JPH0576585B2 - - Google Patents

Info

Publication number
JPH0576585B2
JPH0576585B2 JP17303284A JP17303284A JPH0576585B2 JP H0576585 B2 JPH0576585 B2 JP H0576585B2 JP 17303284 A JP17303284 A JP 17303284A JP 17303284 A JP17303284 A JP 17303284A JP H0576585 B2 JPH0576585 B2 JP H0576585B2
Authority
JP
Japan
Prior art keywords
phase
current
line
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17303284A
Other languages
Japanese (ja)
Other versions
JPS61221666A (en
Inventor
Osamu Iyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP17303284A priority Critical patent/JPS61221666A/en
Publication of JPS61221666A publication Critical patent/JPS61221666A/en
Publication of JPH0576585B2 publication Critical patent/JPH0576585B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、溶接機等を含む三相不平衡負荷回路
の相電流を検知するための電流検出装置に関する
ものである。 従来の技術 溶接機を含む配電路においては電圧フリツカが
発生するので、これを防止するためにコンデンサ
を線間に接続する。この場合、相電流に基づいて
補償容量を決定しなければならない。従つて、従
来は、三相交流回路に多数の容量の異なる単相の
溶接機が接続されている場合、各溶接機の負荷電
流を変流器で検出し、同じ相の相電流を加算し、
合計の相電流を求め、この合計の相電流に基づい
てフリツカ補償装置のコンデンサ容量を決定し
た。 発明が解決しようとする問題点 上述の如く各負荷の相電流を検出すれば、負荷
の数だけ変流器が必要になり、必然的に装置が高
価になる。そこで、本発明の目的は、相電流を近
似的に容易に求めることが出来る電流検出装置を
提供することにある。 問題点を解決するための手段 上記目的を達成するために本発明では、複数の
略同一の力率の単相負荷からなる不平衡負荷が接
続されている三相交流回路の第1相、第2相、及
び第3相の線電流a,b,cを検出するために第
1、第2、及び第3の線路に設けられた第1、第
2、及び第3の線電流検出器と、前記第1、第
2、及び第3の線電流検出器に接続され、前記不
平衡負荷の第1、第2、及び第3の相の相電流
x,y,zを、 x=A/3+a2+b2−2c2/3A y=A/3+b2+c2−2a2/3A z=A/3+c2+a2−2b2/3A (但し、Aは
INDUSTRIAL APPLICATION FIELD The present invention relates to a current detection device for detecting phase current of a three-phase unbalanced load circuit including a welding machine or the like. BACKGROUND OF THE INVENTION Voltage flickers occur in power distribution lines that include welding machines, so to prevent this, capacitors are connected between the lines. In this case, the compensation capacity must be determined based on the phase current. Therefore, conventionally, when many single-phase welding machines with different capacities are connected to a three-phase AC circuit, the load current of each welding machine is detected by a current transformer, and the phase currents of the same phase are added. ,
The total phase current was determined, and the capacitor capacity of the flicker compensator was determined based on this total phase current. Problems to be Solved by the Invention If the phase current of each load is detected as described above, current transformers equal to the number of loads are required, which inevitably increases the cost of the device. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a current detection device that can easily approximate phase current. Means for Solving the Problems In order to achieve the above object, the present invention provides the following features: first, second, and third line current detectors provided on the first, second, and third lines to detect line currents a, b, and c of the two-phase and third-phase lines; , are connected to the first, second, and third line current detectors, and the phase currents x, y, and z of the first, second, and third phases of the unbalanced load are expressed as x=A/ 3+a 2 +b 2 -2c 2 /3A y=A/3+b 2 +c 2 -2a 2 /3A z=A/3+c 2 +a 2 -2b 2 /3A (However, A is

【化】 である。)の式に従つて求める線電流−相電流変
換回路とを設けた。 作 用 上記発明において、各相の線電流検出器から得
られる各相の線電流は、線電流−相電流変換回路
に送られ、上記の式に基づいて相電流に変換され
る。従つて、相電流を直接に検出しないで、相電
流を近似的に知ることが出来る。 実施例 次に、第1図及び第2図を参照して本発明の実
施例に係わるフリツカ補償装置を備えた溶接機回
路における電流検出装置について述べる。 第1図において、1,2,3は三相交流回路の
第1、第2、及び第3の線路1,2,3であり、
トランス4に接続されている。5,6,7,8,
9,10,11,12,13は力率がほぼ同一の
単相負荷であり、この実施例ではフリツカを発生
する溶接機である。14,15,16は変流器か
ら成る第1、第2、及び第3の電流検出器であ
り、各線路1,2,3の線電流a,b,cを検出
するものである。17は線電流−相電流変換回路
であり、電流検出器14,15,16で検出され
た各相の線電流a,b,cを各相の相電流x,
y,zに変換する回路である。18,19,20
はフリツカ補償装置であり、例えば、サイリスタ
スイツチを介してコンデンサを各線路1,2,3
間に接続するように構成されたものである。な
お、これ等のフリツカ補償装置18,19,20
は線電流−相電流変換回路17から得られる各相
電流x,y,zに基づいてフリツカ補償容量を決
定するように構成されている。 第2図は線電流−相電流変換回路17を示すも
のである。この変換回路17は、次の(1)(2)(3)式に
基づいて、線電流a,b,cを相電流x,y,z
に変換するように構成されている。 x=A/3+a2+b2−2c2/3A ……(1) y=A/3+b2+c2−2a2/3A ……(2) z=A/3+c2+a2−2b2/3A ……(3) 但し、
It is [ ]. ) was provided. Operation In the above invention, the line current of each phase obtained from the line current detector of each phase is sent to the line current-phase current conversion circuit and converted into a phase current based on the above equation. Therefore, the phase current can be approximately known without directly detecting the phase current. Embodiment Next, a current detection device in a welding machine circuit equipped with a flicker compensator according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. In FIG. 1, 1, 2, and 3 are the first, second, and third lines 1, 2, and 3 of a three-phase AC circuit,
Connected to transformer 4. 5, 6, 7, 8,
Reference numerals 9, 10, 11, 12, and 13 are single-phase loads having almost the same power factor, and in this embodiment, they are welding machines that generate flicker. Reference numerals 14, 15, and 16 indicate first, second, and third current detectors each consisting of a current transformer, and detect the line currents a, b, and c of the lines 1, 2, and 3, respectively. 17 is a line current to phase current conversion circuit, which converts the line currents a, b, and c of each phase detected by the current detectors 14, 15, and 16 into phase currents x,
This is a circuit that converts into y and z. 18, 19, 20
is a flicker compensator, for example, a capacitor is connected to each line 1, 2, 3 via a thyristor switch.
It is configured to be connected between. Note that these flicker compensators 18, 19, 20
is configured to determine the flicker compensation capacity based on each phase current x, y, z obtained from the line current-phase current conversion circuit 17. FIG. 2 shows the line current-phase current conversion circuit 17. This conversion circuit 17 converts line currents a, b, c into phase currents x, y, z based on the following equations (1), (2), and (3).
is configured to convert to . x=A/3+a 2 +b 2 -2c 2 /3A ...(1) y=A/3+b 2 +c 2 -2a 2 /3A ...(2) z=A/3+c 2 +a 2 -2b 2 /3A ... …(3) However,

【化】 次に、(1)(2)(3)式により、相電流x,y,zが近
似的に得られることを説明する。第1図の各負荷
5〜13の各力率が同一であるとすれば、各相の
合計された相電流x,y,zは位相差120度を有
し、第3図のベクトル図で表わすことが出来る。
そして、各相電流x,y,zと各線電流a,b,
cとの関係は第3図の如くなるので、両者の間に
次の(4)式が成立する。 a2=z2+x2−2zxcosθ b2=x2+y2−2xycosθ c2=y2+z2−2yzcosθ ……(4) θ=2/3πであるから、 x2+y2+xy=b2 y2+z2+yz=c2 z2+x2+zx=a2 ……(5) この(5)式により次の(6)式が成立する。 2(x+y+z)2−3(xy+yz+zx)=b2+c2+a2
……(6) 一方、公式により次の(7)式が成立する。 3(xy+yz+zx)2=2(b2c2+c2a2+a2b2)−(b4+c
4+a4)……(7) (7)式より次式が得られる。
[Image Omitted] Next, it will be explained that the phase currents x, y, and z can be approximately obtained by equations (1), (2), and (3). Assuming that each power factor of each load 5 to 13 in Fig. 1 is the same, the summed phase currents x, y, and z of each phase have a phase difference of 120 degrees, and the vector diagram in Fig. 3 It can be expressed.
Then, each phase current x, y, z and each line current a, b,
Since the relationship with c is as shown in FIG. 3, the following equation (4) holds between the two. a 2 =z 2 +x 2 −2zxcosθ b 2 =x 2 +y 2 −2xycosθ c 2 =y 2 +z 2 −2yzcosθ ...(4) Since θ=2/3π, x 2 +y 2 +xy=b 2 y 2 +z 2 +yz=c 2 z 2 +x 2 +zx=a 2 ...(5) From this equation (5), the following equation (6) is established. 2(x+y+z) 2 −3(xy+yz+zx)=b 2 +c 2 +a 2
...(6) On the other hand, the following formula (7) holds true according to the formula. 3 (xy + yz + zx) 2 = 2 (b 2 c 2 + c 2 a 2 + a 2 b 2 ) - (b 4 + c
4 + a 4 )...(7) From equation (7), the following equation is obtained.

【化】 (8)式を(6)式に代入すると次式が得られる。[ka] Substituting equation (8) into equation (6) yields the following equation.

【化】 以下、(9)式をAとする。また、(5)式より次式が
成立する。 b2−c2=x2−z2+y(x−y)−(x−z)(x+y
+z) c2−a2=(y−x)(x+y+z) a2−b2=(z−y)(x+y+z) ……(10) x+y+z=b2−c2/x−z=c2−a2/y−z=a2−b2
/z−y=A x−z=b2−c2/A y−x=c2−a2/A z−y=a2−b2/A ……(11) (11)式及びx+y+z=Aの関係から次式が成立
する。 3x=A+b2−c2/A−c2−a2/A 3y=A+b2−a2/A−a2−c2/A 3z=A+c2−b2/A−b2−a2/A ……(12) この(12)式から前述の(1)(2)(3)式が得られる。
従つて、(1)(2)(3)式は各相の相電流を表わしてい
る。 第2図の線電流−相電流変換回路17は、(1)(2)
(3)式の演算を実行するために、第1図の各相の電
流検出器14,15,16で検出した線電流a,
b,cの二乗値を求める二乗演算器24,25,
26を各相の電流検出ライン21,22,23に
有する。各二乗演算器24,25,26の出力段
には、(1)(2)(3)式の中のa2+b2,b2+c2,c2+a2
部分の演算をなすために加算器27,28,29
が設けられ、また、(1)(2)(3)式の2c2,2a2,2b2
得るために、2倍値演算器30,31,32が設
けられている。33,34,35は減算器であ
り、前段の加算器27,28,29の出力から演
算器30,31,32の出力を減算して、(1)(2)(3)
式のa2+b2−2c2,b2+c2−2a2,c2+a2−2b2を得
るものである。36は加算器であり、加算器29
の出力c2+a2に、二乗演算器25の出力b2を加算
して(1)(2)(3)式のAに含まれるa2+b2+c2を得るも
のである。37,38,39は除算器であり、前
段の減算器33,34,35の出力を別に求めた
3Aで割算し、(1)(2)(3)式の第2項を求めるもので
ある。40,41,42は加算器であり、前段の
除算器37,38,39の出力と別に求めた(1)(2)
(3)式の第1項の値A/3とを加算して(1)(2)(3)式の相 電流x,y,zを出力するものである。 線電流検出ライン21,22,23に接続され
ている加算器43,44,45は、(1)(2)(3)式のA
を示す式の中のa+b,b+c,c+aを求める
ものである。加算器46は、加算器43の出力a
+bにライン23のcを加算してAを示す式の中
の(a+b+c)を求めるものである。減算器4
7は加算器43の出力からライン23の出力を減
算してAを示す式のa+b−cを得るものであ
る。減算器48は、加算器44の出力からライン
22の出力を減算して、Aを示す式の(−a+b
+c)を得る回路である。減算器49は、加算器
45の出力からライン22の出力を減算してAを
示す式の(a−b+c)を得る回路である。乗算
器50は加算器46の出力と減算器47の出力と
を乗算してAを示す式の(a+b+c)(a+b
−c)を得る回路である。乗算器51は減算器4
8の出力と減算器49の出力とを乗算して、Aを
示す式の(−a+b+c)(a−b+c)を得る
回路である。乗算器52は前段の2つの乗算器5
0,51の2つの出力を乗算し、Aを示す式の
(a+b+c)(−a+b+c)(a−b+c)(a
+b−c)(以下、これをBと呼ぶ)を得るもの
である。乗算器53は前段の乗算器52の出力B
に基づいてB×3を得る回路である。平方根演算
器54は、前段の乗算器53の出力3Bの平方根
√3を得る回路である。加算器55は前段の演
算器54の出力と加算器36の出力とを加算して
Aを示す式のa2+b2+c2+√3を得る回路であ
る。1/2除算器56は前段の加算器55の出力の
1/2の出力を得る回路である。平方根演算器57
は、前段の1/2除算器56の出力の平方根即ちA
を示す式の出力を得るものである。乗算器58は
前段の演算器57の出力Aに3を乗算して3Aを
求め、これを各相の除算器37,38,39に与
えるものである。除算器69は平方根演算器57
の出力Aの1/3を求め、これを加算器40,41,
42に供給するものである。 第2図の線電流−相電流変換回路17を使用す
る方式の精度を次に示す。第1図の回路において
負荷5〜13に流れる相電流を変流器で直接に測
定し、第1、第2、第3相の合計相電流を求めた
ところ、0.3(A),0.6(A),0.9(A)であつた。
この場合の第1、第2、第3相の線電流を電流検
出器14,15,16で測定したところ、1.06
(A),0.8(A),1.38(A)であつた。そして、変
換回路17の出力段の第1、第2、第3相の相電
流x,y,zは、0.31(A),0.6(A),0.89(A)
であつた。従つて、±1%内の誤差で合計相電流
を変換回路17で求めることが出来る。 発明の効果 上述から明らかな如く、本発明によれば、多数
の略同一の力率の単相負荷が各線間に接続され、
全体として不平衡負荷となつている場合であつて
も、各相の相電流を直接に検出しないで、各相の
線電流を検出するのみで、各相の合計の相電流を
知ることが出来る。従つて、合計の相電流を簡単
な構成で容易に知ることが出来る。また、電気炉
のように直接に測定することが不可能な三相不平
衡負荷の相電流を知ることも可能である。
[C] Hereinafter, equation (9) is referred to as A. Furthermore, the following equation holds true from equation (5). b 2 −c 2 =x 2 −z 2 +y(x−y)−(x−z)(x+y
+z) c 2 -a 2 = (y-x) (x+y+z) a 2 -b 2 = (z-y) (x+y+z) ...(10) x+y+z=b 2 -c 2 /x-z=c 2 - a 2 /y−z=a 2 −b 2
/z-y=A x-z= b2 - c2 /Ay-x= c2 - a2 /Az-y= a2 - b2 /A...(11) Equation (11) and x+y+z From the relationship =A, the following equation holds true. 3x=A+ b2 - c2 /A- c2 - a2 /A3y=A+b2-a2/A-a2-c2/A3z=A+c2-b2 / A - b2 - a2 / A...(12) From this equation (12), the above-mentioned equations (1), (2), and (3) can be obtained.
Therefore, equations (1), (2), and (3) represent the phase current of each phase. The line current-phase current conversion circuit 17 in FIG.
In order to execute the calculation of equation (3), the line current a detected by the current detectors 14, 15, 16 of each phase in FIG.
Square calculators 24, 25 for calculating the square values of b and c,
26 in the current detection lines 21, 22, and 23 of each phase. At the output stage of each square calculator 24 , 25 , 26, there is a Adders 27, 28, 29
Further, in order to obtain 2c 2 , 2a 2 , and 2b 2 of equations (1), (2), and (3), double value calculators 30, 31, and 32 are provided. 33, 34, and 35 are subtracters, which subtract the outputs of the arithmetic units 30, 31, and 32 from the outputs of the adders 27, 28, and 29 in the previous stage, and obtain (1)(2)(3).
This is to obtain the equations a 2 +b 2 -2c 2 , b 2 +c 2 -2a 2 , c 2 +a 2 -2b 2 . 36 is an adder; adder 29
The output b 2 of the squaring calculator 25 is added to the output c 2 +a 2 of , to obtain a 2 +b 2 +c 2 included in A in equations (1), (2), and (3). 37, 38, and 39 are dividers, and the outputs of subtractors 33, 34, and 35 in the previous stage were obtained separately.
3A to find the second term in equations (1), (2), and (3). 40, 41, and 42 are adders, which are obtained separately from the outputs of the previous stage dividers 37, 38, and 39 (1) (2)
The value A/3 of the first term of equation (3) is added to output the phase currents x, y, and z of equations (1), (2), and (3). The adders 43, 44, 45 connected to the line current detection lines 21, 22, 23 are
This is to find a+b, b+c, and c+a in the expression. The adder 46 outputs the output a of the adder 43.
(a+b+c) in the equation representing A is obtained by adding c on line 23 to +b. Subtractor 4
7 subtracts the output of line 23 from the output of adder 43 to obtain a+b−c of the equation representing A. The subtracter 48 subtracts the output of the line 22 from the output of the adder 44 to obtain (-a+b
This is a circuit that obtains +c). The subtracter 49 is a circuit that subtracts the output of the line 22 from the output of the adder 45 to obtain (ab+c) of the equation representing A. The multiplier 50 multiplies the output of the adder 46 and the output of the subtracter 47 to obtain the formula (a+b+c)(a+b
-c). Multiplier 51 is subtracter 4
This circuit multiplies the output of 8 and the output of the subtracter 49 to obtain (-a+b+c)(ab+c) of the equation representing A. The multiplier 52 is the two multipliers 5 in the previous stage.
Multiply the two outputs of 0 and 51 to obtain the formula (a+b+c)(-a+b+c)(a-b+c)(a
+b−c) (hereinafter referred to as B). The multiplier 53 receives the output B of the multiplier 52 in the previous stage.
This is a circuit that obtains B×3 based on . The square root calculator 54 is a circuit that obtains the square root √3 of the output 3B of the multiplier 53 at the previous stage. The adder 55 is a circuit that adds the output of the arithmetic unit 54 in the preceding stage and the output of the adder 36 to obtain the equation representing A, a 2 +b 2 +c 2 +√3. The 1/2 divider 56 is a circuit that obtains 1/2 of the output of the adder 55 at the previous stage. Square root calculator 57
is the square root of the output of the 1/2 divider 56 in the previous stage, that is, A
This is to obtain the output of the formula that shows . The multiplier 58 multiplies the output A of the arithmetic unit 57 in the previous stage by 3 to obtain 3A, and supplies this to the dividers 37, 38, and 39 of each phase. The divider 69 is the square root operator 57
Find 1/3 of the output A of , and add this to adders 40, 41,
42. The accuracy of the method using the line current-to-phase current conversion circuit 17 shown in FIG. 2 is shown below. In the circuit shown in Figure 1, the phase current flowing through loads 5 to 13 was directly measured using a current transformer, and the total phase current of the first, second, and third phases was determined to be 0.3 (A) and 0.6 (A). ), 0.9(A).
When the line currents of the first, second, and third phases in this case were measured using current detectors 14, 15, and 16, they were found to be 1.06
(A), 0.8 (A), and 1.38 (A). The phase currents x, y, and z of the first, second, and third phases of the output stage of the conversion circuit 17 are 0.31 (A), 0.6 (A), and 0.89 (A).
It was hot. Therefore, the total phase current can be determined by the conversion circuit 17 with an error within ±1%. Effects of the Invention As is clear from the above, according to the present invention, a large number of single-phase loads having substantially the same power factor are connected between each line,
Even if the load is unbalanced as a whole, the total phase current of each phase can be determined by simply detecting the line current of each phase without directly detecting the phase current of each phase. . Therefore, the total phase current can be easily known with a simple configuration. It is also possible to know the phase current of a three-phase unbalanced load, which cannot be directly measured, such as in an electric furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係わる電流検出装置
のブロツク図、第2図は第1図の線電流−相電流
変換回路を示すブロツク図である。第3図は相電
流と線電流との関係を示すベクトル図である。 1……第1の線路、2……第2の線路、3……
第3の線路、5,6,7,8,9,10,11,
12,13……溶接機負荷、14……第1の電流
検出器、15……第2の電流検出器、16……第
3の電流検出器、17……線電流−相電流変換回
路。
FIG. 1 is a block diagram of a current detection device according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the line current-phase current conversion circuit of FIG. FIG. 3 is a vector diagram showing the relationship between phase current and line current. 1...first track, 2...second track, 3...
Third track, 5, 6, 7, 8, 9, 10, 11,
12, 13... Welding machine load, 14... First current detector, 15... Second current detector, 16... Third current detector, 17... Line current-phase current conversion circuit.

Claims (1)

【特許請求の範囲】 1 複数の略同一力率の単相負荷からなる不平衡
負荷が接続されている三相交流回路の第1相、第
2相、及び第3相の線電流a,b,cを検出する
ために第1、第2、及び第3の線路に設けられた
第1、第2、及び第3の線電流検出器と、 前記第1、第2、及び第3の線電流検出器に接
続され、前記不平衡負荷の第1、第2、及び第3
の相の相電流x,y,zを、 x=A/3+a2+b2−2c2/3A y=A/3+b2+c2−2a2/3A z=A/3+c2+a2−2b2/3A (但し、Aは 【化】 である。)の式に従つて求める線電流−相電流変
換回路と から成る三相交流回路の電流検出装置。
[Claims] 1. Line currents a, b of the first, second, and third phases of a three-phase AC circuit to which an unbalanced load consisting of a plurality of single-phase loads with substantially the same power factor is connected. , c, first, second, and third line current detectors provided on the first, second, and third lines to detect the first, second, and third lines; the first, second, and third unbalanced loads connected to a current detector;
The phase currents x, y , z of the phases are : A current detection device for a three-phase AC circuit consisting of a line current-to-phase current conversion circuit calculated according to the formula 3A (where A is [C]).
JP17303284A 1984-08-20 1984-08-20 Current detector for three-phase alternating current circuit Granted JPS61221666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17303284A JPS61221666A (en) 1984-08-20 1984-08-20 Current detector for three-phase alternating current circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17303284A JPS61221666A (en) 1984-08-20 1984-08-20 Current detector for three-phase alternating current circuit

Publications (2)

Publication Number Publication Date
JPS61221666A JPS61221666A (en) 1986-10-02
JPH0576585B2 true JPH0576585B2 (en) 1993-10-22

Family

ID=15952935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17303284A Granted JPS61221666A (en) 1984-08-20 1984-08-20 Current detector for three-phase alternating current circuit

Country Status (1)

Country Link
JP (1) JPS61221666A (en)

Also Published As

Publication number Publication date
JPS61221666A (en) 1986-10-02

Similar Documents

Publication Publication Date Title
US20060215429A1 (en) Power inverter system and method of correcting supply voltage of the same
TW200826464A (en) Instantaneous voltage-drop compensation circuit, power conversion apparatus, instantaneous voltage-drop compensation method and computer readable medium storing instantaneous voltage-drop compensation program
Filipski Polyphase apparent power and power factor under distorted waveform conditions
KR880004620A (en) Reactive Power Compensation Device by Current Converter
JP2689343B2 (en) AC power measuring device
JP2003224928A (en) Digital directional relay
JPH09233701A (en) Controller of active filter
JPH0576585B2 (en)
JP3611235B2 (en) Active filter control method
JP2000059995A (en) Compensating apparatus of higher-harmonic reactive power for power system
JP3104492B2 (en) Power harmonic / reactive power compensator
JPH0625951B2 (en) Reactive power compensator
JPH1020002A (en) Method for judging deterioration of storage battery of power source device
KR100266403B1 (en) Output voltage control device for 3-phase inverter
JPH073803Y2 (en) Compensation current detection circuit for power compensator
JP2796158B2 (en) Compensation current calculation circuit
JPH03135389A (en) Method and device for controlling voltage type inverter
JPH063566B2 (en) Power adjustment method
JPH0477550B2 (en)
JPH0130163B2 (en)
JPH0682305B2 (en) Reactive power compensator
JPH07104741B2 (en) Power factor adjusting device for three-phase AC circuit
JPS5872387A (en) Method and device for vector controlling of induction motor
JPH0418615A (en) Manufacture of reactive power compensator
JPH04344128A (en) Unbalance compensator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees