving when a DC bias is applied to the filament 23. These bipolar carriers result from light conversion and their density increases according to their spatial relationship to the image. The fractional carrier component of the bipolar photocurrent is extracted at the readout contact structure 29. In this way, a read signal is generated, ie a signal associated with spatial changes in the light intensity of the scanned image.

コレクタ領域33に別の材料を使用することも
可能であり、例えば低ギヤツプp形材料(この場
合はp+−p−n構造になる;エネルギダイヤグ
ラム第5図b参照)で形成するか又はオーミツク
コンタクトで構成し得る(エネルギダイヤグラム
第5図a参照)。オーミツクコンタクトの場合は
高仕事関数金属を用いる。しかし乍らこのようオ
ーミツクコンタクトは製造が困難であるため、第
5図bの強くドープした半導体の方が好ましい。
この半導体はテルル化カドミウム、ゼロキヤツプ
CMT、又はテルル化水銀でも形成し得る。
It is also possible to use other materials for the collector region 33, for example made of a low gap p-type material (in this case resulting in a p + -p-n structure; see energy diagram FIG. 5b) or made of an organic material. It may consist of a microcontact (see energy diagram Figure 5a). For ohmic contacts, high work function metals are used. However, since such ohmic contacts are difficult to manufacture, the highly doped semiconductor of FIG. 5b is preferred.
This semiconductor is cadmium telluride, zero cap
It can also be formed by CMT or mercury telluride.

第6図は別のn−p−n構造体41を示してい
る。これは、p形広バンドギヤツプ材料から成る
基板層43の片面のみに単一エピタキシヤル層を
デポジツトして形成したn形のエミツタ領域及び
コレクタ領域をもつ横形構造のデバイスである。
これら領域はエツチ液により輪郭を与えられた感
光性ストライプ45で構成されており、構造体4
1両端の領域にはオーミツクコンタクト47及び
49が具備されている。構造体41は電界の配分
は多少複雑であるが作動原理は基本的に変らな
い。高電界領域はn形CMTの感光性ストライプ
45相互間のみ存在する。基板層43は自己支持
形か、又はより一般的には絶縁性支持基板、例え
ば図のサフアイア基板51などに付着してある。
いずれの場合も、この基板層43の下方面の界面
には大きな屈折率の変化が存在する。従つて感光
性n形CMT層である感光性ストライプ45のギ
ヤツプを通過する入射孔は反射し、大部分が反射
後感光性ストライプ45に吸収されることにな
る。感光性ストライプ45の物理的寸法と感光性
ストライプ45間の距離とは小さくしておく必要
がある。何故なら感光性ストライプ45間のバイ
アス電界が比較的長いルートをとるからである。
感光性ストライプ45内の少数キヤリヤの移動は
本質的に拡散に起因し、従つて正孔少数キヤリヤ
は感光性ストライプ45のコーナーからのみ出現
するものではない。
FIG. 6 shows another npn structure 41. FIG. This is a lateral device with n-type emitter and collector regions formed by depositing a single epitaxial layer on only one side of a substrate layer 43 of p-type wide bandgap material.
These areas are made up of photosensitive stripes 45 delineated by an etchant and the structures 4
Ohmic contacts 47 and 49 are provided at both end regions. Although the electric field distribution of the structure 41 is somewhat complicated, the principle of operation remains basically the same. The high electric field region exists only between the photosensitive stripes 45 of the n-type CMT. Substrate layer 43 is either self-supporting or more commonly attached to an insulating support substrate, such as the sapphire substrate 51 shown.
In either case, there is a large change in refractive index at the interface on the lower surface of this substrate layer 43. Therefore, the incident hole passing through the gap of the photosensitive stripe 45, which is the photosensitive n-type CMT layer, will be reflected, and most of it will be absorbed by the photosensitive stripe 45 after reflection. The physical dimensions of the photosensitive stripes 45 and the distance between the photosensitive stripes 45 must be kept small. This is because the bias electric field between the photosensitive stripes 45 takes a relatively long route.
The movement of the minority carriers within the photosensitive stripe 45 is essentially due to diffusion, so that the hole minority carriers do not emerge only from the corners of the photosensitive stripe 45.

第1図の構造をもつ光検出器「二色」検出器と
して使用すべく改造するものも容易である。この
場合はn形層13を比較的広いバンドギヤツプ、
即ち下方のp形層11及びn形層9の中間バンド
ギヤツプ、をもつ材料で形成する。この用途を明
らかにすべく、3〜5μmバンド及び8〜14μmバ
ンドの入射光に感応する検出器を例にとつて説明
する。この場合はn形層13を3〜5μmバンド
(x=0.28)の入射光の検出に適したn形CMT材
料で形成し、n形層9を8〜14μmバンド(x=
0.2)の入射光の検出に適したn形CMT材料で形
成する。フエルミ準位は2つのn形層9及び13
に異る準位を与えるべくp形層11内で段階化さ
れる。次いで第7図のエネルギダイヤグラムに示
されている如き平衡状態が得られるよう小さな定
在バイアス(仕事関数の差に等しい)を加えた。
順方向バイアス(表面から内部へのドリフト、第
7図の左から右へのドリフト)では非対称性に起
因して3〜5μm入射光のみが検出される。この
バンドギヤツプより小さいエネルギの入射光は三
層構造体7を通過して低エネルギギヤツプ材料の
n形層9に到達する。その結果ホトキヤリヤが生
じるが、このバイアス方向では、n形層9の電界
が関知できない程小さいため8〜14μmバンド入
射光に対する感応は無視し得る。この場合の信号
はn形層13での3〜5μmバンド吸収に対応す
る。しかし乍らバイアス方向が反転すると、3〜
5μmバンド吸収に起因する信号は無視し得るよ
うになる。この場合8〜14μmバンドの光変換に
よりn形層9に生じたホトキヤリヤはp形層11
から成るドリフトゾーンを通過して信号を発生す
る。3〜5μmバンド入射光と8〜14μmバンド入
射光とに対する検出器の応答性は、従つて、DC
バイアスの方向転換によりスイツチし得る。該検
出器はACバイアスを加えてもよく、その場合は
各バンドの出力が位相に従い選択される。信号は
ゲート増幅器により感知される。
A photodetector having the structure shown in FIG. 1 can also be easily modified for use as a "two-color" detector. In this case, the n-type layer 13 has a relatively wide bandgap.
That is, it is formed of a material having an intermediate band gap between the lower p-type layer 11 and the n-type layer 9. In order to clarify this application, a detector sensitive to incident light in the 3 to 5 μm band and the 8 to 14 μm band will be explained as an example. In this case, the n-type layer 13 is formed of an n-type CMT material suitable for detecting incident light in the 3-5 μm band (x = 0.28), and the n-type layer 9 is formed in the 8-14 μm band (x = 0.28).
It is made of n-type CMT material suitable for detecting incident light of 0.2). The Fermi level consists of two n-type layers 9 and 13
are graded within the p-type layer 11 to provide different levels. A small standing bias (equal to the work function difference) was then applied to obtain an equilibrium condition as shown in the energy diagram of FIG.
In the forward bias (drift from the surface to the inside, drift from left to right in FIG. 7), only 3-5 μm incident light is detected due to asymmetry. Incident light with energy less than this bandgap passes through the three-layer structure 7 and reaches the n-type layer 9 of low energy gap material. As a result, a photocarrier is generated, but in this bias direction, the electric field of the n-type layer 9 is so small as to be imperceptible, so that the sensitivity to incident light in the 8-14 μm band can be ignored. The signal in this case corresponds to absorption in the 3-5 μm band in the n-type layer 13. However, if the bias direction is reversed, 3~
The signal due to 5 μm band absorption becomes negligible. In this case, the photocarrier generated in the n-type layer 9 due to light conversion in the 8-14 μm band is the p-type layer 11.
The signal is generated by passing through a drift zone consisting of: The responsivity of the detector for incident light in the 3-5 μm band and in the 8-14 μm band is therefore DC
It can be switched by changing the direction of the bias. The detector may be AC biased, in which case the output of each band is selected according to phase. The signal is sensed by a gate amplifier.

第1図の如き検出器はアツプコンバータとして
も使用し得る。アツプコンバーテイング効果はコ
レクタ内での再結合の放射効率が高いと発生す
る。この場合は送出された入射光が直接に又は近
赤外線ビジコンカメラにより受容され得るようコ
レクタのバンドギヤツプを十分広くする。
A detector such as that shown in FIG. 1 can also be used as an up-converter. The upconverting effect occurs when the radiation efficiency of recombination within the collector is high. In this case, the bandgap of the collector is made wide enough so that the emitted incident light can be received directly or by a near-infrared vidicon camera.

n形及びp形材料が転倒したデバイスも実現可
能であるが、このようなデバイスはヘテロ構造界
面の制御をより強化しなければならない。このバ
ンド構造体のヘテロ構造不連続性は層の成長に伴
ないグレードアウトされることになるが、この不
連続性に起因してほぼ中間のキヤリヤ再結合特性
をもつ伸長ゾーンが存在する。しかし乍らキヤリ
ヤ移動度が大きいためデバイスの作動電圧は余り
制限されない。エミツタの界面領域は極めて低く
てよく、それでも高エミツタ効率を得るのに必要
な高ドリフト速度を与え得る。エミツタ内の少数
キヤリヤ(電子)濃度は極めて小さい。通常得ら
れるp形材料のドーピング濃度は>1×1016cm-3
であり、ライフタイムが極めて短くても拡散係数
が高ければ拡散距離は前述の如く数十ミクロンに
なる。但し少数キヤリヤ発生度が高いとバツクグ
ラウンドミリテツドパフオーマンス(BLIP)は
達成し難い。
Devices with inverted n-type and p-type materials are also possible, but such devices require greater control of the heterostructure interface. This heterostructural discontinuity in the band structure will be graded out as the layer grows, but due to this discontinuity there is an elongated zone with approximately intermediate carrier recombination properties. However, because of the high carrier mobility, the operating voltage of the device is not very limited. The interfacial area of the emitter can be very low and still provide the high drift velocity necessary to obtain high emitter efficiency. The minority carrier (electron) concentration within the emitter is extremely small. The doping concentration of p-type materials typically obtained is >1×10 16 cm -3
Even if the lifetime is extremely short, if the diffusion coefficient is high, the diffusion distance will be several tens of microns as described above. However, if the occurrence of minority carriers is high, background military performance (BLIP) is difficult to achieve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のn−p−n形複合光
検出器の構造を示す横断面図、第2図、第3図a
及びbは夫々ゼロバイアス、順バイアス及び逆バ
イアスした場合の第1図の検出器のバンドレベル
エネルギダイヤグラム、第4図はストリツプデテ
クタたるn−p−n形複合光検出器の構造を示す
横断面図、第5図a及びbは夫々金属コレクタを
用いた場合と縮退半導体コレクタを用いた場合と
における第1図の検出器のバンドレベルエネルギ
ダイヤグラム、第6図は第1図の構造の変形たる
二層構造式光検出器を示す横断面図、第7図は第
1図の検出器の変形たる二色感応形検出器のバン
ドレベルエネルギを示す説明図である。 1……検出デバイス、3,5……オーミツクコ
ンタクト、11……p形層、9,13……n形
層、21……光検出器、23……ストリツプ状フ
イラメント、25,27……真性CdTe材料層、
31……バリヤ領域、33……コレクタ領域、3
5……複合オーミツクコンタクト、43……基板
層、45……感光性ストライプ。
FIG. 1 is a cross-sectional view showing the structure of an n-p-n type composite photodetector according to an embodiment of the present invention, FIG. 2, and FIG.
and b are band-level energy diagrams of the detector in Fig. 1 under zero bias, forward bias, and reverse bias, respectively, and Fig. 4 shows the structure of an n-p-n type composite photodetector as a strip detector. Cross-sectional views, Figures 5a and 5b are band level energy diagrams of the detector of Figure 1 with a metal collector and a degenerate semiconductor collector, respectively, and Figure 6 shows the structure of Figure 1. FIG. 7 is a cross-sectional view showing a modified two-layer structure photodetector, and FIG. 7 is an explanatory diagram showing band level energy of a two-color sensitive detector, which is a modification of the detector of FIG. DESCRIPTION OF SYMBOLS 1... Detection device, 3, 5... Ohmic contact, 11... P-type layer, 9, 13... N-type layer, 21... Photodetector, 23... Strip-shaped filament, 25, 27... Intrinsic CdTe material layer,
31... Barrier area, 33... Collector area, 3
5...Composite ohmic contact, 43...Substrate layer, 45...Photosensitive stripe.

Claims (1)

【特許請求の範囲】 1 赤外線に対して感光性を有する材料のn形半
導体エミツタ領域と、コレクタ領域と、前記エミ
ツタ領域と前記コレクタ領域のそれぞれと接触す
るエミツタコンタクトとコレクタコンタクトとを
備えた光導電形赤外線検出器であつて、該検出器
が更に、前記エミツタ領域と前記コレクタ領域を
接続するバリヤ領域を含んでおり、該バリヤ領域
が、p形半導体材料を含み、前記エミツタ材料の
価電子帯とほぼ共通な価電子帯を有しており、前
記エミツタ材料より広いバンドギヤツプを有し、
ヘテロ接合伝導帯不連続性を前記エミツタ領域に
与え、前記エミツタ領域および前記コレクタ領域
の間の電子流には障壁となるが、正孔流はほとん
ど妨げられないように調整されていることを特徴
とする光導電形赤外線検出器。 2 前記エミツタ領域と前記コレクタ領域とが前
記バリヤ領域の互いに反対側に配置されている特
許請求の範囲第1項に記載の光導電形赤外線検出
器。 3 前記エミツタ領域が、ストリツプ形状をなし
且つ一方が前記エミツタコンタクトであり、他方
が付加コンタクトである二つのバイアスコンタク
トを有する赤外線感光半導体材料からなり、前記
二つのバイアスコンタクトの間であつて前記付加
コンタクトから離れた位置に、前記バリヤ領域、
コレクタ領域およびコレクタコンタクトが組み合
わされて読みだし構造を構成する特許請求の範囲
第2項に記載の光導電形赤外線検出器。 4 前記エミツタ領域および前記コレクタ領域が
同一の半導体材料を含むことを特徴とする特許請
求の範囲第2項に記載の光導電形赤外線検出器。 5 前記エミツタ領域と前記コレクタ領域とが同
一の多数キヤリア形のうちの異なるバンドギヤツ
プ材料を含み、一方の材料が赤外線スペクトルの
一つの波長帯の入射光に感光し、他方の材料が他
の波長帯の入射光に感光することを特徴とする特
許請求の範囲第2項に記載の光導電形赤外線検出
器。 6 前記エミツタ領域と前記コレクタ領域とが前
記バリヤ領域の同一の側に隣接していることを特
徴とする特許請求の範囲第1項に記載の赤外線光
導伝検出器。 7 前記エミツタ領域と前記コレクタ領域とが単
一層の材料から形成されていることを特徴とする
特許請求の範囲第6項に記載の光導電形赤外線検
出器。 8 前記エミツタ領域と前記コレクタ領域との間
に少なくとも一つの中間領域を含み、該少なくと
も一つの中間領域が前記エミツタ領域から前記コ
レクタ領域まで正孔を中継して行くように配置さ
れていることを特徴とする特許請求の範囲第6項
に記載の光導電形赤外線検出器。 9 前記エミツタ領域が、三元赤外線感光合金の
一つ、即ちテルル化カドミウム水銀、ヒ化インジ
ウムガリウムまたはヒ化ガリウムアルミニウムの
いずれかであることを特徴とする特許請求の範囲
第1項から第8項のいずれか1項に記載の赤外線
光導伝検出器。 10 前記バリヤ領域も、前記エミツタ領域の材
料と同一構成成分を異なる割合で含む三元合金材
料を含むことを特徴とする特許請求の範囲第9項
に記載の光導電形赤外線検出器。 11 前記バリヤ領域が、前記エミツタ領域の三
元合金と共通の陰イオン成分を有する二元合金材
料を含み、該二元合金材料がテルル化カドミウ
ム、ヒ化インジウムまたはヒ化ガリウム合金のい
ずれかであることを特徴とする特許請求の範囲第
9項に記載の光導電形赤外線検出器。 12 前記エミツタ領域および前記バリヤ領域の
材料が外因性であり且つそれぞれn形およびp形
にドープされた材料であることを特徴とする特許
請求の範囲第1項から第11項のいずれか1項に
記載の光導電形赤外線検出器。 13 前記エミツタ領域およびコレクタ領域の材
料が同一の多数キヤリヤ形であることを特徴とす
る特許請求の範囲第1項から第3項または第9項
から第12項のいずれか1項に記載の光導電形赤
外線検出器。 14 前記コレクタ領域および前記コレクタコン
タクトが単一の高仕事関数金属層から形成されて
いることを特徴とする特許請求の範囲第1項から
第3項または第9項から第12項のいずれか1項
に記載の光導電形赤外線検出器。 15 前記コレクタ領域が前記エミツタ領域材料
とは反対の多数キヤリア形の高ドープ半導体材料
を含むことを特徴とする特許請求の範囲第1項か
ら第3項または第9項から第12項のいずれか1
項に記載の光導電形赤外線検出器。 16 赤外線に対して感光性を有する材料のn形
半導体エミツタ領域と、コレクタ領域と、前記エ
ミツタ領域と前記コレクタ領域のそれぞれと接触
するエミツタコンタクトとコレクタコンタクトと
を備えた光導電形赤外線検出器であつて、該検出
器が更に、前記エミツタ領域と前記コレクタ領域
を接続するバリヤ領域を含んでおり、該バリヤ領
域が、p形半導体材料を含み、前記エミツタ材料
の価電子帯とほぼ共通な価電子帯を有しており、
前記エミツタ材料より広いバンドギヤツプを有
し、ヘテロ接合伝導帯不連続性を前記エミツタ領
域に与え、前記エミツタ領域および前記コレクタ
領域の間の電子流には障壁となるが、正孔流はほ
とんど妨げられないように調整されており、前記
エミツタ領域と前記コレクタ領域とが前記バリヤ
領域の互いに反対側に配置されていることを特徴
とする光導電形赤外線検出器、を組み込む装置で
あつて、前記エミツタコンタクトと前記コレクタ
コンタクトとの間で接続された交流電圧バイアス
源と、前記光導電形赤外線検出器により生成され
たコレクタ電流に感応する信号電流検出器とを含
むことを特徴とする装置。 17 赤外線に対して感光性を有する材料のn形
半導体エミツタ領域と、コレクタ領域と、前記エ
ミツタ領域と前記コレクタ領域のそれぞれと接触
するエミツタコンタクトとコレクタコンタクトと
を備えた光導電形赤外線検出器であつて、該検出
器が更に、前記エミツタ領域と前記コレクタ領域
を接続するバリヤ領域を含んでおり、該バリヤ領
域が、p形半導体材料を含み、前記エミツタ材料
の価原子帯とほぼ共通な価電子帯を有しており、
前記エミツタ材料より広いバンドギヤツプを有
し、ヘテロ接合伝導帯不連続性を前記エミツタ領
域に与え、前記エミツタ領域および前記コレクタ
領域の間の電子流には障壁となるが、正孔流はほ
とんど妨げられないように調整されており、前記
エミツタ領域と前記コレクタ領域とが前記バリヤ
領域の互いに反対側に配置されており、前記エミ
ツタ領域と前記コレクタ領域とが同一の多数キヤ
リア形のうちの異なるバンドギヤツプ材料を含
み、一方の材料が赤外線スペクトルの一つの波長
帯の入射光に感光し、他方の材料が他の波長帯の
入射光に感光することを特徴とする光導電形赤外
線検出器、を組み込む装置であつて、前記エミツ
タコンタクトと前記コレクタコンタクトとの間で
接続された電圧源と、該電圧源の極性を変えるス
イツチと、前記光導電形赤外線検出器により生成
されたコレクタ電流に感応する信号電流検出器と
を含むことを特徴とする装置。 18 赤外線に対して感光性を有する材料のn形
半導体エミツタ領域と、コレクタ領域と、前記エ
ミツタ領域と前記コレクタ領域のそれぞれと接触
するエミツタコンタクトとコレクタコンタクトと
を備えた光導電形赤外線検出器であつて、該検出
器が更に、前記エミツタ領域と前記コレクタ領域
を接続するバリヤ領域を含んでおり、該バリヤ領
域が、p形半導体材料を含み、前記エミツタ材料
の価原子帯とほぼ共通な価電子帯を有しており、
前記エミツタ材料より広いバンドギヤツプを有
し、ヘテロ接合伝導帯不連続性を前記エミツタ領
域に与え、前記エミツタ領域および前記コレクタ
領域の間の電子流には障壁となるが、正孔流はほ
とんど妨げられないように調整されており、前記
エミツタ領域と前記コレクタ領域とが前記バリヤ
領域の互いに反対側に配置されており、前記エミ
ツタ領域と前記コレクタ領域とが同一の多数キヤ
リア形のうちの異なるバンドギヤツプ材料を含
み、一方の材料が赤外線スペクトルの一つの波長
帯の入射光に感光し、他方の材料が他の波長帯の
入射光に感光することを特徴とする光導電形赤外
線検出器、を組み込む装置であつて、前記エミツ
タコンタクトと前記コレクタコンタクトとの間で
接続された交流電圧バイアス源と、交流バイアス
の正の半サイクルと負の半サイクルとの間にそれ
ぞれ発生する信号を分離する位相感知検出器とを
含むことを特徴とする装置。
[Scope of Claims] 1. An n-type semiconductor emitter region made of a material sensitive to infrared rays, a collector region, and an emitter contact and a collector contact that are in contact with the emitter region and the collector region, respectively. The photoconductive infrared detector further includes a barrier region connecting the emitter region and the collector region, the barrier region including a p-type semiconductor material, and the barrier region including a p-type semiconductor material and a valence of the emitter material. It has a valence band that is almost common to the electron band, and has a wider band gap than the emitter material,
A heterojunction conduction band discontinuity is provided to the emitter region, and is adjusted so that it becomes a barrier to electron flow between the emitter region and the collector region, but hardly hinders hole flow. A photoconductive infrared detector. 2. The photoconductive infrared detector according to claim 1, wherein the emitter region and the collector region are arranged on opposite sides of the barrier region. 3. The emitter region is made of an infrared-sensitive semiconductor material having a strip shape and having two bias contacts, one of which is the emitter contact and the other is an additional contact, and between the two bias contacts, the said barrier region remote from the additional contact;
3. A photoconductive infrared detector according to claim 2, wherein the collector region and the collector contact combine to form a readout structure. 4. The photoconductive infrared detector according to claim 2, wherein the emitter region and the collector region contain the same semiconductor material. 5. The emitter region and the collector region include different bandgap materials of the same multicarrier type, one material sensitive to incident light in one wavelength band of the infrared spectrum and the other material sensitive to incident light in the other wavelength band. 3. The photoconductive infrared detector according to claim 2, wherein the photoconductive infrared detector is sensitive to incident light. 6. The infrared photoconductive detector of claim 1, wherein the emitter region and the collector region are adjacent to the same side of the barrier region. 7. A photoconductive infrared detector according to claim 6, wherein the emitter region and the collector region are formed from a single layer of material. 8. At least one intermediate region is included between the emitter region and the collector region, and the at least one intermediate region is arranged to relay holes from the emitter region to the collector region. A photoconductive infrared detector according to claim 6. 9. Claims 1 to 8, characterized in that the emitter region is one of ternary infrared sensitive alloys, namely cadmium mercury telluride, indium gallium arsenide or gallium aluminum arsenide. The infrared photoconductive detector according to any one of paragraphs. 10. The photoconductive infrared detector according to claim 9, wherein the barrier region also includes a ternary alloy material containing the same constituents as the material of the emitter region in different proportions. 11 said barrier region comprises a binary alloy material having a common anionic composition with the ternary alloy of said emitter region, said binary alloy material being either a cadmium telluride, indium arsenide or gallium arsenide alloy; A photoconductive infrared detector according to claim 9, characterized in that: 12. Any one of claims 1 to 11, characterized in that the materials of the emitter region and the barrier region are extrinsic and respectively n- and p-doped materials. The photoconductive infrared detector described in . 13. Light according to any one of claims 1 to 3 or 9 to 12, characterized in that the materials of the emitter region and the collector region are of the same multi-carrier type. Conductive infrared detector. 14. Any one of claims 1 to 3 or 9 to 12, wherein the collector region and the collector contact are formed from a single high work function metal layer. The photoconductive infrared detector described in . 15. Any one of claims 1-3 or 9-12, wherein the collector region comprises a highly doped semiconductor material of majority carrier type opposite to the emitter region material. 1
The photoconductive infrared detector described in . 16 A photoconductive infrared detector comprising an n-type semiconductor emitter region made of a material photosensitive to infrared rays, a collector region, and an emitter contact and a collector contact that are in contact with the emitter region and the collector region, respectively. wherein the detector further includes a barrier region connecting the emitter region and the collector region, the barrier region comprising a p-type semiconductor material and having a valence band substantially common to the valence band of the emitter material. It has a valence band,
It has a wider bandgap than the emitter material and provides a heterojunction conduction band discontinuity in the emitter region, providing a barrier to electron flow between the emitter region and the collector region, but substantially impeding hole flow. a photoconductive infrared detector, the emitter region and the collector region being arranged on opposite sides of the barrier region; An apparatus comprising: an alternating current voltage bias source connected between the ivy contact and the collector contact; and a signal current detector sensitive to the collector current generated by the photoconductive infrared detector. 17 A photoconductive infrared detector comprising an n-type semiconductor emitter region made of a material sensitive to infrared rays, a collector region, and an emitter contact and a collector contact that are in contact with the emitter region and the collector region, respectively. wherein the detector further includes a barrier region connecting the emitter region and the collector region, the barrier region comprising a p-type semiconductor material and having a valence band substantially common to the valence band of the emitter material. It has a valence band,
It has a wider bandgap than the emitter material and provides a heterojunction conduction band discontinuity in the emitter region, providing a barrier to electron flow between the emitter region and the collector region, but substantially impeding hole flow. the emitter region and the collector region are arranged on opposite sides of the barrier region, and the emitter region and the collector region are arranged in different bandgap materials of the same multiple carrier type. a photoconductive infrared detector, characterized in that one material is sensitive to incident light in one wavelength band of the infrared spectrum and the other material is sensitive to incident light in the other wavelength band. a voltage source connected between the emitter contact and the collector contact, a switch for changing the polarity of the voltage source, and a signal sensitive to the collector current generated by the photoconductive infrared detector. A current detector. 18 A photoconductive infrared detector comprising an n-type semiconductor emitter region made of a material sensitive to infrared rays, a collector region, and an emitter contact and a collector contact that are in contact with the emitter region and the collector region, respectively. wherein the detector further includes a barrier region connecting the emitter region and the collector region, the barrier region comprising a p-type semiconductor material and having a valence band substantially common to the valence band of the emitter material. It has a valence band,
It has a wider bandgap than the emitter material and provides a heterojunction conduction band discontinuity in the emitter region, providing a barrier to electron flow between the emitter region and the collector region, but substantially impeding hole flow. the emitter region and the collector region are arranged on opposite sides of the barrier region, and the emitter region and the collector region are arranged in different bandgap materials of the same multiple carrier type. a photoconductive infrared detector, characterized in that one material is sensitive to incident light in one wavelength band of the infrared spectrum and the other material is sensitive to incident light in the other wavelength band. an alternating current voltage bias source connected between the emitter contact and the collector contact, and a phase sensing for separating signals generated during positive and negative half cycles of the alternating current bias, respectively. A device comprising: a detector.
JP58176102A 1982-09-23 1983-09-22 Infrared detector Granted JPS5980978A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8227180 1982-09-23
GB8227180 1982-09-23

Publications (2)

Publication Number Publication Date
JPS5980978A JPS5980978A (en) 1984-05-10
JPH0576791B2 true JPH0576791B2 (en) 1993-10-25

Family

ID=10533122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58176102A Granted JPS5980978A (en) 1982-09-23 1983-09-22 Infrared detector

Country Status (5)

Country Link
US (1) US4679063A (en)
EP (1) EP0106514B1 (en)
JP (1) JPS5980978A (en)
DE (1) DE3379441D1 (en)
IL (1) IL69736A (en)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3571726D1 (en) * 1984-04-25 1989-08-24 Josef Kemmer Large-surface low-capacity semi-conductor radiation detector
GB8417303D0 (en) * 1984-07-06 1984-08-08 Secr Defence Infra-red detector
JPH0712100B2 (en) * 1985-03-25 1995-02-08 株式会社日立製作所 Semiconductor light emitting element
US4874572A (en) * 1987-05-06 1989-10-17 Ophir Corporation Method of and apparatus for measuring vapor density
JPH0278278A (en) * 1988-09-13 1990-03-19 Nec Corp Infrared sensor
GB8828348D0 (en) * 1988-12-05 1989-01-05 Secr Defence Photodetector
US5185647A (en) * 1988-12-12 1993-02-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Long wavelength infrared detector
US5001532A (en) * 1989-09-06 1991-03-19 Rockwell International Corporation Impurity band conduction detector having photoluminescent layer
FR2678774B1 (en) * 1991-07-05 1998-07-10 Thomson Csf ELECTROMAGNETIC WAVE DETECTOR.
IL99592A (en) * 1991-09-27 1995-05-26 Bendix Avelex Inc Thermal imaging apparatus
US5412242A (en) * 1993-04-14 1995-05-02 Yeda Research And Development Co., Ltd. Semiconductor device with p-n junction based on dopant profile in equilibrium with internal electric field created by this junction
US6043548A (en) * 1993-04-14 2000-03-28 Yeda Research And Development Co., Ltd. Semiconductor device with stabilized junction
US5621238A (en) * 1994-02-25 1997-04-15 The United States Of America As Represented By The Secretary Of The Air Force Narrow band semiconductor detector
US5438199A (en) * 1994-09-06 1995-08-01 Alliedsignal Inc. Thermal imaging apparatus with bias modulation
USH1717H (en) * 1995-11-16 1998-04-07 The United States Of America As Represented By The Secretary Of The Navy Bistable photoconductive switches particularly suited for frequency-agile, radio-frequency sources
US5804815A (en) * 1996-07-05 1998-09-08 Sandia Corporation GaAs photoconductive semiconductor switch
FR2773215B1 (en) * 1997-12-31 2000-01-28 Commissariat Energie Atomique BOLOMETRIC THERMAL DETECTOR
US6906793B2 (en) * 2000-12-11 2005-06-14 Canesta, Inc. Methods and devices for charge management for three-dimensional sensing
EP1356664A4 (en) * 2000-12-11 2009-07-22 Canesta Inc Cmos-compatible three-dimensional image sensing using quantum efficiency modulation
US6674064B1 (en) 2001-07-18 2004-01-06 University Of Central Florida Method and system for performance improvement of photodetectors and solar cells
IL156744A (en) * 2003-07-02 2011-02-28 Semi Conductor Devices An Elbit Systems Rafael Partnership Depletion-less photodiode with suppressed dark current
US7129489B2 (en) * 2004-12-03 2006-10-31 Raytheon Company Method and apparatus providing single bump, multi-color pixel architecture
US11264528B2 (en) 2006-03-19 2022-03-01 Shimon Maimon Reduced dark current photodetector with charge compensated barrier layer
USRE48693E1 (en) 2006-03-19 2021-08-17 Shimon Maimon Application of reduced dark current photodetector with a thermoelectric cooler
US11245048B2 (en) 2006-03-19 2022-02-08 Shimon Maimon Reduced dark current photodetector with charge compensated barrier layer
US9766130B2 (en) 2006-03-19 2017-09-19 Shimon Maimon Application of reduced dark current photodetector with a thermoelectric cooler
USRE48642E1 (en) 2006-03-19 2021-07-13 Shimon Maimon Application of reduced dark current photodetector
US7687871B2 (en) * 2006-03-19 2010-03-30 Shimon Maimon Reduced dark current photodetector
IL174844A (en) * 2006-04-06 2011-02-28 Semi Conductor Devices An Elbit Systems Rafael Partnership Unipolar semiconductor photodetector with suppressed dark current and method for producing the same
US10700141B2 (en) * 2006-09-29 2020-06-30 University Of Florida Research Foundation, Incorporated Method and apparatus for infrared detection and display
US8044435B2 (en) 2006-11-14 2011-10-25 Lockheed Martin Corporation Sub-pixel nBn detector
US7652252B1 (en) * 2007-10-08 2010-01-26 Hrl Laboratories, Llc Electronically tunable and reconfigurable hyperspectral photon detector
US8093559B1 (en) * 2008-12-02 2012-01-10 Hrl Laboratories, Llc Methods and apparatus for three-color infrared sensors
EP2454760A2 (en) * 2009-07-17 2012-05-23 Lockheed Martin Corporation Strain-balanced extended-wavelength barrier photodetector
EP2491600A4 (en) * 2009-10-23 2015-04-22 Lockheed Corp Barrier photodetector with planar top layer
US8154028B2 (en) 2010-01-28 2012-04-10 Howard University Infrared external photoemissive detector
US8716701B2 (en) 2010-05-24 2014-05-06 Nanoholdings, Llc Method and apparatus for providing a charge blocking layer on an infrared up-conversion device
US8217480B2 (en) 2010-10-22 2012-07-10 California Institute Of Technology Barrier infrared detector
US8686471B2 (en) 2011-04-28 2014-04-01 Drs Rsta, Inc. Minority carrier based HgCdTe infrared detectors and arrays
WO2013003850A2 (en) 2011-06-30 2013-01-03 University Of Florida Researchfoundation, Inc. A method and apparatus for detecting infrared radiation with gain
EP2756523B1 (en) 2011-09-13 2018-06-06 L-3 Communications Cincinnati Electronics Frontside-illuminated barrier infrared photodetector device and methods of fabricating the same
US8928029B2 (en) 2011-12-12 2015-01-06 California Institute Of Technology Single-band and dual-band infrared detectors
FR2985373B1 (en) 2012-01-04 2014-01-24 Commissariat Energie Atomique SEMICONDUCTOR STRUCTURE, DEVICE COMPRISING SUCH A STRUCTURE AND METHOD FOR PRODUCING A SEMICONDUCTOR STRUCTURE
JP2012134507A (en) * 2012-01-11 2012-07-12 Maimon Shimon Photodetector reducing dark current
US9647155B1 (en) 2012-09-08 2017-05-09 Shimon Maimon Long wave photo-detection device for used in long wave infrared detection, materials, and method of fabrication
US9214581B2 (en) 2013-02-11 2015-12-15 California Institute Of Technology Barrier infrared detectors on lattice mismatch substrates
US9099371B1 (en) * 2013-04-12 2015-08-04 Lockheed Martin Corporation Barrier photodetector with no contact layer
US9158069B2 (en) * 2013-04-15 2015-10-13 Technion Research & Development Foundation Ltd. Charge-discharge electro-optical microring modulator
EP2802018A3 (en) 2013-05-07 2015-04-29 L-3 Communications Cincinnati Electronics Corporation Diode barrier infrared detector devices and superlattice barrier structures
JP2014239235A (en) * 2014-07-10 2014-12-18 シモン・マイモンShimon MAIMON Photodetector reducing dark current
US9799785B1 (en) 2015-03-13 2017-10-24 California Institute Of Technology Unipolar barrier dual-band infrared detectors
IL238368B (en) 2015-04-19 2019-08-29 Semi Conductor Devices An Elbit Systems Rafael Partnership Photo-detector device
US10749058B2 (en) 2015-06-11 2020-08-18 University Of Florida Research Foundation, Incorporated Monodisperse, IR-absorbing nanoparticles and related methods and devices
US10872987B2 (en) 2015-12-10 2020-12-22 California Institute Of Technology Enhanced quantum efficiency barrier infrared detectors
US10128399B1 (en) 2016-08-16 2018-11-13 Hrl Laboratories, Llc Lateral-effect position-sensing detector
FR3109244B1 (en) * 2020-04-09 2022-04-01 Commissariat Energie Atomique SIDE GRADIENT PHOTO-SENSING DEVICE OF CADMIUM CONCENTRATION IN THE SPACE CHARGE AREA

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497698A (en) * 1968-01-12 1970-02-24 Massachusetts Inst Technology Metal insulator semiconductor radiation detector
GB1450627A (en) * 1974-01-29 1976-09-22 Standard Telephones Cables Ltd Opto-electronic devices
US4016586A (en) * 1974-03-27 1977-04-05 Innotech Corporation Photovoltaic heterojunction device employing a wide bandgap material as an active layer
GB1488258A (en) * 1974-11-27 1977-10-12 Secr Defence Thermal radiation imaging devices and systems
US4021833A (en) * 1976-05-17 1977-05-03 Honeywell Inc. Infrared photodiode
US4106951A (en) * 1976-08-12 1978-08-15 Uce, Inc. Photovoltaic semiconductor device using an organic material as an active layer
GB1597538A (en) * 1977-03-31 1981-09-09 Ford Motor Co Photovoltaic semiconductor device having increased detectivity and decreased capacitance
JPS6057714B2 (en) * 1978-01-27 1985-12-16 株式会社日立製作所 Optical semiconductor device
JPS5516479A (en) * 1978-07-21 1980-02-05 Sumitomo Electric Ind Ltd Heterojunction light receiving diode
US4346394A (en) * 1980-03-24 1982-08-24 Hughes Aircraft Company Gallium arsenide burrus FET structure for optical detection
GB2078440B (en) * 1980-03-31 1984-04-18 Nippon Telegraph & Telephone An optoelectronic switch
US4453173A (en) * 1982-04-27 1984-06-05 Rca Corporation Photocell utilizing a wide-bandgap semiconductor material
US4427841A (en) * 1982-06-29 1984-01-24 The United States Of America As Represented By The Secretary Of The Air Force Back barrier heteroface AlGaAs solar cell

Also Published As

Publication number Publication date
US4679063A (en) 1987-07-07
EP0106514A3 (en) 1986-02-12
EP0106514B1 (en) 1989-03-15
DE3379441D1 (en) 1989-04-20
EP0106514A2 (en) 1984-04-25
IL69736A (en) 1987-12-20
JPS5980978A (en) 1984-05-10

Similar Documents

Publication Publication Date Title
JPH0576791B2 (en)
US5016073A (en) Photodetector semiconductor which does not require extensive cooling
US7368762B2 (en) Heterojunction photodiode
Blazejewski et al. Bias‐switchable dual‐band HgCdTe infrared photodetector
US20150243825A1 (en) Simultaneous dual-band detector
US20110101483A1 (en) Two colour photon detector
Cohen-Elias et al. Minority carrier diffusion length for electrons in an extended SWIR InAs/AlSb type-II superlattice photodiode
WO1990006597A1 (en) Multiple heterostructure photodetector
US20140217540A1 (en) Fully depleted diode passivation active passivation architecture
US4608586A (en) Back-illuminated photodiode with a wide bandgap cap layer
US4183035A (en) Inverted heterojunction photodiode
US5101254A (en) Schottky barrier semiconductor photodetector including graded energy band gap layer
Manis-Levy et al. High photoconductive gain in a GaAs/PbS heterojunction based SWIR detector
Zhu et al. Bias sensitive a-Si (C): H multispectral detectors
GB2127619A (en) Infrared detectors
Piotrowski et al. A novel multi-heterojunction HgCdTe long-wavelength infrared photovoltaic detector for operation under reduced cooling conditions
EP1470574B1 (en) High speed pin photodiode with increased responsivity
US4021833A (en) Infrared photodiode
US4231053A (en) High electrical frequency infrared detector
IL103347A (en) Photoresponsive device and method for fabricating the same including composition grading and recessed contacts for trapping minority carriers
Elliott Photoconductive and non-equilibrium devices in HgCdTe and related alloys
Rogalski et al. Theoretical modeling of long wavelength n+‐on‐p HgCdTe photodiodes
GB2206447A (en) Lensed photodetector
Stoyanov et al. Photodiodes for a 1.5–4.8 µm spectral range based on type-II GaSb/InGaAsSb heterostructures
RU2521156C2 (en) Semiconductor infrared photodiode