JPH0576566B2 - - Google Patents

Info

Publication number
JPH0576566B2
JPH0576566B2 JP60052802A JP5280285A JPH0576566B2 JP H0576566 B2 JPH0576566 B2 JP H0576566B2 JP 60052802 A JP60052802 A JP 60052802A JP 5280285 A JP5280285 A JP 5280285A JP H0576566 B2 JPH0576566 B2 JP H0576566B2
Authority
JP
Japan
Prior art keywords
air
flow
duct
measurement
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60052802A
Other languages
Japanese (ja)
Other versions
JPS61210912A (en
Inventor
Masatoshi Suzuki
Masakazu Tsuzuki
Seiro Katagiri
Takeshi Taniwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP5280285A priority Critical patent/JPS61210912A/en
Publication of JPS61210912A publication Critical patent/JPS61210912A/en
Publication of JPH0576566B2 publication Critical patent/JPH0576566B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、事務所ビルや店舗、工場等の建築物
内に配置された空気調和設備、給排気設備などの
空調機器等の空気排出入口(空気口)から流出入
する空気の流量を測定する装置に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to air exhaust inlets of air conditioning equipment such as air conditioning equipment, supply and exhaust equipment, etc. located in buildings such as office buildings, stores, and factories. This relates to a device that measures the flow rate of air flowing in and out from an air port.

〔従来の技術および問題点〕[Conventional technology and problems]

事務所ビルや店舗、工場等の建築物には、該建
築物内部における住環境を適度に保つ工夫がなさ
れており、その一つとして、該建築物内部の空気
を清浄に保ち、また温湿度を適度な範囲内に制御
すべく空気調和設備、給排気設備などの空調機器
が配置されている。この空調機器は、一般に床面
スペースを広く確保するために、その空気排出入
口が天井に取り付けられることが多く、温度制御
された空気は、第3図に例示する様に、吹出しノ
ズルにより天井面に沿つて広げられて室内全域に
均等に広がる様にされている。
Buildings such as office buildings, stores, and factories are designed to maintain an appropriate living environment inside the building. Air conditioning equipment such as air conditioning equipment and air supply/exhaust equipment is installed to control air flow within a reasonable range. In general, in order to secure a wide floor space, the air exhaust inlet of this air conditioner is often installed on the ceiling, and the temperature-controlled air is delivered to the ceiling by a blow-out nozzle, as shown in Figure 3. It is spread along the entire room so that it is spread evenly throughout the room.

省エネルギーが産業界における重要テーマとし
て強く位置付けられる昨今にあつて、当然のこと
ながら、この空調機器にも消費エネルギーの低減
が強く望まれている。この空調機器の省エネルギ
ーは、温度、湿度等の条件下での熱負荷および要
求に見合つた適切な空気流量の供給により達成す
ることができる。
Nowadays, energy saving is strongly positioned as an important theme in the industrial world, and naturally there is a strong desire to reduce the energy consumption of air conditioning equipment. This energy saving of air conditioning equipment can be achieved by supplying an appropriate air flow rate that matches the heat load and demand under conditions such as temperature and humidity.

従来より、この空気流量の測定方法として、空
気排出入口につながるダクトの一部に流速測定用
の穴を設け、該部に測定用器具(風速計等)を挿
入して、該部を流れる空気の流速を測定し通路の
断面積を考慮して流量を測定する方法がある。し
かし、この方法による場合、風速計の前方にダク
ト径の6倍程度以上の直線部(空間部)が必要で
あること、また、風速計の全面に整流格子を設け
なければ正確な流量測定が難しい等の制約があり
精度上問題があつた。また、測定点についても、
ダクトのX方向、Y方向で、それぞれ最低10点ず
つ設ける必要があり、このような測定方法は、例
え正確な送風量を測定することが可能であつて
も、既存の空調ダクト系においては、実用上不適
当であつた。
Conventionally, the method for measuring air flow rate has been to provide a hole for measuring the flow velocity in a part of the duct connected to the air exhaust inlet, insert a measuring instrument (such as an anemometer) into the part, and measure the air flowing through the part. There is a method of measuring the flow rate by taking into account the cross-sectional area of the passage. However, when using this method, a straight section (space) approximately 6 times the duct diameter or more is required in front of the anemometer, and accurate flow measurement cannot be achieved unless a rectifying grid is provided over the entire surface of the anemometer. There were limitations such as difficulty, and there were problems with accuracy. Also, regarding the measurement points,
It is necessary to provide at least 10 points each in the X direction and Y direction of the duct, and even if such a measurement method is possible to accurately measure the air flow, it is difficult to use in existing air conditioning duct systems. It was inappropriate for practical use.

また、空調機器の空気排出入口に、1本または
数本の風速センサよりなる風速測定装置を近づけ
て、該部から排出入する空気の流速を測定する方
法がある。しかし、この方法では、風速計の指向
特性の平坦域が狭く、空気通路面積の求め方が正
確でなく、また、空気の流れの分布が一様ではな
いので、測定点がより測定値のばらつきが生じ、
誤差が含まれ易く、正確な送風量を測定すること
はできない。
Furthermore, there is a method in which a wind speed measurement device consisting of one or several wind speed sensors is brought close to an air exhaust inlet of an air conditioner to measure the flow velocity of air discharged from the air outlet. However, with this method, the flat area of the anemometer's directional characteristics is narrow, the air passage area cannot be determined accurately, and the distribution of air flow is not uniform, so the measurement points are more likely to cause variations in measured values. occurs,
It is easy to include errors and it is not possible to accurately measure the amount of air blown.

本発明者等は、上述の如き従来技術の問題点に
鑑み、これを解決すべく各種の系統的実験及び理
論的解析を重ねた結果、被測定空気の流量を正確
に測定するために空気の流速および流れの方向を
できる限り均一化して測定部に導くことに着眼
し、本発明を成すに至つたものである。
In view of the problems of the prior art as described above, the inventors of the present invention have conducted various systematic experiments and theoretical analyzes in order to solve the problems. The present invention was developed by focusing on guiding the flow to the measuring section while making the flow velocity and direction as uniform as possible.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、空調機器等の空気口(空気排
出入口)から流出入する空気の流量を、正確にし
かも迅速に測定できるコンパクトな空気流量測定
装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a compact air flow rate measuring device that can accurately and quickly measure the flow rate of air flowing in and out of an air outlet (air exhaust inlet) of an air conditioner or the like.

〔発明の構成〕[Structure of the invention]

本発明の空調機器等の空気口における空気流量
測定装置(以下、単に流量測定装置とする)は、
空調機器等の空気口(空気排出入口)から流出入
する空気の流速を測定する測定本体と、該測定本
体から出力される信号を集録する集録部と、該集
録部から出力した信号を演算処理する演算部とか
ら成る流量測定装置であつて、 該測定本体は、該測定本体の外枠をなしかつ空
調機器等の空気排出入口から流出入する被測定空
気の連続する流れを形成すべく配設したダクト
と、該ダクト内にあつては前記ダクトの被測定空
気導入端部近傍に形成し所定の容積を有する空間
部と、該空間部の被測定空気の流れの方向下流側
にあつて該ダクト内の流れに対して略直角に配設
され前記被測定空気の流れの向きを変更または調
整する流向調整手段と、該流向調整手段の下流側
にダクト内に流れに対して略直角に配設したセン
サ支持体と該センサ支持体内の所定の箇所に配設
され、被測定空気の流速を検出する複数個のセン
サとからなる測定部とから成り、 前記流向調整手段が、ダクトの被測定空気導入
端部と測定部との間に、しかもダクト内の略中央
部に配設され、頂部が流れの上流に向いた円錐ま
たは角錐状の逆流防止コアを有して成り、測定部
およびその近傍部での空気の逆流を防止するよう
にしてなり、 前記集録部が、前記測定本体の各センサからの
流速信号を集録し、前記演算部が、前記集録部か
らの信号に基づき平均流速を演算することにより
前記ダクト内流路面積から流量を演算するもので
あることを特徴とするものである。
The air flow rate measurement device (hereinafter simply referred to as flow rate measurement device) at the air port of an air conditioner, etc. of the present invention includes:
A measurement unit that measures the flow velocity of air flowing in and out from the air outlet (air exhaust inlet) of an air conditioner, an acquisition unit that acquires the signal output from the measurement unit, and arithmetic processing of the signal output from the acquisition unit. A flow measuring device comprising a calculation unit, the measuring body having no outer frame and arranged to form a continuous flow of air to be measured flowing in and out from an air exhaust inlet of an air conditioner, etc. a duct provided within the duct, a space having a predetermined volume formed near the air-introducing end of the duct, and a space on the downstream side of the space in the direction of flow of the air to be measured; a flow direction adjusting means disposed substantially perpendicularly to the flow in the duct for changing or adjusting the direction of the flow of the air to be measured; and a flow direction adjusting means arranged substantially perpendicularly to the flow in the duct downstream of the flow direction adjusting means. The measurement unit includes a sensor support provided therein and a plurality of sensors placed at predetermined locations within the sensor support to detect the flow velocity of the air to be measured, and the flow direction adjusting means is configured to It has a conical or pyramid-shaped backflow prevention core with the top facing upstream of the flow, which is disposed between the measuring air introduction end and the measuring section, and approximately in the center of the duct. The device is designed to prevent backflow of air in the vicinity thereof, and the acquisition section acquires flow velocity signals from each sensor of the measurement main body, and the calculation section calculates the average flow velocity based on the signals from the acquisition section. The present invention is characterized in that the flow rate is calculated from the flow path area in the duct by calculating .

以下、本発明の構成をより詳細に説明する。 Hereinafter, the configuration of the present invention will be explained in more detail.

本発明の流量測定装置の全体構成を表す斜視図
を第1図に、該装置の一部断面図を第2図にそれ
ぞれ示す。
FIG. 1 is a perspective view showing the overall configuration of the flow rate measuring device of the present invention, and FIG. 2 is a partial sectional view of the device.

本発明でいう測定本体7とは、第1図および第
2図に示す様に、空調機器等の空気排出入口から
流出入する空気の流速を測定するもので、ダクト
2、空間部22、流向調整手段3、測定部1とか
ら構成される。
As shown in FIGS. 1 and 2, the measurement main body 7 in the present invention is used to measure the flow velocity of air flowing in and out from the air discharge inlet of an air conditioner, etc., and includes the duct 2, the space 22, the flow direction It is composed of an adjusting means 3 and a measuring section 1.

ダクト2は、測定本体の外枠をなし、かつ空調
機器等の空気排出入口から流出入する被測定空気
の連続する流れを形成すべく配設した金属または
プラスチツクス、セラミツクス等から成る上底部
が開口した空胴体である。
The duct 2 forms the outer frame of the measurement body, and has an upper bottom made of metal, plastics, ceramics, etc., which is arranged to form a continuous flow of air to be measured flowing in and out from the air exhaust inlet of an air conditioner, etc. It is an open empty fuselage.

該ダクト2は、必要に応じて、測定部1を支持
し、更には、流向調整手段3を支持する。
The duct 2 supports the measuring section 1 and further supports the flow direction adjusting means 3 as required.

また、該ダクト2は、空調装置(図示せず)の
空気排出入口61に移動させて空気の流量を測定
する際に、該部から流出入する空気をダクト2に
漏らさず導入出すべく、ダクト2のフランジ面2
4にシール材25を取付けることが好ましい。
In addition, when the duct 2 is moved to the air exhaust inlet 61 of an air conditioner (not shown) to measure the flow rate of air, the duct 2 is designed to introduce air flowing in and out from the section without leaking into the duct 2. 2 flange surface 2
It is preferable to attach the sealing material 25 to 4.

次に、空間部22は、該ダクト内にあつて、前
記ダクトの被測定空気導入端部近傍に形成した所
定の容積を有する空間である。
Next, the space section 22 is a space having a predetermined volume, which is formed in the duct near the end of the duct where the air to be measured is introduced.

この空間部22は、ダクト2の被測定空気導入
端部21から流入する空気の速度を落とし、空気
の流れの偏向を小さくして通気抵抗を小さくする
ために設けたものであり、延いては、測定部1お
よびその近傍部における流速分布が一様になるよ
うにするためのものである。
This space 22 is provided to reduce the speed of the air flowing in from the measured air introduction end 21 of the duct 2, reduce the deflection of the air flow, and reduce ventilation resistance. , to make the flow velocity distribution uniform in the measuring section 1 and its vicinity.

次に、流向調整手段3は、前記ダクト2内の空
間部22の被測定空気の流れの方向下流側にあつ
て該ダクト内の流れに対して略直角に配設され前
記被測定空気の流れの向きを変更または調整する
する。
Next, the flow direction adjusting means 3 is disposed on the downstream side of the space 22 in the duct 2 in the direction of the flow of the air to be measured, and is disposed substantially perpendicular to the flow in the duct. To change or adjust the orientation of

ダクト2の被測定空気導入端部21から流入し
てくる空気は、該導入端部21を含む平面、即ち
空気流入面において、必ずしも空気の流入速度が
均一とは言えず、また流れの方向も一様ではない
ので、空気の流量の正しい測定のためには、これ
ら空気の流速および流れの方向をできる限り均一
化して測定部へ導くことが肝要である。
The air flowing in from the measurement target air introduction end 21 of the duct 2 does not necessarily have a uniform inflow speed on a plane that includes the introduction end 21, that is, the air inflow surface, and the direction of the flow also varies. In order to accurately measure the air flow rate, it is important to make the flow velocity and direction of the air as uniform as possible before guiding it to the measuring section.

この流向調整手段3は、ダクト2内部にあつて
測定部1の上流側に設けて成るもので、該部に流
れ込む空気の流れ方向を調整する機能、and/or
ダクト2内における導入空気の逆流を防止する機
能、and/orダクト2内での流速分布を一様にす
る機能等を有する。
This flow direction adjusting means 3 is provided inside the duct 2 and upstream of the measuring section 1, and has the function of adjusting the flow direction of the air flowing into the section.
It has a function of preventing backflow of the introduced air in the duct 2, a function of making the flow velocity distribution in the and/or duct 2 uniform, etc.

本発明では特に、第5図に例示する如く流向調
整手段3として、逆流防止コア31を配設してな
り、該逆流防止コア31は、ダクト2の被測定空
気導入端部21を測定部1との間に、しかもダク
ト2内の略中央部に配設され、頂部37が被測定
空気の流れの上流に向いた円錐または角錐形状の
コアであり、ダクト2内、測定部1およびその近
傍での空気の逆流を防止する。
In particular, in the present invention, as illustrated in FIG. It is a conical or pyramid-shaped core with the apex 37 facing upstream of the flow of the air to be measured, and is disposed approximately at the center of the duct 2 between the duct 2, the measuring section 1, and its vicinity. prevent backflow of air.

次に、測定部1は、第1図および第2図に示す
様に、前記流向調整手段3の下流側にダクト2内
の被測定空気の流れに対して略直角に配設したセ
ンサ支持体12と、該センサ支持体12内の所定
の箇所に配設され、被測定空気の流速を検出する
複数個のセンサ11とから成り、ダクト2の被測
定空気導入端部21から導かれた空気の流速を正
確に検出する。
Next, as shown in FIGS. 1 and 2, the measuring section 1 includes a sensor support disposed downstream of the flow direction adjusting means 3 substantially at right angles to the flow of the air to be measured in the duct 2. 12 and a plurality of sensors 11 arranged at predetermined locations within the sensor support 12 to detect the flow velocity of the air to be measured. Accurately detect the flow velocity of

この測定部1を構成するセンサ11は、空調機
器が室温制御をしている場合、該空調機器の室温
設定値が外気温または季節により異なり、従つて
空気排出入口から排出される空気の温度も異なる
ので、出力が空気の温度、室内温度等に左右され
ない流速センサであることが好ましい。
The sensor 11 constituting this measurement unit 1 detects that when an air conditioner is controlling the room temperature, the room temperature setting value of the air conditioner varies depending on the outside temperature or the season, and therefore the temperature of the air discharged from the air exhaust inlet also changes. Therefore, it is preferable to use a flow rate sensor whose output is not affected by air temperature, indoor temperature, etc.

また、測定部1において、複数箇所にセンサ1
1を配設して同時に流速を検出するので、該セン
サ11は、それ自体通気抵抗とならない構造とす
ることが好ましい。
In addition, in the measuring section 1, sensors 1 are installed at multiple locations.
Since the sensor 11 is arranged to detect the flow velocity at the same time, it is preferable that the sensor 11 itself has a structure that does not cause ventilation resistance.

本発明でいう集録部4とは、前記測定本体7の
測定部1の各センサ11と接続され、該各センサ
から出力された信号を集録する。
The acquisition unit 4 in the present invention is connected to each sensor 11 of the measurement unit 1 of the measurement main body 7, and acquires signals output from each sensor.

本発明でいう演算部5とは、該集録部4に接続
され前記集録部からの信号に基づき平均流速を演
算することによりダクト2内流路面積から流量を
演算し、空調機器等の空気排出入口61から流出
入する空気の流量を算出する。
The calculation unit 5 in the present invention is connected to the acquisition unit 4, calculates the average flow velocity based on the signal from the acquisition unit, calculates the flow rate from the flow path area in the duct 2, and discharges air from air conditioning equipment, etc. The flow rate of air flowing in and out from the inlet 61 is calculated.

ここで、以上の測定部1、ダクト2、流向調整
手段3からなる測定本体7と、集録部4と、演算
部5とから成る本発明の流量測定装置を用いて、
空調機器等の空気口における流量を測定する場合
の方法について簡単に述べる。まず、測定部1、
流向調整手段3を含むダクト2、場合によつて
は、これらを支持するための支持体を含む測定本
体7を空調機器の空気排出入口61に移動して、
ダクト2の開口部が該空気排出入口61を含むよ
うに位置させ、好ましくはダクト2の被測定空気
導入端部21側のフランジ部22等を天井等にシ
ール材を介して密着させる。次に、ダクト2に導
入され測定部1を通過する空気の流速を検出し、
集録部4を介して演算部5で気流の通路面積等を
考慮し演算・処理して空調機器等の空気口から排
出入する空気の流量を導出する。
Here, using the flow rate measuring device of the present invention, which consists of the measurement body 7 consisting of the measurement section 1, the duct 2, and the flow direction adjustment means 3, the acquisition section 4, and the calculation section 5,
A method for measuring the flow rate at the air vents of air conditioning equipment, etc. will be briefly described. First, measurement section 1,
The duct 2 containing the flow direction adjustment means 3 and, in some cases, the measurement body 7 containing a support for supporting them are moved to the air discharge inlet 61 of the air conditioning equipment,
The opening of the duct 2 is positioned so as to include the air exhaust inlet 61, and preferably the flange portion 22 and the like on the side of the air introduction end 21 to be measured of the duct 2 are brought into close contact with the ceiling or the like via a sealing material. Next, detect the flow velocity of the air introduced into the duct 2 and passing through the measurement part 1,
Through the acquisition section 4, the calculation section 5 calculates and processes the airflow by considering the airflow passage area, etc., and derives the flow rate of air discharged and inputted from the air opening of the air conditioner or the like.

〔発明の作用および効果〕[Operation and effects of the invention]

本発明の流量測定装置は、空調機器等の空気排
出入口から流出入する空気の流量を、正確にしか
も迅速に測定することができる。また、この測定
装置は、軽量、コンパクトで持ち運び易く、手軽
に測定を行うことができる。
The flow measuring device of the present invention can accurately and quickly measure the flow rate of air flowing in and out from an air exhaust inlet of an air conditioner or the like. Further, this measuring device is lightweight, compact, and easy to carry, and can perform measurements easily.

即ち、先ずダクトの被測定空気導入端部と測定
部との間に設けた適宜の容積を有する空間部にお
いて、該部に流入する空気の速度を落とし、空気
の流れの偏向を小さくし、また通気抵抗を小さく
する。次いで、測定部の上流側に設けられた流向
調整手段により、空気の流れの向きを変更・調整
して空気の流速および流れ方向を均一化する。こ
のとき、本発明では特に流向調整手段として逆流
防止コア31を配設することにより、ダクト2内
に流れ込む空気の測定部およびその近傍での逆流
を防止することができ、実際の吹出し風量と測定
風量の差を少なくすることができるので、従つ
て、空気の流量測定を正確ならしめることができ
る。
That is, first, in a space having an appropriate volume provided between the end of the duct for introducing the air to be measured and the measurement part, the speed of the air flowing into the space is reduced, the deflection of the air flow is reduced, and Reduce ventilation resistance. Next, the direction of the air flow is changed and adjusted by the flow direction adjusting means provided upstream of the measuring section to equalize the flow velocity and flow direction of the air. At this time, in the present invention, by particularly arranging the backflow prevention core 31 as a flow direction adjustment means, it is possible to prevent the backflow of air flowing into the duct 2 at the measurement part and its vicinity, and the actual blowout air volume and measurement Since the difference in air volume can be reduced, it is possible to accurately measure the air flow rate.

なお、該逆流防止コア31を配設しない場合に
は、第4図に例示する如く、ダクト2内の中央部
で逆流を起こす場合があり、更に、測定部1また
はその近傍で逆流が発生する可能性が大きく、正
確な空気の流量測定を行うには、積極的に逆流防
止コア31を配設する必要がある。次いで、この
流速分布および流れの方向の均一化された空気の
流速を測定部で検出するので、空気排出入口から
流出入する空気の流量を正確に測定することがで
きる。また、測定部で検出された空気の流速を集
録部に集録し、演算部でこの集録した出力信号を
演算・処理することにより、空気の流量の測定を
迅速に行うことができる。この際、測定部のセン
サは数個配列されており、この複数個のセンサか
ら得られた流速の検出値を平均化して流量を算出
するので、より正確な流量測定を行うことができ
る。
Note that if the backflow prevention core 31 is not provided, backflow may occur in the center of the duct 2, as illustrated in FIG. 4, and furthermore, backflow may occur at or near the measurement section 1. This is highly possible, and in order to accurately measure the air flow rate, it is necessary to proactively arrange the backflow prevention core 31. Next, since the flow velocity of the air, which is equalized in the flow velocity distribution and the direction of flow, is detected by the measuring section, the flow rate of the air flowing in and out from the air discharge inlet can be accurately measured. In addition, the air flow rate detected by the measurement unit is collected in the acquisition unit, and the collected output signal is calculated and processed in the calculation unit, thereby making it possible to quickly measure the air flow rate. At this time, several sensors of the measuring section are arranged, and the flow rate is calculated by averaging the detected values of the flow velocity obtained from the plurality of sensors, so that more accurate flow rate measurement can be performed.

〔実施態様の説明〕[Description of implementation]

本発明を実施するに当り、以下の様な態様を採
り得る。
In carrying out the present invention, the following embodiments may be adopted.

以下に、本発明の第1態様を、第7図を用いて
説明する。
The first aspect of the present invention will be explained below using FIG. 7.

本発明の第1の態様は、流向調整手段3として
逆流防止コア31およびガイドベーン32を配設
したもので、該ガイドベーン32は、ダクト2の
被測定空気導入端部21と測定部1との間に配設
され、空気の流れに対して適宜の角度を有する複
数のベーン35から成り、被測定空気の流速が測
定部で一様になるように流入する空気の流れの方
向を変更・調整する。尚、該ガイドベーン32
は、空気排出入口61と測定部1との間にあつ
て、ベーン35の角度は、空気排出入口61の流
れの向きと測定部1の期待する流れの向きに合わ
せて、被測定空気の流速が測定部1で一様になる
ように決定される。
In the first aspect of the present invention, a backflow prevention core 31 and a guide vane 32 are provided as the flow direction adjustment means 3, and the guide vane 32 is connected to the measurement target air introduction end 21 of the duct 2 and the measurement part 1. It consists of a plurality of vanes 35 disposed between them and having an appropriate angle with respect to the air flow, and changes the direction of the incoming air flow so that the flow velocity of the air to be measured is uniform in the measurement part. adjust. In addition, the guide vane 32
is located between the air exhaust inlet 61 and the measurement unit 1, and the angle of the vane 35 is adjusted to match the flow direction of the air exhaust inlet 61 and the flow direction expected by the measurement unit 1, and the flow velocity of the air to be measured is adjusted. is determined so that it is uniform in the measurement unit 1.

本第1の態様は、上述の構成を採ることによ
り、ガイドベーン32をさらに配設したので、該
部を通過する空気の流れ方向を変更・調整して測
定部およびその近傍における逆流の発生を更に防
ぐことができ、測定部およびその近傍での空気の
流速分布の一様化を図ることができるので、より
正確な空気の流量測定を実現することができる。
In the first aspect, by adopting the above-mentioned configuration, the guide vane 32 is further provided, so that the flow direction of the air passing through this part can be changed and adjusted to prevent the occurrence of backflow in the measurement part and its vicinity. Furthermore, since it is possible to make the air flow velocity distribution uniform in the measuring section and its vicinity, it is possible to realize more accurate air flow rate measurement.

以下に、本発明の第2態様を、第8図を用いて
説明する。
The second aspect of the present invention will be explained below using FIG. 8.

本発明の第2態様は、流向調整手段3として逆
流防止コア31および整流体33を配設したもの
で、該整流体33は、ダクト2の被測定空気導入
端部21と測定部1との間に配設した網状体であ
り、被測定空気の流速が一様になる様に、空気を
該網状体整流体を通過させることにより調整す
る。これは、被測定空気が該網状体を通過する
際、該網状体またはその近傍部において流速が部
分的に速い場合には、被測定空気は、通気抵抗と
の関係でより通気抵抗の低い部分に流れ込み、結
果として流速が一様化されるためである。
In the second aspect of the present invention, a backflow prevention core 31 and a flow regulating member 33 are provided as the flow direction adjusting means 3. There is a net-like body disposed between the two, and the air is adjusted by passing the air through the net-like body so that the flow velocity of the air to be measured becomes uniform. This means that when the air to be measured passes through the net-like body, if the flow velocity is partially high in the net-like body or the vicinity thereof, the air to be measured passes through the part where the ventilation resistance is lower in relation to the ventilation resistance. This is because the flow rate becomes uniform as a result.

本第2態様は、上述の構成を採ることにより、
整流体33をさらに配設したので、該部を通過す
る空気の流速および流れの方向を調整することに
より、測定部1およびその近傍部での空気の流速
分布を一様にすることができ、より正確な空気の
流量測定をすることができる。
By adopting the above-mentioned configuration, the present second aspect has the following features:
Since the flow regulator 33 is further provided, by adjusting the flow velocity and direction of the air passing through this part, the flow velocity distribution of the air in the measuring part 1 and its vicinity can be made uniform, It is possible to measure the air flow rate more accurately.

尚、本第2態様において、逆流防止コア31の
頂部37をダクト2の被測定空気導入端部21を
含む平面に可能な限り近づけることにより、更
に、空気の流れをスムーズにすることができ、測
定部1およびその近傍部における流速分布を更に
一様にすることができる。
In addition, in this second embodiment, by bringing the top portion 37 of the backflow prevention core 31 as close as possible to the plane containing the measured air introduction end 21 of the duct 2, the air flow can be further made smoother. The flow velocity distribution in the measuring section 1 and its vicinity can be made more uniform.

以下に、本発明の第3態様を、第10を用いて
説明する。
Below, the third aspect of the present invention will be explained using the tenth aspect.

本発明の第3の態様は、流向調整手段3として
第1態様で述べた逆流防止コア31および整流格
子34を配設したもので、該整流格子34は、測
定部1に対して略平行にかつ該部1の空気通過方
向に開口部を有する直方体または立方体形状の複
数の区画室を形成した整流格子であつて、該格子
34内の複数の区画室内における内部空間部の略
中央部の流れの下流側にセンサ部11の少なくと
も一部を含んでなり、被測定空気の流れを整流し
てその向きが測定部1の検出方向に略平行になる
様にした。
In a third aspect of the present invention, the backflow prevention core 31 and the rectifying grid 34 described in the first aspect are arranged as the flow direction adjusting means 3, and the rectifying grid 34 is arranged substantially parallel to the measuring section 1. and a rectifying grid having a plurality of rectangular parallelepiped or cube-shaped compartments having openings in the air passage direction of the section 1, wherein the flow is approximately at the center of the internal space within the plurality of compartments in the grid 34. The sensor section 11 includes at least a part of the sensor section 11 on the downstream side of the sensor section 1, and the flow of the air to be measured is rectified so that its direction is approximately parallel to the detection direction of the measurement section 1.

本第3態様は、上述の構成を採ることにより、
整流格子34をさらに配設したので、該部を通過
する空気の流れ方向を測定部1の検出方向の略平
行になる様にできるので、空気の流れ方向のばら
つきに起因する出力値の変化を低減することがで
きるので、測定誤差の防止ができ、より正確な空
気の流量測定を実現することができる。
By adopting the above-mentioned configuration, the present third aspect has the following features:
Since the rectifying grid 34 is further provided, the flow direction of the air passing through this part can be made to be approximately parallel to the detection direction of the measuring part 1, so changes in the output value due to variations in the air flow direction can be suppressed. Therefore, measurement errors can be prevented and more accurate air flow rate measurement can be achieved.

以下に、本発明の第4態様を、第14図ないし
第16図を用いて説明する。
The fourth aspect of the present invention will be explained below using FIGS. 14 to 16.

本発明の第4態様は、測定部1のセンサ11と
して小型熱電式流速計を用いたもので、該センサ
は、U字形支持体14と該支持体に固定したセン
サ差込用ソケツト15ら成るセンサ支持体12に
支持され、熱電対と該熱電対の高温接点および低
温接点、電熱線を覆うフード体を有し、該フード
体により空気通路が形成され、該フード体の長手
方向に直角に電熱線が配設されており、これによ
り測定部1に導入された空気の進入角度に偏りが
多少あつても、フード体で被測定空気の流れをガ
イドすることにより、空気排出入口61から流出
入する空気の流量を正確に測定できるようにし
た。
A fourth aspect of the present invention uses a small thermoelectric current meter as the sensor 11 of the measuring section 1, and the sensor consists of a U-shaped support 14 and a sensor insertion socket 15 fixed to the support. It has a hood body supported by the sensor support 12 and covering the thermocouple, its hot and cold contacts, and the heating wire, with the hood body forming an air passage, and extending at right angles to the longitudinal direction of the hood body. A heating wire is provided, so that even if there is some deviation in the approach angle of the air introduced into the measuring section 1, the hood body guides the flow of the air to be measured, so that it can flow out from the air exhaust inlet 61. The flow rate of incoming air can be measured accurately.

〔実施例〕〔Example〕

以下、本発明および上述の本発明の実施態様の
実施例について説明する。
Examples of the present invention and the embodiments of the invention described above will be described below.

実施例 1 以下、本発明の流量測定装置を第5図および第
6図を用いて説明する。
Example 1 Hereinafter, the flow rate measuring device of the present invention will be explained using FIGS. 5 and 6.

本実施例は、空調装置(図示せず)の空気排出
入口61から排出された空気を測定する実施例で
あり、流量測定装置は、測定本体7と、集録部
(図示せず)、演算部(図示せず)とから成り、測
定本体7は、測定部1、ダクト2、流向調整手段
3としての逆流防止コア31により構成される。
This embodiment is an embodiment in which air discharged from an air discharge inlet 61 of an air conditioner (not shown) is measured, and the flow rate measurement device includes a measurement main body 7, an acquisition section (not shown), and a calculation section. (not shown), and the measurement main body 7 includes a measurement section 1 , a duct 2 , and a backflow prevention core 31 as a flow direction adjustment means 3 .

測定部1は、流速センサ11とセンサ支持体1
2および信号出力線16から成る。センサ支持体
12は、U字形支持体14と、該支持体14に固
定したソケツト15から成り、ソケツト15に流
速センサ11を挿入して測定部1を構成する。こ
のU字形支持体14は、格子状に配設され、その
端部がダクト2内の内壁面に固着されている。
尚、流速センサは20本用いた。また、該測定部1
は、ダクト2の被測定空気導入端部21から下流
側200mmのところに設けた。
The measurement unit 1 includes a flow rate sensor 11 and a sensor support 1
2 and a signal output line 16. The sensor support 12 consists of a U-shaped support 14 and a socket 15 fixed to the support 14, and the flow rate sensor 11 is inserted into the socket 15 to form the measuring section 1. The U-shaped supports 14 are arranged in a grid pattern, and their ends are fixed to the inner wall surface of the duct 2.
Note that 20 flow rate sensors were used. In addition, the measuring section 1
was installed 200 mm downstream from the measurement target air introduction end 21 of the duct 2.

ダクト2は、上底部が開口した直方体状のアル
ミニウム製の角型空胴体で、該開口部の径は600
×600mmである。このダクト2には、被測定空気
導入端部21と天井部63との間から被測定空気
が漏れるのを防止するためダクト2のフランジ面
24にシール材25が設けられている。
The duct 2 is a square hollow body made of rectangular parallelepiped aluminum with an open top and bottom, and the diameter of the opening is 600 mm.
×600mm. This duct 2 is provided with a sealing material 25 on the flange surface 24 of the duct 2 in order to prevent the air to be measured from leaking between the air to be measured introduction end 21 and the ceiling 63.

流向調整手段3は、頂点37を空気排出入口6
1側に向けた角錐型の逆流防止コア31とから成
る。この逆流防止コア31は、合成樹脂製で、底
面がダクト2内の略中央部に位置する様に測定部
1のU字形支持体14により固着・支持され、底
面部の大きさは、ダクト2の大きさの辺々それぞ
れ1/2とした。
The flow direction adjustment means 3 connects the apex 37 to the air discharge inlet 6
It consists of a pyramid-shaped backflow prevention core 31 facing one side. This backflow prevention core 31 is made of synthetic resin, and is fixed and supported by the U-shaped support 14 of the measuring section 1 so that the bottom surface is located approximately in the center of the duct 2. The size of each side was set to 1/2.

以上の様にして、本発明の実施例1の流量測定
装置は、上述の様に逆流防止コア31を配設した
ので、ダクト2内に流入する空気の測定部1およ
びその近傍での逆流を防止することができ、流量
測定を正確にすることができる。
As described above, the flow rate measuring device according to the first embodiment of the present invention has the backflow prevention core 31 disposed as described above, so that backflow of air flowing into the duct 2 at the measuring section 1 and its vicinity is prevented. This can be prevented and the flow rate measurement can be made more accurate.

尚、逆流防止コア31の頂部を空気排出入口6
1に更に近づけることにより、更に空気の流れを
スムーズにすることができ、より正確な流量測定
が可能となる。
Note that the top of the backflow prevention core 31 is connected to the air exhaust inlet 6.
By bringing the value even closer to 1, the air flow can be made smoother, and more accurate flow rate measurement becomes possible.

実施例 2 以下、本発明の第1態様に属する流量測定装置
を第7図を用い、上述した実施例1との相違点を
中心に説明する。
Embodiment 2 Hereinafter, a flow rate measuring device according to the first aspect of the present invention will be described with reference to FIG. 7, focusing on the differences from the above-described embodiment 1.

本実施例における流量測定装置は、測定本体7
と、集録部(図示せず)と、演算部(図示せず)
とから成り、測定本体7は、測定部1、ダクト
2、流向調整手段3としての逆流防止コア31お
よびガイドベーン32から構成され、実施例1に
更にガイドベーン32を付加したものである。
The flow measuring device in this embodiment has a measuring main body 7
, an acquisition section (not shown), and a calculation section (not shown)
The measurement main body 7 is composed of a measurement section 1, a duct 2, a backflow prevention core 31 as a flow direction adjustment means 3, and a guide vane 32, and is the same as in the first embodiment with the guide vane 32 added.

測定部1およびダクト2、逆流防止コア31は
実施例1と同様に構成した。
The measuring section 1, duct 2, and backflow prevention core 31 were configured in the same manner as in Example 1.

ガイドベーン32は、ダクト2の被測定空気導
入端部21から空気の流れの方向の下流側80mmの
位置に設けられ、ベーン35から成り、該ベーン
35は、細長い板状のもので、一方の両端部から
それぞれ3枚のベーンをルーバー状にダクト2に
固着して配設し、他方の両端部からそれぞれ3枚
のベーンがダクト2に固着されたベーンのうち最
も内側のベーンにルーバー状に固着して成り、ベ
ーン間の距離は50mm、ベーンの傾き角は軸に対し
て中心側に25度である。また、このガイドベーン
32は、その端部がダクト2の内壁に固定されて
いる。
The guide vane 32 is provided at a position 80 mm downstream from the measured air introduction end 21 of the duct 2 in the direction of air flow, and consists of a vane 35. Three vanes from each end are fixed to the duct 2 in a louver shape, and three vanes from the other end are arranged in a louver shape to the innermost vane of the vanes fixed to the duct 2. The distance between the vanes is 50 mm, and the angle of inclination of the vanes is 25 degrees toward the center of the shaft. Further, the guide vane 32 has its end fixed to the inner wall of the duct 2.

以上の様にして、本発明の実施例2の流量測定
装置は、上述の様に流向調整手段3として逆流防
止コア31およびガイドベーン32を配設したの
で、ダクト2の被測定空気導入端部21からダク
ト内に流入する空気を先ず空間部22で減速し流
れの偏向を小さくし、ガイドベーン32により該
部を通過する空気の流れの向きを変更・調整し、
逆流防止コア31と共に測定部1およびその近傍
部での空気の逆流の発生を防止することができ、
測定部およびその近傍部での空気の流速分布を一
様化できるので、実施例1に比してより正確な流
量測定を行うことができる。
As described above, in the flow rate measuring device according to the second embodiment of the present invention, since the backflow prevention core 31 and the guide vane 32 are provided as the flow direction adjusting means 3 as described above, the air to be measured is introduced into the end of the duct 2. The air flowing into the duct from 21 is first decelerated in the space 22 to reduce the deflection of the flow, and the guide vane 32 changes and adjusts the direction of the air flow passing through this part.
Together with the backflow prevention core 31, it is possible to prevent the backflow of air in the measurement section 1 and its vicinity,
Since the air flow velocity distribution in the measuring section and its vicinity can be made uniform, more accurate flow rate measurement can be performed compared to the first embodiment.

尚、ベーン35の角度を、ダクト内の位置に応
じて15〜50度の間のより適した角度にそれぞれ調
整することにより、空気の流れの方向および流速
をより適切に調整すことができ、本実施例2の効
果をより一層奏することができる。
In addition, by adjusting the angle of the vane 35 to a more suitable angle between 15 and 50 degrees depending on the position in the duct, the direction and velocity of the air flow can be adjusted more appropriately. The effects of the second embodiment can be further achieved.

実施例 3 以下、本発明の第2態様に属する流量測定装置
を第8図および第9図を用い、前述した実施例1
との相違点を中心に説明する。
Example 3 Hereinafter, a flow rate measuring device according to the second aspect of the present invention will be explained using FIG. 8 and FIG.
I will mainly explain the differences between the two.

本実施例における流量測定装置は、測定本体7
と、集録部(図示せず)と、演算部(図示せず)
とから成り、測定本体7は、測定部1、ダクト
2、流向調整手段3としての逆流防止コア31お
よび整流体33から構成され、実施例1に更に整
流体33を付加したものである。
The flow measuring device in this embodiment has a measuring main body 7
, an acquisition section (not shown), and a calculation section (not shown)
The measuring body 7 is composed of a measuring section 1, a duct 2, a backflow prevention core 31 as a flow direction adjusting means 3, and a rectifier 33, which is the same as in the first embodiment, with the rectifier 33 added.

測定部1およびダクト2、逆流防止コア31は
実施例1と同様に構成した。
The measuring section 1, duct 2, and backflow prevention core 31 were configured in the same manner as in Example 1.

整流体33は、ダクト2の被測定空気導入端部
21から空気の流れ方向の下流側100mmの位置に、
かつ測定部1から空気の流れ方向の上流側100mm
の位置に設けられ、目の粗さが60メツシユの黄銅
製の網状体である。また、この整流体33は、そ
の端部がダクト2の内壁に固定されている。
The flow regulator 33 is located at a position 100 mm downstream from the measured air introduction end 21 of the duct 2 in the air flow direction.
and 100mm upstream from measurement section 1 in the direction of air flow.
It is a brass mesh body with a mesh size of 60 mesh. Further, the end portion of the fluid regulator 33 is fixed to the inner wall of the duct 2.

以上の様にして、本発明の実施例3の流量測定
装置は、上述の様に流向調整手段3として逆流防
止コア31および整流体33を配設したので、ダ
クト2の被測定空気導入端部21からダクト内に
流入する空気を先ず空間部22で減速し、流れの
偏向を小さくし、整流体33により該部を通過す
る空気を減速し流れを調整することができ、また
逆流防止コア31により逆流の発生を防止し、測
定部1およびその近傍部での流速分布を一様化で
きるので、実施例1に比してより正確な流量測定
を行うことができる。
As described above, in the flow rate measuring device according to the third embodiment of the present invention, the backflow prevention core 31 and the flow rectifier 33 are provided as the flow direction adjustment means 3 as described above. The air flowing into the duct from 21 is first decelerated in the space 22 to reduce the deflection of the flow, and the flow regulator 33 decelerates the air passing through this part to adjust the flow. This prevents the occurrence of backflow and makes the flow velocity distribution uniform in the measuring section 1 and its vicinity, so that more accurate flow rate measurement can be performed than in the first embodiment.

尚、本実施例において、逆流防止コア31の頂
部37を、第9図に示す如くダクト2内の被測定
空気導入端部21を含む面上より若干流体の流れ
方向下流側に近づける形状のものを採用し、整流
体33を逆流防止コア31の形状に合わせて中心
部が空孔のものを採用した。また、整流体33の
内孔端部と逆流防止コア31の斜面部が頂度接触
する様に構成することにより、更に空気の流れを
スムーズにすることができ、本実施例3の効果を
より有効に奏することができる。
In this embodiment, the top 37 of the backflow prevention core 31 is shaped to be slightly closer to the downstream side in the fluid flow direction than the surface of the duct 2 that includes the air introduction end 21 to be measured, as shown in FIG. The flow regulator 33 was adapted to the shape of the backflow prevention core 31 and had a hole in the center. In addition, by configuring the inner hole end of the flow regulator 33 and the slope part of the backflow prevention core 31 to be in top contact with each other, the air flow can be made even smoother, and the effect of the third embodiment can be further enhanced. It can be played effectively.

実施例 4 以下、本発明の第3態様に属する流量測定装置
を第10図および第11図を用い、前述した実施
例1との相違点を中心に説明する。
Embodiment 4 Hereinafter, a flow measuring device according to the third aspect of the present invention will be explained with reference to FIGS. 10 and 11, focusing on the differences from Embodiment 1 described above.

本実施例における流量測定装置は、測定本体7
と、集録部(図示せず)と、演算部(図示せず)
とから成り、測定本体7は、測定部1、ダクト
2、流向調整手段3としての逆流防止コア31お
よび整流格子34から構成され、実施例1に更に
整流格子34を付加したものである。
The flow measuring device in this embodiment has a measuring main body 7
, an acquisition section (not shown), and a calculation section (not shown)
The measuring body 7 is composed of a measuring section 1, a duct 2, a backflow prevention core 31 serving as a flow direction adjusting means 3, and a rectifying grid 34, and is the same as in the first embodiment with a rectifying grid 34 added thereto.

ダクト2および逆流防止コア31は実施例1と
同様に構成した。
The duct 2 and the backflow prevention core 31 were constructed in the same manner as in Example 1.

整流格子34は、ダクト2の被測定空気導入端
部21から空気の流れ方向の下流側150mmの位置
に配設され、第11図に示す如く、縦横が50mm、
長さが50mmで、空気の流れの方向、即ち軸方向に
開口部を有する複数の区画室を形成した立方体形
状を成すステンレス製(板厚0.5mm)の格子であ
る。この整流格子34は、その端部がダクト2内
の内壁に固定されている。
The rectifying grid 34 is disposed at a position 150 mm downstream in the air flow direction from the measurement target air introduction end 21 of the duct 2, and has length and width of 50 mm, as shown in FIG.
It is a cube-shaped stainless steel grid (plate thickness: 0.5 mm) with a length of 50 mm and a plurality of compartments with openings in the direction of air flow, that is, in the axial direction. This rectifying grid 34 has its end fixed to the inner wall of the duct 2.

また、整流格子内の複数の区間室内における内
部空間部の流れの下流側にセンサ支持体12が固
定されており、該支持体12にはセンサ11が18
個組込まれている。そして、このセンサ11の検
出方向と整流格子34の空気通過のための開口方
向が略一致している。
Further, a sensor support 12 is fixed on the downstream side of the flow in the internal space in the plurality of section chambers in the rectifying grid, and the sensor 11 is mounted on the support 12 at 18
pcs are included. The detection direction of this sensor 11 and the opening direction of the rectifier grid 34 for air passage substantially match.

以上の様にして、本発明の実施例4の流量測定
装置は、上述の様に流向調整手段3として逆流防
止コア31および整流格子34を配設したので、
ダクト2の被測定空気導入端部21からダクト内
に流入する空気を空間部22で減速し、流れの偏
向を小さくし、逆流防止コア31によりダクト2
内に流入する空気の逆流を防止し、更に、整流格
子34を通過する空気の流れ方向を最終部分の測
定部1を含む部分で調整して該測定部1の検出方
向に略平行になる様にし、また、測定部およびそ
の近傍部での流速分布を一様化できるので、実施
例1に比してより正確な流量測定を行うことがで
きる。
As described above, in the flow rate measuring device according to the fourth embodiment of the present invention, the backflow prevention core 31 and the rectifying grid 34 are provided as the flow direction adjustment means 3 as described above.
The air flowing into the duct from the measured air introduction end 21 of the duct 2 is decelerated in the space 22 to reduce the deflection of the flow, and the backflow prevention core 31
In addition, the flow direction of the air passing through the rectifying grid 34 is adjusted at the final portion including the measurement section 1 so that it becomes approximately parallel to the detection direction of the measurement section 1. Furthermore, since the flow velocity distribution in the measuring section and its vicinity can be made uniform, more accurate flow rate measurement can be performed compared to the first embodiment.

尚、逆流防止コア31の頂部37を、空気排出
入口61に更に近づけることにより、更に空気の
流れをスムーズにすることができ、本実施例4の
効果を一層奏することができる。
Note that by bringing the top portion 37 of the backflow prevention core 31 closer to the air discharge inlet 61, the air flow can be made even smoother, and the effects of the fourth embodiment can be further exhibited.

実施例 5 以下、本発明の第1態様ないし第3態様の総て
に属する流量測定装置を前述した実施例1との相
違点を中心に第12図ないし第22図を用いて説
明する。
Embodiment 5 A flow measuring device according to all of the first to third aspects of the present invention will be described below with reference to FIGS. 12 to 22, focusing on the differences from the first embodiment described above.

本実施例は、空調装置(図示せず)の空気排出
入口61から排出された空気を測定する実施例で
あり、流量測定装置は、測定本体7と、集録部4
と、演算部5とから成り、測定本体7は、測定部
1、ダクト2、流向調整手段3としての逆流防止
コア31、ガイドベーン32、整流体33、整流
格子34から構成される。
This embodiment is an embodiment in which air discharged from an air discharge inlet 61 of an air conditioner (not shown) is measured, and the flow rate measurement device includes a measurement main body 7 and an acquisition unit 4.
The measurement main body 7 is composed of the measurement section 1 , the duct 2 , a backflow prevention core 31 as the flow direction adjustment means 3 , a guide vane 32 , a flow regulator 33 , and a flow regulation grid 34 .

測定部1は、流速センサ11とセンサ支持体1
2、および信号出力線16とから成る。センサ支
持体12は、U字形支持体14と該支持体14に
固定したソケツト15から成り、ソケツト15に
流速センサ11を挿入して測定部1を構成する。
該U字形支持体14は、ダクト2の被測定空気導
入端部21から空気の流れ方向下流側250mmの位
置に設けられ、格子の縦、横が50mm、長さが70mm
で、空気の流れ方向に開口部を有する複数の区画
室を形成した整流格子34の、空気の流れ方向下
流側端部に固定されている。流速センサ11は、
小型の熱電式風速計を用いた。第14図ないし第
16図に示す様に、流速センサ11は、熱電対1
10と熱電対110の高温接点111および低温
接点112および電熱線113を覆うフード体1
14を有し、該フード体114には、電熱線11
3を横断する方向に挿通した空気通路115が形
成されている。尚、116は空気通路の入口であ
る。この流速センサ11は、第17図に示す様に
均等に24個設けられている。
The measurement unit 1 includes a flow rate sensor 11 and a sensor support 1
2, and a signal output line 16. The sensor support 12 consists of a U-shaped support 14 and a socket 15 fixed to the support 14, and the flow rate sensor 11 is inserted into the socket 15 to constitute the measuring section 1.
The U-shaped support 14 is provided at a position 250 mm downstream in the air flow direction from the measured air introduction end 21 of the duct 2, and the length and width of the grid are 50 mm and the length is 70 mm.
It is fixed to the downstream end in the air flow direction of a rectifying grid 34 that has a plurality of compartments having openings in the air flow direction. The flow rate sensor 11 is
A small thermoelectric anemometer was used. As shown in FIGS. 14 to 16, the flow rate sensor 11 includes a thermocouple 1
10, a hood body 1 that covers the high temperature junction 111 and low temperature junction 112 of the thermocouple 110, and the heating wire 113
14, and the hood body 114 has a heating wire 11
An air passage 115 is formed that extends through the air passage 115 in a direction transverse to the air passage 3. Note that 116 is the entrance of the air passage. As shown in FIG. 17, 24 flow rate sensors 11 are evenly provided.

角型ダクト2の内部には、ダクト2の被測定空
気導入端部21から空気の流れ方向下流側100mm
の位置にガイドベーン32が設けられ、ベーン3
5の軸方向長は50mm、ベーン35の傾き角は軸に
対して中心側に30度である。また、このガイドベ
ーン32の端部は、ダクト2の内壁に固定されて
いる。
Inside the square duct 2, there is a space 100 mm downstream in the air flow direction from the measured air introduction end 21 of the duct 2.
A guide vane 32 is provided at the position of the vane 3.
The axial length of vane 5 is 50 mm, and the inclination angle of vane 35 is 30 degrees toward the center with respect to the axis. Further, the end of the guide vane 32 is fixed to the inner wall of the duct 2.

ガイドベーン32と測定部1との間には、金網
製(40メツシユ)の整流体33が取付けられてい
る。
A flow regulator 33 made of wire mesh (40 mesh) is installed between the guide vane 32 and the measuring section 1.

逆流防止コア31は、空気が測定部にスムーズ
に導かれる様に角錐型とし、底面の辺は、ダクト
の開口面の長さのそれぞれ1/2とした。
The backflow prevention core 31 was shaped like a pyramid so that air could be smoothly guided to the measuring section, and the sides of the bottom were each half the length of the opening surface of the duct.

尚、測定部1、流向調整手段3を含むダクト2
は、支持体8により支持されて測定本体7を構成
し、該測定本体7を空調装置の空気排出入口61
に移動させて測定する。そして、該測定部1のセ
ンサ11により測定された空気の流速は、その出
力が集録部4に集録され、演算部5で演算・処理
して空気の流量が表示される。
In addition, a duct 2 including a measuring section 1 and a flow direction adjusting means 3
is supported by a support body 8 to constitute a measurement body 7, and the measurement body 7 is connected to an air exhaust inlet 61 of an air conditioner.
Move and measure. The output of the air flow velocity measured by the sensor 11 of the measurement section 1 is collected by the acquisition section 4, and is calculated and processed by the calculation section 5 to display the air flow rate.

この流量測定装置を用いて、吹出形状が585mm
×285mmの角型の空気排出入口およびφ525mmの丸
型の空気排出入口から排出された空気の流量測定
を第18図に示す実験装置を用いて行つた。その
結果を第19図に示す。図中、Aは実際に排出さ
れた空気の流量、Bは角型排出入口の場合の流量
測定値、Cは丸型排出入口の場合の流量測定値を
それぞれ示す。
Using this flow rate measurement device, the blowout shape was 585mm.
The flow rate of air discharged from a square air discharge inlet measuring 285 mm x 285 mm and a round air discharge inlet measuring 525 mm in diameter was measured using the experimental apparatus shown in FIG. The results are shown in FIG. In the figure, A shows the actual flow rate of the discharged air, B shows the flow rate measurement value in the case of a rectangular discharge inlet, and C shows the flow rate measurement value in the case of the round discharge inlet.

尚、比較のために、整流格子34以外の流向調
整手段3を有せず、ダクト2の被測定空気導入端
と整流格子との距離が100mmである他は、上述の
流量測定装置と同一構成の比較用装置を用い、角
型排出入口の場合につき流量測定を行つた。その
結果を第20図に示す。図中、Dは実際に排出さ
れた空気の流量、Eは比較用装置による流量測定
値をそれぞれ示す。
For comparison, a flow measuring device having the same configuration as the above-mentioned flow rate measuring device was used, except that it did not have the flow direction adjusting means 3 other than the rectifying grid 34, and the distance between the measurement target air introduction end of the duct 2 and the rectifying grid was 100 mm. Flow rate measurements were carried out for the case of a rectangular discharge inlet using a comparative device. The results are shown in FIG. In the figure, D shows the flow rate of the actually discharged air, and E shows the flow rate measured by the comparison device.

第19図および第20図より明らかな如く、本
実施例の流量測定装置は、比較用装置に比し、流
量測定がより正確であることが分かる。
As is clear from FIGS. 19 and 20, it can be seen that the flow rate measuring device of this example is more accurate in flow rate measurement than the comparative device.

次に、ガイドベーン32とダクト2の被測定空
気導入端部21との距離(l)を変化させ、角型
排出入口の場合につき流量測定実験を行つた。そ
の結果を、第21図に示す。図中、Fは実際に排
出された空気の流量、Gはl=0の場合の流量測
定値、Hはl=50mmの場合の流量測定値、Iはl
=100mmの場合の流量測定値をそれぞれ示す。こ
れより、lを好ましくは50mm程度以上とることに
より、より正確な測定が実現できることが分か
る。
Next, the distance (l) between the guide vane 32 and the measured air introduction end 21 of the duct 2 was changed, and a flow rate measurement experiment was conducted for the case of a rectangular discharge inlet. The results are shown in FIG. In the figure, F is the actual flow rate of air discharged, G is the flow rate measurement value when l = 0, H is the flow rate measurement value when l = 50 mm, I is l
The flow rate measurements when = 100mm are shown. From this, it can be seen that more accurate measurement can be achieved by preferably setting l to about 50 mm or more.

また、流体排出入口61に流量測定装置を取付
けた場合の、通気抵抗の上昇を測定した。その結
果を第22図に示す。図中、Jは測定装置を取り
付けない場合の送風量と静定槽内の圧力との関係
を示し、Kはl=50mmの場合のそれを、Lはl=
100mmの場合のそれを示す。
Furthermore, the increase in ventilation resistance when a flow rate measuring device was attached to the fluid discharge inlet 61 was measured. The results are shown in FIG. In the figure, J indicates the relationship between the air flow rate and the pressure in the static tank when no measuring device is attached, K indicates the relationship when l = 50 mm, and L indicates the relationship between l = 50 mm.
This is shown for 100mm.

尚、更に、逆流防止コア31の先端などに空気
の温湿度を測定するセンサを取付け、該センサに
より検出された出力値を演算部に入力し、空気の
流量と共に室内の温度・湿度と比較処理すること
により、更に木目細かな室内環境の制御が可能と
なる。この場合には、温湿度を同時に測定可能な
風速センサを用いて行つてもよい。
Additionally, a sensor is attached to the tip of the backflow prevention core 31 to measure the temperature and humidity of the air, and the output value detected by the sensor is input to the calculation unit and compared with the air flow rate and the indoor temperature and humidity. By doing so, it becomes possible to control the indoor environment even more precisely. In this case, a wind speed sensor that can simultaneously measure temperature and humidity may be used.

実施例 6 第23図に、流向調整手段3として逆流防止コ
ア31、ガイドベーン32、整流格子34を有す
るタイプの流量測定装置を示した。この装置は、
上述の構成を採ることにより、実施例2または実
施例4に比して、より正確な空気の流量測定を行
うことができる。
Example 6 FIG. 23 shows a type of flow rate measuring device having a backflow prevention core 31, a guide vane 32, and a rectifying grid 34 as the flow direction adjusting means 3. This device is
By employing the above-described configuration, more accurate air flow rate measurement can be performed than in the second embodiment or the fourth embodiment.

尚、ガイドベーン32を2層配設することによ
り、1層の場合より正確な空気の流量測定を行う
ことができる。
Note that by arranging the guide vanes 32 in two layers, it is possible to measure the air flow rate more accurately than in the case of one layer.

また、第24図に示す如く、ガイドベーン32
のベーン35形状を円弧状にすることにより空気
の流れ方向を緩やかに変更・調整することができ
る。
Further, as shown in FIG. 24, the guide vane 32
By making the shape of the vane 35 arcuate, the direction of air flow can be gently changed and adjusted.

実施例 7 第25図に、ダクト2の開口部の大きさが空気
排出入口61の大きさより小さい流量測定装置を
用いた場合の、流量測定方法を例示した。この場
合、ダクト2の被測定空気導入端部21と空気排
出入口61またはその近傍の天井部との間のアダ
プタ26を取付けることにより、容易に流量測定
を行うことができる。
Embodiment 7 FIG. 25 illustrates a flow rate measurement method using a flow rate measurement device in which the size of the opening of the duct 2 is smaller than the size of the air discharge inlet 61. In this case, the flow rate can be easily measured by attaching the adapter 26 between the measurement target air introduction end 21 of the duct 2 and the ceiling at or near the air exhaust inlet 61.

実施例 8 第26図に、室内空気を空気排出入口61から
吸気する場合の吸込流量の測定方法について例示
した。吸込流量を測定する場合、専用に測定装置
を構成することにより測定できるが、排出流量を
測定する装置を利用する場合、ダクト2の下流側
端部27と天上部とのあいだにアダプタダクト2
8を取付けることにより、比較的容易に空気の流
量を測定することができる。
Example 8 FIG. 26 shows an example of a method for measuring the intake flow rate when indoor air is taken in from the air exhaust inlet 61. When measuring the suction flow rate, it is possible to measure by configuring a dedicated measuring device, but when using a device for measuring the discharge flow rate, an adapter duct 2 is installed between the downstream end 27 of the duct 2 and the ceiling.
8, the air flow rate can be measured relatively easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の流量測定装置の一部透視斜視
図、第2図は第1図のダクト内断面図、第3図
は、空調装置の空気排出入口から排出された空気
の流れ方向示す説明図、第4図はダクト内に流入
する空気の流れの方向を示す説明図、第5図およ
び第6図は本発明の実施例1流量測定装置を示す
図で、第5図はその一部断面図、第6図はその測
定部の斜視図、第7図は本発明の実施例2流量測
定装置の一部断面図、第8図および第9図は本発
明の実施例3流量測定装置を示す図で、第8図は
その一部断面図、第9図はその発展例の一部断面
図、第10図および第11図は本発明の実施例4
流量測定装置を示す図で、第10図はその一部断
面図、第11図はその測定部を示す斜視図、第1
2図ないし第22図は本発明の実施例5流量測定
装置を示す図で、第12図はその全体を示す斜視
図、第13図はその一部断面図、第14図はその
測定部を示す斜視図、第15図はそのセンサを示
す一部透視斜視図、第16図はそのセンサの熱電
対部の斜視図、第17図はセンサの配置を表わす
図、第18図は流量実験装置を示す図、第19図
は流量測定試験結果を示す線図、第20図は流量
測定比較試験結果を示す線図、第21図はガイド
ベーンの位置をかえた場合の流量測定比較試験結
果を示す線図、第22図は通気抵抗測定結果を示
す線図、第23図および第24図は本発明の実施
例6流量測定装置を示す図で、第23図はその一
部断面図、第24図はその発展例の一部欠截断面
図、第25図は本発明の実施例7流量測定装置の
一部断面図、第26図は本発明の実施例8流量測
定装置の一部断面図である。 1……測定部、2……ダクト、3……流向調整
手段、4……集録部、5……演算部、7……測定
本体、11……センサ、12……センサ支持体、
22……空間部、31……逆流防止コア、32…
…ガイドベーン、33……整流体、34……整流
格子、61……空気排出入口。
Fig. 1 is a partially transparent perspective view of the flow rate measuring device of the present invention, Fig. 2 is a sectional view of the inside of the duct shown in Fig. 1, and Fig. 3 shows the flow direction of air discharged from the air discharge inlet of the air conditioner. An explanatory diagram, FIG. 4 is an explanatory diagram showing the direction of the flow of air flowing into the duct, and FIGS. 5 and 6 are diagrams showing a flow rate measuring device according to the first embodiment of the present invention, and FIG. 5 is one of them. FIG. 6 is a perspective view of the measuring section thereof, FIG. 7 is a partial cross-sectional view of a flow rate measuring device according to the second embodiment of the present invention, and FIGS. 8 and 9 are flow rate measurement devices according to the third embodiment of the present invention. 8 is a partial cross-sectional view of the device, FIG. 9 is a partial cross-sectional view of a developed example thereof, and FIGS. 10 and 11 are views showing a fourth embodiment of the present invention.
FIG. 10 is a partial sectional view of the flow rate measuring device, FIG. 11 is a perspective view of the measuring section, and FIG.
2 to 22 are views showing a flow rate measuring device according to a fifth embodiment of the present invention, in which FIG. 12 is a perspective view showing the entire device, FIG. 13 is a partial sectional view thereof, and FIG. 15 is a partially transparent perspective view showing the sensor, FIG. 16 is a perspective view of the thermocouple part of the sensor, FIG. 17 is a diagram showing the arrangement of the sensor, and FIG. 18 is a flow rate experimental device. Figure 19 is a diagram showing the flow rate measurement test results, Figure 20 is a diagram showing the flow rate measurement comparison test results, and Figure 21 is a flow rate measurement comparison test result when the guide vane position is changed. FIG. 22 is a diagram showing the ventilation resistance measurement results, FIGS. 23 and 24 are diagrams showing a flow rate measuring device according to the sixth embodiment of the present invention, and FIG. 23 is a partial sectional view thereof, and FIG. FIG. 24 is a partially cutaway sectional view of a developed example, FIG. 25 is a partially sectional view of a flow rate measuring device according to the seventh embodiment of the present invention, and FIG. 26 is a partially sectional view of a flow rate measuring device according to the eighth embodiment of the present invention. It is a diagram. DESCRIPTION OF SYMBOLS 1...Measurement part, 2...Duct, 3...Flow direction adjustment means, 4...Acquisition part, 5...Calculation part, 7...Measurement main body, 11...Sensor, 12...Sensor support body,
22...Space part, 31...Backflow prevention core, 32...
...Guide vane, 33...Rectifier, 34...Rectifier grid, 61...Air discharge inlet.

Claims (1)

【特許請求の範囲】 1 空調機器等の空気口から流出入する空気の流
速を測定する測定本体と、該測定本体から出力さ
れる信号を集録する集録部と、該集録部から出力
した信号を演算処理する演算部とから成る流量測
定装置であつて、 該測定本体は、該測定本体の外枠をなしかつ空
調機器等の空気口から流出入する被測定空気の連
続する流れを形成すべく配設したダクトと、該ダ
クト内にあつて前記ダクトの被測定空気導入端部
近傍に形成し所定の容積を有する空間部と、該空
間部の被測定空気の流れの方向下流側にあつて該
ダクト内の流れに対して略直角に配設され前記被
測定空気の流れの向きを変更または調整する流向
調整手段と、該流向調整手段の下流側にダクト内
の流れに対して略直角に配設したセンサ支持体と
該センサ支持体内の所定の箇所に配設され、被測
定空気の流速を検出する複数個のセンサとからな
る測定部とからなり、 前記流向調整手段が、ダクトの被測定空気導入
端部と測定部との間に、しかもダクト内の略中央
部に配設され、頂部が流れの上流に向いた円錐ま
たは角錐状の逆流防止コアを有してなり、測定部
およびその近傍部での空気の逆流を防止するよう
にしてなり、 前記集録部が、前記測定本体の各センサからの
流速信号を集録し、前記演算部が、前記集録部か
らの信号に基づき平均流速を演算することにより
前記ダクト内流路面積から流量を演算するもので
あることを特徴とする空調機器等の空気口におけ
る空気流量測定装置。 2 流向調整手段は、ダクトの被測定空気導入端
部と測定部との間に配設され、空気の流れに対し
て適宜の角度を有するベーンを有し、被測定空気
の流速が測定部で一様になるように空気の流れを
調整するガイドベーンから成ることを特徴とする
特許請求の範囲第1項記載の空調機器等の空気口
における空気流量測定装置。 3 流向調整手段は、ダクトの被測定空気導入端
部と測定部との間に、更に網状の整流体を有して
成り、空気を該網状整流体を通過させることによ
り流れの分布を一様にすることを特徴とする特許
請求の範囲第1項記載の空調機器等の空気口にお
ける空気流量測定装置。 4 流向調整手段は、測定部に対して略平行にか
つ空気通過方向に開口部を有する直方体または立
方体形状の複数の区画室を形成した整流格子を有
してなり、被測定空気の流れを整流してその向き
が測定部の検出方向に略平行になる様にしたこと
を特徴とする特許請求の範囲第1項記載の空調機
器等の空気口における空気流量測定装置。 5 測定部のセンサ支持体は、U字形支持体と該
支持体に固定されたセンサ差込様ソケツトから成
り、該U字形支持体は整流格子内の複数の区画室
における内部空間部の流れの下流側端部に固定さ
れて成ることを特徴とする特許請求の範囲第4項
記載の空調機器等の空気口における空気流量測定
装置。 6 測定部のセンサ支持体は、U字形支持体と該
支持体に固定されたセンサ差込用ソケツトから成
り、該U字形支持体は平行または格子状に配設さ
れ、その端部がダクトの内壁面に固着してなるこ
とを特徴とする特許請求の範囲第1項記載の空調
機器等の空気口における空気流量測定装置。 7 測定部のセンサは、小型熱電式流速計であ
り、該流速計は、熱電対と該熱電対の高温接点お
よび低温接点、電熱線とを覆うフード体を有し、
該フード体より空気通路が形成され、該フード体
の長手方向に直角に電熱線が配設されていること
を特徴とする特許請求の範囲第6項記載の空調機
器等の空気口における空気流量測定装置。
[Scope of Claims] 1. A measuring body that measures the flow velocity of air flowing in and out from an air outlet of an air conditioner, etc., an acquisition unit that acquires a signal output from the measurement body, and a signal output from the acquisition unit. A flow rate measuring device consisting of a calculation unit that performs calculation processing, the measurement body forming an outer frame of the measurement body and configured to form a continuous flow of air to be measured flowing in and out from an air port of an air conditioner or the like. a space formed in the duct near the air to be measured end of the duct and having a predetermined volume; and a space on the downstream side of the space in the direction of flow of the air to be measured. a flow direction adjusting means arranged substantially perpendicularly to the flow in the duct for changing or adjusting the direction of the flow of the air to be measured; and a flow direction adjusting means arranged substantially perpendicularly to the flow in the duct downstream of the flow direction adjusting means. The measurement unit includes a sensor support provided therein and a plurality of sensors provided at predetermined locations within the sensor support to detect the flow velocity of the air to be measured, and the flow direction adjustment means is configured to A conical or pyramidal backflow prevention core is disposed between the measuring air introduction end and the measuring section, and approximately in the center of the duct, and the top thereof faces upstream of the flow. The device is designed to prevent backflow of air in the vicinity thereof, and the acquisition section acquires flow velocity signals from each sensor of the measurement main body, and the calculation section calculates the average flow velocity based on the signals from the acquisition section. An air flow measuring device at an air port of an air conditioner, etc., characterized in that the air flow rate is calculated from the flow path area in the duct by calculating. 2. The flow direction adjustment means is disposed between the measurement target air introduction end of the duct and the measurement unit, has a vane having an appropriate angle with respect to the air flow, and has a vane that is arranged at an appropriate angle with respect to the air flow so that the flow velocity of the measurement target air is adjusted at the measurement unit. An air flow measuring device at an air port of an air conditioner or the like according to claim 1, characterized in that the device comprises a guide vane that adjusts the air flow to be uniform. 3. The flow direction adjustment means further includes a net-like flow regulator between the measurement target air introduction end of the duct and the measuring section, and makes the flow distribution uniform by passing the air through the mesh-like flow regulator. An air flow measuring device at an air port of an air conditioner or the like according to claim 1. 4. The flow direction adjusting means has a rectifying grid having a plurality of rectangular parallelepiped or cubic compartments having openings in the air passage direction and approximately parallel to the measuring section, and rectifies the flow of the air to be measured. 2. The air flow rate measuring device at an air port of an air conditioner or the like according to claim 1, wherein the direction of the measuring portion is substantially parallel to the detection direction of the measuring section. 5. The sensor support of the measuring section consists of a U-shaped support and a sensor insertion socket fixed to the support, and the U-shaped support controls the flow of the internal space in the plurality of compartments in the rectifying grid. An air flow measuring device at an air port of an air conditioner or the like according to claim 4, wherein the device is fixed to a downstream end. 6. The sensor support of the measuring section consists of a U-shaped support and a sensor insertion socket fixed to the support, and the U-shaped support is arranged in parallel or in a grid pattern, and its ends are connected to the duct. An air flow measuring device at an air port of an air conditioner or the like according to claim 1, wherein the device is fixed to an inner wall surface. 7. The sensor of the measurement part is a small thermoelectric current meter, and the current meter has a hood body that covers a thermocouple, a high-temperature contact and a low-temperature contact of the thermocouple, and a heating wire,
An air flow rate at an air port of an air conditioner or the like according to claim 6, wherein an air passage is formed from the hood body, and a heating wire is disposed at right angles to the longitudinal direction of the hood body. measuring device.
JP5280285A 1985-03-15 1985-03-15 Air flow measuring instrument Granted JPS61210912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5280285A JPS61210912A (en) 1985-03-15 1985-03-15 Air flow measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5280285A JPS61210912A (en) 1985-03-15 1985-03-15 Air flow measuring instrument

Publications (2)

Publication Number Publication Date
JPS61210912A JPS61210912A (en) 1986-09-19
JPH0576566B2 true JPH0576566B2 (en) 1993-10-22

Family

ID=12924972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5280285A Granted JPS61210912A (en) 1985-03-15 1985-03-15 Air flow measuring instrument

Country Status (1)

Country Link
JP (1) JPS61210912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8998873B2 (en) 2010-01-20 2015-04-07 The Procter & Gamble Company Refastenable absorbent article

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302113A (en) * 1988-05-31 1989-12-06 Sanki Eng Co Ltd Airflow measuring device
JPH04115026U (en) * 1991-03-27 1992-10-12 株式会社フジタ Air volume measurement duct
BR112017018247A8 (en) * 2015-02-26 2022-10-11 Dwyer Instr AIR FLOW COVERAGE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236424A (en) * 1975-09-18 1977-03-19 Oki Electric Ind Co Ltd Piezoelectric switching device
JPS55122161A (en) * 1979-03-15 1980-09-19 Mitsubishi Electric Corp Device for measuring velocity of wind

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080316U (en) * 1983-11-02 1985-06-04 株式会社大氣社 Air flow measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236424A (en) * 1975-09-18 1977-03-19 Oki Electric Ind Co Ltd Piezoelectric switching device
JPS55122161A (en) * 1979-03-15 1980-09-19 Mitsubishi Electric Corp Device for measuring velocity of wind

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8998873B2 (en) 2010-01-20 2015-04-07 The Procter & Gamble Company Refastenable absorbent article

Also Published As

Publication number Publication date
JPS61210912A (en) 1986-09-19

Similar Documents

Publication Publication Date Title
US8757008B1 (en) Powered capture hood
US7000480B2 (en) Air flow control device with differential pressure sensing assembly and method
KR102408073B1 (en) Device and method for controlling a supply air flow at an air treatment system
US10837658B2 (en) Air conditioner
US4509371A (en) Venturi flow measuring device and method
US10451461B2 (en) Venturi air flow sensor and control system
JPH0576566B2 (en)
US4520844A (en) Regulator valve for stabilizing volume flow, especially in ventilation systems
JPH0211091B2 (en)
US9909771B2 (en) Mass airflow measuring system for a building having a sensor assembly mounted to an interior wall of an air conduit
KR101144147B1 (en) Electronic diffuser of automatic pressure response
CN211041333U (en) Tuyere device
US4191209A (en) Air flow sensing device for air conditioning systems
CN210801548U (en) Air outlet device and air conditioning unit
US6543932B1 (en) Enthalpy tunnel
CN110498047A (en) Forecooler end socket, forecooler and environmental control system
JPH04133108A (en) Flow rate control valve and flow rate measuring instrument using this valve
US20090224414A1 (en) Evaporative humidifier
EP3333551B1 (en) Device for measuring gas flow in a duct
JPH11190553A (en) Variable air volume unit
JP2526291B2 (en) Control method for air conditioner cooling by floor blowing
WO1991012496A1 (en) Air flow sensor
JPH0719572Y2 (en) Painting equipment
JPS5815146A (en) Temperature and humidity detecting device in air duct
Smoljan et al. Experimental study of a vortex diffuser with a side entry plenum box