JPH057641B2 - - Google Patents

Info

Publication number
JPH057641B2
JPH057641B2 JP58048187A JP4818783A JPH057641B2 JP H057641 B2 JPH057641 B2 JP H057641B2 JP 58048187 A JP58048187 A JP 58048187A JP 4818783 A JP4818783 A JP 4818783A JP H057641 B2 JPH057641 B2 JP H057641B2
Authority
JP
Japan
Prior art keywords
output
circuit
scale
physical quantity
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58048187A
Other languages
Japanese (ja)
Other versions
JPS59173709A (en
Inventor
Koji Akyama
Hideto Iwaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP4818783A priority Critical patent/JPS59173709A/en
Priority to US06/591,511 priority patent/US4629886A/en
Publication of JPS59173709A publication Critical patent/JPS59173709A/en
Publication of JPH057641B2 publication Critical patent/JPH057641B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings

Description

【発明の詳細な説明】 本発明は光の干渉を利用した光学式スケール読
取装置に関し、更に詳しくは振幅基準内挿法を用
いて高性能化を図つた光学式スケール読取装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical scale reading device that uses optical interference, and more particularly to an optical scale reading device that uses amplitude-based interpolation to improve performance.

光学式スケール読取装置としては、従来より
種々のものが知られている。第1図は、振幅基準
内挿法を用いた従来のこの種の装置の一構成を示
す図である。同図aはその機械的構成を、bは電
気的構成をそれぞれ示している。aにおいて、1
は光源、2はビームスプリツタ、3はコンデンサ
レンズ、4はビームスプリツタ2の一部反射光を
受ける光量制御用検出器、5は基準格子、6は走
査格子、7は集光レンズ、8は光電変換素子であ
る。bにおいて、9は光電変換素子8の出力を受
けて位相の異なる正弦波と余弦波を出力するピツ
クアツプ、10は該ピツクアツプの両出力を受け
て三角波と基準電圧とを合成して出力するアナロ
グ合成回路、11は該アナログ合成回路から出力
される基準電圧を分圧して複数個の比較基準電圧
をつくり出す抵抗分圧回路、12はアナログ合成
回路10の三角波出力と抵抗分圧回路11の出力
とを比較しそれぞれの基準電圧に対して“0”或
いは“1”の論理値を出力する比較回路、13は
該比較回路の出力を受けて、回転方向ごとにスケ
ール5の移動距離に応じたパルスを発生する方向
弁別回路である。該方向弁別回路の出力はカウン
タで計数、表示される。従来のこの種の装置は、
下に示すような不具合を有している。
Various types of optical scale reading devices are conventionally known. FIG. 1 is a diagram showing the configuration of a conventional device of this type using amplitude-based interpolation. In the figure, a shows its mechanical configuration, and b shows its electrical configuration. In a, 1
2 is a light source, 2 is a beam splitter, 3 is a condenser lens, 4 is a light amount control detector that receives a portion of the reflected light from the beam splitter 2, 5 is a reference grating, 6 is a scanning grating, 7 is a condensing lens, 8 is a photoelectric conversion element. In b, 9 is a pickup that receives the output of the photoelectric conversion element 8 and outputs a sine wave and a cosine wave with different phases, and 10 is an analog synthesizer that receives both outputs of the pickup, synthesizes a triangular wave and a reference voltage, and outputs the result. A circuit 11 is a resistor voltage divider circuit that divides the reference voltage output from the analog synthesis circuit to create a plurality of reference voltages for comparison; A comparator circuit 13 outputs a logical value of "0" or "1" for each reference voltage after comparison, and a comparator circuit 13 receives the output of the comparator circuit and generates pulses corresponding to the moving distance of the scale 5 in each direction of rotation. This is the direction discrimination circuit that generates. The output of the direction discrimination circuit is counted and displayed by a counter. Conventional devices of this type are
It has the following defects.

(1) 正弦波、余弦波を全波整流して直流基準電圧
を合成するようにしているので基準電圧が歪み
精度のよい補間ができない。
(1) Since the sine wave and cosine wave are full-wave rectified to synthesize the DC reference voltage, the reference voltage is distorted and interpolation with good accuracy cannot be performed.

(2) 最小分解能パルスを作つてからカウンタで計
数するので、補間をするときの誤差が蓄積され
てしまう。
(2) Since the minimum resolution pulse is generated and then counted by a counter, errors during interpolation accumulate.

(3) 最小分解能パルスを、高速移動時にも正確に
出力しなければならないので、アナログ合成回
路10に高速のものが要求される。
(3) Since the minimum resolution pulse must be output accurately even during high-speed movement, the analog synthesis circuit 10 is required to be high-speed.

(4) 分解能を上げると出力パルスの周波数が増加
し、高速移動時にカウンタも高速のものが必要
である。また、カウンタの応答速度で移動速度
が制限される。
(4) Increasing the resolution increases the frequency of the output pulse, and when moving at high speed, a high-speed counter is required. Furthermore, the movement speed is limited by the response speed of the counter.

本発明はこのような点に鑑みてなされたもので
あつて、基準電圧を(正弦波)2+(余弦波)2の平
方根によつてつくり、歪みのない直流としアナロ
グ分割の精度を上げると共に、正弦波、余弦波の
出力のうち感度のよい方を選択して入力するA/
D変換器でアナログ分割し、高速移動中は1/4分
割したパルスを計数し、低速移動になるとアナロ
グ補間を行うようにして上記欠点を無くした超高
分解能の光学式スケール読取装置を実現したもの
である。
The present invention was made in view of these points, and it creates a reference voltage using the square root of (sine wave) 2 + (cosine wave) 2 to make it a distortion-free direct current and improves the accuracy of analog division. , sine wave, and cosine wave output, whichever has better sensitivity is selected and input.
We achieved an ultra-high resolution optical scale reading device that eliminates the above drawbacks by dividing analog pulses using a D converter, counting pulses divided into 1/4 during high-speed movement, and performing analog interpolation during low-speed movement. It is something.

以下、図面を参照して本発明を詳細に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to the drawings.

第2図は、本発明の一実施例を示す電気的構成
図である。図において、PD1乃至PD3はそれぞれ
位相の異なる干渉光を受けて電気信号に変換する
光電変換素子、20は光電変換素子PD3の出力を
受ける第1の増幅器、21は光電変換素子PD1
出力を受ける第2の増幅器、22は光電変換素子
PD2の出力を受ける第3の増幅器である。第1の
増幅器20の出力は、第2及び第3の増幅器2
1,22に共通に入力している。23は第2の増
幅器21の出力を受けパルスに変換する第1の比
較器、24は第3の増幅器22の出力を受けパル
スに変換する第2の比較器である。25は比較器
23,24の出力を受けて周期を1/4に分割する
とともにスケールの移動方向を弁別する方向弁別
回路、26は該方向弁別回路のパルス出力を計数
するカウンタ、27は第2の増幅器21の正弦波
出力を自乗する第1の演算器、28は第3の増幅
器22の出力を自乗する第2の演算器である。
FIG. 2 is an electrical configuration diagram showing an embodiment of the present invention. In the figure, PD 1 to PD 3 are photoelectric conversion elements that each receive interference light with different phases and convert it into an electrical signal, 20 is a first amplifier that receives the output of the photoelectric conversion element PD 3 , and 21 is a photoelectric conversion element PD 1. 22 is a photoelectric conversion element that receives the output of
This is the third amplifier that receives the output of PD 2 . The output of the first amplifier 20 is transmitted to the second and third amplifiers 2
1 and 22 are input in common. 23 is a first comparator that receives the output of the second amplifier 21 and converts it into a pulse; 24 is a second comparator that receives the output of the third amplifier 22 and converts it into a pulse. 25 is a direction discrimination circuit which receives the outputs of the comparators 23 and 24 and divides the cycle into 1/4 and discriminates the moving direction of the scale; 26 is a counter which counts the pulse output of the direction discrimination circuit; and 27 is a second 28 is a second arithmetic unit that squares the output of the third amplifier 22.

29は演算器27,28の自乗和を出力する加
算器、SWは増幅器21,22のうち何れか一方
を選択するスイツチ、33は加算器29の出力を
演算し平方根を出力る平方根回路、30は該平方
根回路の出力を基準電圧、スイツチSWを介して
送られてくる正弦波を入力未知電圧とするA/D
変換器、31はカウンタ26の内容とA/D変換
器30の出力を受けて所定の演算を行いスケール
の移動量及び移動方向を算出するとともにスイツ
チSWの切換制御を行う演算制御回路、32は該
演算制御回路の出力を表示する表示部である。演
算制御回路31としては、例えばマイクロコンピ
ユータが用いられる。このように構成された装置
の動作を説明すれば、以下のとおりである。
29 is an adder that outputs the sum of squares of the arithmetic units 27 and 28; SW is a switch that selects one of the amplifiers 21 and 22; 33 is a square root circuit that calculates the output of the adder 29 and outputs the square root; 30 is an A/D whose reference voltage is the output of the square root circuit, and whose input unknown voltage is the sine wave sent via the switch SW.
A converter 31 receives the contents of the counter 26 and the output of the A/D converter 30, performs predetermined calculations, calculates the amount and direction of movement of the scale, and controls switching of the switch SW. 32 is a calculation control circuit. This is a display section that displays the output of the arithmetic control circuit. As the calculation control circuit 31, for example, a microcomputer is used. The operation of the device configured as described above will be explained as follows.

読取ヘツド(図示せず)からは、スケールの移
動量xに対応して90゜位相差のある2つの正弦波、
つまりsin波とcos波が得られる。光電変換素子
PD1,PD2で得られた信号は、それぞれ直流バイ
アスを含んでいるので、増幅器20の直流出力を
各増幅器21,22に加えてキヤンセルしてい
る。PD1,PD2のバイアス値に差がある場合、増
幅器21,22の入力抵抗R1,R2の値を調節し
て値を合わせている。増幅器21,22の出力
は、それぞれ比較器23,24でパルス化された
後、方向弁別回路25に入り該弁別回路で移動方
向を示す信号と周期が1/4に分割されたパルスが
つくられ出力される。これらパルスはカウンタ2
6で計数出力される。上述の方法により、PD1
PD2の出力周期はスケールピツチの1/2なので分
解能はスケールピツチの1/8になる。本発明では、
A/D変換器30を用いてカウンタ26の出力パ
ルスを更に補間して超高分解能を実現しようとす
るものである。
From the reading head (not shown), two sine waves with a phase difference of 90° are generated, corresponding to the amount of movement x of the scale.
In other words, sine waves and cosine waves are obtained. Photoelectric conversion element
Since the signals obtained by PD 1 and PD 2 each contain a DC bias, the DC output of amplifier 20 is added to each amplifier 21 and 22 to cancel it. If there is a difference in the bias values of PD 1 and PD 2 , the values of the input resistances R 1 and R 2 of the amplifiers 21 and 22 are adjusted to match the values. The outputs of the amplifiers 21 and 22 are converted into pulses by comparators 23 and 24, respectively, and then enter a direction discrimination circuit 25, where a signal indicating the moving direction and a pulse whose period is divided into 1/4 are generated. Output. These pulses are counter 2
The count is output at 6. By the method described above, PD 1 ,
Since the output period of PD 2 is 1/2 of the scale pitch, the resolution is 1/8 of the scale pitch. In the present invention,
The aim is to further interpolate the output pulses of the counter 26 using the A/D converter 30 to achieve ultra-high resolution.

演算器27,28の自乗出力を続く加算器29
で加算増幅し、平方根回路33で基準電圧をつく
り、この基準電圧をA/D変換器30の基準電圧
としている。増幅器21,22の出力e1,e2は次
式を満たす。
An adder 29 that follows the squared outputs of the arithmetic units 27 and 28
The square root circuit 33 generates a reference voltage, and this reference voltage is used as the reference voltage of the A/D converter 30. The outputs e 1 and e 2 of the amplifiers 21 and 22 satisfy the following equation.

e1=asinπx/d e2=acosπx/d 但し、a;振幅、d;スケールピツチ、x;ス
ケール移動量 従つて、平方根回路33の出力、即ち基準電圧
erは次式のようになる。
e 1 = asinπx/d e 2 = acosπx/d where a: amplitude, d: scale pitch, x: scale movement amount Therefore, the output of the square root circuit 33, that is, the reference voltage
e r becomes as follows.

即ち、A/D変換器30の基準電圧はスケール
の移動量によらず常に振幅値となり、振幅が変化
しても正確に分割することが可能となる。一方、
該A/D変換器の入力未知電圧としては、sin波
或いはcos波のうち感度の良い方が選択される。
選択は、演算制御回路31が行う。即ち、演算制
御回路31から切換信号がスイツチSWに印加さ
れ、これによりスイツチSWは感度のよい方を選
択してA/D変換器30に入力する。スケールが
高速で移動しているときには方向弁別回路25の
出力パルスを計数し、スケールが低速または停止
したときはA/D変換器30で補間するので、基
準電圧回路27〜29やA/D変換器30は低速
動作のものであつてよい。スケールが停止した
後、演算制御回路31はカウンタ26の値とA/
D変換器30の値とを受けて所定の演算処理を行
い、表示部32でスケールの移動距離及び移動方
向を表示させる一方、サーボループ(図示せず)
にデータを送つたりする。
That is, the reference voltage of the A/D converter 30 always has an amplitude value regardless of the amount of movement of the scale, and even if the amplitude changes, accurate division is possible. on the other hand,
As the input unknown voltage of the A/D converter, a sine wave or a cosine wave, whichever has better sensitivity, is selected.
The selection is made by the arithmetic control circuit 31. That is, a switching signal is applied from the arithmetic control circuit 31 to the switch SW, so that the switch SW selects the one with higher sensitivity and inputs it to the A/D converter 30. When the scale is moving at high speed, the output pulses of the direction discrimination circuit 25 are counted, and when the scale is moving at low speed or stopped, the A/D converter 30 interpolates, so the reference voltage circuits 27 to 29 and the A/D conversion The device 30 may be of low speed operation. After the scale stops, the arithmetic control circuit 31 compares the value of the counter 26 and the A/
After receiving the value of the D converter 30, predetermined arithmetic processing is performed, and the moving distance and moving direction of the scale are displayed on the display unit 32, while the servo loop (not shown)
send data to.

第3図は、本発明に使用する読取ヘツド部の構
成を示す図である。
FIG. 3 is a diagram showing the configuration of a reading head section used in the present invention.

図において、41は半導体レーザ等を用いた可
干渉性光源、42は該光源の発射光を受ける集光
レンズ、43は反射形スケール、44,45はそ
れぞれスケール43の反射回折光を受けるミラ
ー、46はこれらミラーの反射光を受ける第1の
ハーフミラー、47は該第1のハーフミラーの透
過光を受けて混合干渉させる第2のハーフミラ
ー、48,49は該第2のハーフミラーの位相の
異なる干渉光を受けて電気信号に変換する受光素
子、50,51はこれら受光素子の出力を増幅す
る増幅器、52はこれら増幅器の出力を受けて演
算処理を施しスケール43の移動距離を算出する
信号処理回路、53は該信号処理回路の出力を表
示する表示部、54は第1のハーフミラー46の
反射光を受ける受光素子である。このように構成
された装置の動作を説明すれば、以下のとおりで
ある。
In the figure, 41 is a coherent light source using a semiconductor laser or the like, 42 is a condenser lens that receives the emitted light from the light source, 43 is a reflective scale, 44 and 45 are mirrors that each receive the diffracted light reflected by the scale 43, 46 is a first half mirror that receives reflected light from these mirrors, 47 is a second half mirror that receives transmitted light from the first half mirror and mixes and interferes with it, and 48 and 49 are phases of the second half mirror. 50 and 51 are amplifiers that amplify the outputs of these light receiving elements, and 52 receives the outputs of these amplifiers and performs arithmetic processing to calculate the moving distance of the scale 43. A signal processing circuit, 53 is a display section that displays the output of the signal processing circuit, and 54 is a light receiving element that receives reflected light from the first half mirror 46. The operation of the device configured as described above will be explained as follows.

半導体レーザ41の出力光はレンズ42によつ
て受光素子48,49に集光する角度(もしくは
平行光)になる。このとき、偏光面を図に示す向
きになるようにしておく。この光をスケール43
に投射する。スケールとしては例えば正確に溝を
一定間隔で刻まれた回折格子或いはホログラフイ
技術による回折格子等が使用される。従つて投射
された光は回折する。このときの回折角θはスケ
ールピツチd、半導体レーザ41の波長をλとす
ると次式が成立する。
The output light of the semiconductor laser 41 is converted into an angle (or parallel light) that is focused by the lens 42 on the light receiving elements 48 and 49. At this time, the plane of polarization should be oriented as shown in the figure. scale this light 43
to project. As the scale, for example, a diffraction grating in which grooves are precisely carved at regular intervals or a diffraction grating made by holographic technology is used. The projected light is therefore diffracted. The diffraction angle θ at this time is the scale pitch d, and the wavelength of the semiconductor laser 41 is λ, the following equation holds true.

sinθ=mλ/d(m;整数) 但し−90゜≦θ90゜、−1≦m/d≦+1、ここ
で、たとえばλ=0.78μm、d=0.83μmとすると
m=0、±1となり、θ=0゜(m=0で0次回折
光)、θ=±70.0゜(m=±1で±1次回折光) となる。±1次回折光はそれぞれミラー44,4
5で反射され、ハーフミラー46を通過した後第
2のハーフミラー47で混合し干渉させられる。
この干渉させられた光はそれぞれ受光素子48,
49で電気信号に変換される。このとき、干渉し
た光には90゜の位相差を持たせなければならない。
以下にその方法を示す。第4図はハーフミラー4
7で干渉するときの様子を示す図である。図にお
いて、60はガラス、61は金属半透過面であ
る。一般に金属面での反射の際には位相が遅れガ
ラス面での反射および透過光は位相は遅れない。
同図において、−1次回折光のハーフミラー27
での反射による位相遅れをδr1、+1次回折光の反
射による位相遅れをδr2、該ハーフミラーのガラ
ス媒質中での位相遅れをそれぞれ図に示すように
δt1〜δt3とする。+1次光がハーフミラーで反射透
過して受光素子48,49の方向へ行く光を
P+1,Q+1、−1次光が同様に受光素子の方向へ行
く光をP-1,Q-1とする。これら4つの光束の位
相遅れはそれぞれ次のようになる。
sinθ=mλ/d (m; integer) However, -90°≦θ90°, -1≦m/d≦+1, where, for example, if λ=0.78μm and d=0.83μm, m=0, ±1, θ=0° (0th order diffracted light when m=0), θ=±70.0° (±1st order diffracted light when m=±1). The ±1st-order diffracted light is mirrored by mirrors 44 and 4, respectively.
5, and after passing through a half mirror 46, they are mixed and interfered by a second half mirror 47.
This interfered light is transmitted to the light receiving element 48,
49, it is converted into an electrical signal. At this time, the interfering lights must have a phase difference of 90°.
The method is shown below. Figure 4 shows half mirror 4
FIG. 7 is a diagram illustrating a situation when interference occurs. In the figure, 60 is glass and 61 is a metal semi-transparent surface. Generally, when light is reflected from a metal surface, the phase is delayed, but when reflected or transmitted from a glass surface, the phase is not delayed.
In the figure, a half mirror 27 for −1st order diffracted light
Let δ r1 be the phase lag due to reflection of the +1st-order diffracted light, δ r2 be the phase lag due to reflection of the +1st-order diffracted light, and let δ t1 to δ t3 be the phase lag in the glass medium of the half mirror, respectively, as shown in the figure. The +1st order light is reflected and transmitted by the half mirror, and the light goes in the direction of the light receiving elements 48 and 49.
P +1 , Q +1 , −1st-order light that similarly travels in the direction of the light-receiving element are assumed to be P -1 and Q -1 . The phase delays of these four beams are as follows.

P+1;δt1+δr2+δt2、P-1;δt3 Q+1;δt1、Q-1;δr1 従つて、P+1とP-1の位相差Δ1、Q+1とQ-1の位
相差Δ2はそれぞれ次式で表される。
P +1 ; δ t1 + δ r2 + δ t2 , P -1 ; δ t3 Q +1 ; δ t1 , Q -1 ; δ r1 Therefore, the phase difference between P +1 and P -1 Δ 1 , Q +1 The phase difference Δ 2 of Q -1 is expressed by the following equations.

Δ1=δt1+δr2+δt2−δt3 Δ2=δt1−Δr1 ここで、P+1とP-2の光路を一致させればδt2
δt3となる。従つて次式が成立する。
Δ 1 = δ t1 + δ r2 + δ t2 − δ t3 Δ 2 = δ t1 − Δ r1Here , if the optical paths of P +1 and P -2 are matched, δ t2 =
δ t3 . Therefore, the following equation holds.

Δ=δt1+δr2 さて、P+1とP-1およびQ+1とQ-1がそれぞれ干
渉し受光素子48,49に入射する。このとき受
光素子48,49の出力の位相差をαとすれば α=Δ1−Δ2 =δt1+δr2−δt1+δr1 =δr1+δr2 となる。従つて、受光素子48,49の位相差は
δr1およびδr2のみで決まり、ハーフミラー47の
ガラスの厚さには無関係である。金属面でのδr1
δr2の値は、入射角Φと入射光の偏光面の角度に
よつて決まる。δr1,δr2が最大になるのは偏光面
を第4図に示す向きにとつたときで、このときフ
レネルの公式および屈折の法則より次式が成立す
る。
Δ=δ t1r2 Now, P +1 and P -1 and Q +1 and Q -1 interfere with each other and enter the light receiving elements 48 and 49. At this time, if the phase difference between the outputs of the light receiving elements 48 and 49 is α, then α=Δ 1 −Δ 2t1r2 −δ t1r1r1r2 . Therefore, the phase difference between the light receiving elements 48 and 49 is determined only by δ r1 and δ r2 and is unrelated to the thickness of the glass of the half mirror 47. δ r1 on the metal surface,
The value of δ r2 is determined by the incident angle Φ and the angle of the plane of polarization of the incident light. δ r1 and δ r2 become maximum when the plane of polarization is oriented as shown in FIG. 4, and in this case, the following equation holds true from Fresnel's formula and the law of refraction.

Rp=tan(φ−x)/tan(φ+x)Ap sinx=Sinφ/n(1+ik) 但し、Rp;反射光複素振幅 Ap;入射光複素振幅 x;複素屈折角 n;金属の屈折率 k;減衰定数 上式からxを消去すれば反射光の位相遅れδは
次式で示される。
R p =tan(φ−x)/tan(φ+x)A p sinx=Sinφ/n(1+ik) However, R p ; Complex amplitude of reflected light A p ; Complex amplitude of incident light x; Complex angle of refraction n; Refraction of metal Rate k: Attenuation constant If x is eliminated from the above equation, the phase delay δ of the reflected light is expressed by the following equation.

δ=tan-1Rp/Ap=tan-1[2nktanφsinφ(tan2φ+1
)/tan2φ{n2+(nk)2}−sin2φ(tan2φ+1)2
しかし、ハーフミラーの場合には金属面のほか
にガラス面の部分での反射があると考れられる。
ガラス面での反射はブリユースタ角を境にして位
相が180゜反転する。
δ=tan -1 R p /A p = tan -1 [2nktanφsinφ(tan 2 φ+1
)/tan 2 φ{n 2 +(nk) 2 }−sin 2 φ(tan 2 φ+1) 2 ]
However, in the case of a half mirror, it is thought that there is reflection from the glass surface in addition to the metal surface.
The phase of reflection on the glass surface is reversed by 180° at the Brieuster angle.

そこで、ハーフミラーの場合、入射角Φと受光
素子48,49間の位相差αの関係を実測すると
第5図に示すようなものとなり、金属面反射の特
性とガラス面反射の特性を併せもちインコネルハ
ーフミラーの場合Φ=約75゜でα=90゜となる。図
において、横軸は入射角Φを、縦軸は受光素子4
8,49間の位相差αをそれぞれ示している。従
つて、この出力によつてスケールの移動方向が判
別でき、正弦波の波の数を計数して移動量がわか
る。出力は正確に90゜位相差のある正弦波なので
さらにアナログ的に補間して分解能1/100〜1/100
0μmの超高分解能が得られ、これを表示したり
或いは位置制御に使用したりすることができる。
この90゜の位相差信号を処理する構成はその目的
によつて一般的な各種のものが考えられる。この
ような構成にした場合、スケールに投射された光
ビーム径は約4〜5mmで、スケールのピツチdを
0.8μmとすればこのビーム径の中に格子は5000本
程度ありこの全ての格子で1本の干渉縞を作るこ
とになる。従つて、スケールの格子欠陥や小さな
ピツチむら或いはスケールに付着したゴミや汚れ
の影響も非常に小さくできる。ところで第3図の
第1のハーフミラー46と受光素子54は±1次
回折光の光パワーのモニタとして用いられるもの
で、受光素子48,49の出力正弦波のバイアス
成分を除くための電圧をつくるものである。この
ようにすれば、スケールの各場所で回折効率が変
動したり、ゴミや汚れで±1次回折光の強度が変
わつて受光素子48,49の出力が変化しても正
確な正弦波とすることができ正確にパルスに変換
することができる。しかし、スケールが均一で移
動に際し位置や角度の変化が小さいような場合は
特に無くてよいものである。
Therefore, in the case of a half mirror, when the relationship between the incident angle Φ and the phase difference α between the light receiving elements 48 and 49 is actually measured, it is as shown in Fig. 5, which has both the characteristics of metal surface reflection and the characteristics of glass surface reflection. In the case of an Inconel half mirror, Φ = approximately 75° and α = 90°. In the figure, the horizontal axis represents the incident angle Φ, and the vertical axis represents the light receiving element 4.
8 and 49, respectively. Therefore, the direction of movement of the scale can be determined from this output, and the amount of movement can be determined by counting the number of waves of the sine wave. Since the output is a sine wave with an accurate 90° phase difference, further analog interpolation is performed to achieve a resolution of 1/100 to 1/100.
Ultra-high resolution of 0 μm can be obtained, which can be displayed or used for position control.
Various types of general configurations can be considered as the configuration for processing this 90° phase difference signal depending on the purpose. In this configuration, the diameter of the light beam projected onto the scale is approximately 4 to 5 mm, and the pitch d of the scale is approximately 4 to 5 mm.
If it is 0.8 μm, there are approximately 5,000 gratings within this beam diameter, and all of these gratings create one interference fringe. Therefore, the influence of lattice defects of the scale, small pitch irregularities, and dust and dirt attached to the scale can be greatly reduced. By the way, the first half mirror 46 and the light receiving element 54 in FIG. 3 are used to monitor the optical power of the ±1st order diffracted light, and create a voltage to remove the bias component of the output sine wave of the light receiving elements 48 and 49. It is something. In this way, even if the diffraction efficiency fluctuates at each location on the scale, or the intensity of the ±1st-order diffracted light changes due to dust or dirt, and the outputs of the light receiving elements 48 and 49 change, an accurate sine wave can be obtained. It can be accurately converted into pulses. However, if the scale is uniform and the change in position or angle during movement is small, it may not be necessary.

上述した本発明の特長を列挙すれば、以下のと
おりである。
The features of the present invention described above are listed below.

(1) カウンタは、スケールピツチの1/8の分解能
までしか計数していないので、A/D変換器で
いくら分割してもカウンタの容量及び速度は一
定でよい。従つて、高速応答、超高分解能が実
現できる。
(1) Since the counter only counts up to a resolution of 1/8 of the scale pitch, the capacity and speed of the counter may remain constant no matter how many times it is divided by the A/D converter. Therefore, high-speed response and ultra-high resolution can be achieved.

(2) 正弦波、余弦波をスイツチ切り換えて感度の
大きい部分をA/D変換するので、超高分解能
であつもA/D変換器の分解能は低くても(例
えば分解能1/1000μmのとき8ビツト程度)よ
い。
(2) Since the sine wave and cosine wave are switched and the parts with high sensitivity are A/D converted, even if the resolution of the A/D converter is low, even if the resolution is ultra-high (for example, when the resolution is 1/1000 μm, the (about a bit) good.

(3) A/D変換器の基準電圧にsin2θ+cos2θの方
根を使用しているので正確な直流電圧が得ら
れ、sin波、cos波の振幅が変動しても高精度、
超高分解のものが簡単な構成で得られる。
(3) Since the square root of sin 2 θ + cos 2 θ is used as the reference voltage of the A/D converter, an accurate DC voltage can be obtained, and even if the amplitude of the sine wave and cosine wave fluctuates, high accuracy can be achieved.
Ultra-high resolution can be obtained with a simple configuration.

(4) カウンタのパルスカウントとA/D変換器の
分割が独立しているのでA/D変換器で分割す
るときの誤差が累積されない。
(4) Since the pulse count of the counter and the division of the A/D converter are independent, errors when dividing by the A/D converter do not accumulate.

(5) 電源を入れた瞬間から全時間範囲で正確な振
幅値を得て、振幅変動の影響を受けずに高精
度・高分解能で物理量の測定を行うことができ
る。
(5) Accurate amplitude values can be obtained over the entire time range from the moment the power is turned on, and physical quantities can be measured with high precision and high resolution without being affected by amplitude fluctuations.

上述の説明では、スイツチSWの切換信号を演
算制御回路31から与えたが、第2図に示すよう
うにハードでロジツク回路を構成し該ロジツク回
路でスイツチSWの切換制御を行うようにしても
よい。また、スイツチSWで切換える代わりに従
来例のように正弦波、余弦波の差をつくり三角波
としてもよいし第6図に示すように各正弦波、余
弦波を専用のA/D変換器でデイジタルデータに
変換し、何れのデータを選ぶかを演算制御回路に
判断させるようにしてもよい。図において、70
は正弦波を受ける第1のA/D変換器、71は余
弦波を受ける第2のA/D変換器、31はこれら
両A/D変換器の出力データを処理する演算制御
回路で第2図に示すと同一のものである。読取ヘ
ツドとしては、第3図に示すようなものに限ら
ず、正弦波、余弦波を出力するものであれば、光
学式スケール、モアレ式スケール、磁気式スケー
ル、電磁式スケール等のリニアスケール、又は回
転エンコーダ等何であつてもよい。また、変位セ
ンサだけでなく、第7図に示すような光導波路形
温度センサ、第8図に示すような光フアイバ形温
度センサ、第9図に示すようなフアラデー素子を
用いた磁束計、電流計、第10図に示すような光
導波路形電圧計など、90゜位相差のある正弦波を
出力するようなセンサであればどのようなもので
あつてもよい。
In the above explanation, the switching signal for the switch SW is given from the arithmetic control circuit 31, but as shown in FIG. 2, a hardware logic circuit may be constructed and the switching control for the switch SW may be performed by the logic circuit. . Also, instead of switching with a switch SW, it is also possible to create a triangular wave by creating a difference between a sine wave and a cosine wave as in the conventional example, or to digitally convert each sine wave and cosine wave using a dedicated A/D converter as shown in Figure 6. Alternatively, the data may be converted into data, and the arithmetic control circuit may determine which data to select. In the figure, 70
71 is a first A/D converter that receives a sine wave; 71 is a second A/D converter that receives a cosine wave; 31 is an arithmetic control circuit that processes the output data of both of these A/D converters; They are the same as shown in the figure. The reading head is not limited to the one shown in Figure 3, but any linear scale such as an optical scale, moiré scale, magnetic scale, or electromagnetic scale, as long as it outputs a sine wave or cosine wave, Alternatively, it may be anything such as a rotary encoder. In addition to displacement sensors, we also offer optical waveguide type temperature sensors as shown in Figure 7, optical fiber type temperature sensors as shown in Figure 8, magnetometers using Faraday elements as shown in Figure 9, and current Any sensor may be used as long as it outputs a sine wave with a 90° phase difference, such as an optical waveguide type voltmeter as shown in FIG.

以上詳細に説明したように、本発明によれば基
準電圧を(正弦波)2+(余弦波)2の平方根によつ
てつくり歪みのない直流としてアナログ分割の精
度を上げると共に、正弦波、余弦波の出力のうち
感度のよい方を選択して入力するA/D変換器で
アナログ分割し、高速動作中は1/4分割したパル
スを計数し、低速移動になるとアナログ補間を行
うようにして超高分解能、高性能化を図つた光学
式スケール読取装置を実現することができる。
As explained in detail above, according to the present invention, the reference voltage is created using the square root of (sine wave) 2 + (cosine wave) 2 to improve the precision of analog division as a distortion-free direct current. The more sensitive one of the wave outputs is selected and input to the A/D converter, which divides it into analog signals.During high-speed operation, the divided pulses are counted by 1/4, and when moving at low speeds, analog interpolation is performed. It is possible to realize an optical scale reading device with ultra-high resolution and high performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置例を示す図、第2図は本発明
の一実施例を示す電気的構成図、第3図は本発明
に用いる読取ヘツド部の構成を示す図、第4図は
ハーフミラーで干渉するときの位相関係を示す
図、第5図は入射角と受光素子の間の関係を示す
図、第6図は本発明の他の実施例を示す図、第7
図〜第10図は各種センサを示す図である。 1……可干渉性光源、2……ビームスプリツ
タ、3,7……レンズ、5……基準格子、6……
走査格子、8……光電変換素子、9……ピツクア
ツプ、10……アナログ合成回路、11……抵抗
分圧回路、12……比較回路、13……方向弁別
回路、20〜22……増幅器、23,24……比
較器、25……方向弁別回路、26……カウン
タ、27,28……演算器、29……加算器、3
0,70,71……A/D変換器、31……演算
制御回路、32……表示部、33……平方根回
路、34……演算回路、42……レンズ、44,
45……ミラー、48,49,54……受光素
子、41……可干渉光源、43……反射形スケー
ル、46,47……ハーフミラー、50,51…
…増幅器、52……信号処理回路、53……表示
部、60……ガラス、61……金属反透過面。
FIG. 1 is a diagram showing an example of a conventional device, FIG. 2 is an electrical configuration diagram showing an embodiment of the present invention, FIG. 3 is a diagram showing the configuration of a reading head section used in the present invention, and FIG. 4 is a half FIG. 5 is a diagram showing the phase relationship when interference occurs with a mirror. FIG. 5 is a diagram showing the relationship between the incident angle and the light receiving element. FIG. 6 is a diagram showing another embodiment of the present invention.
Figures 1 to 10 are diagrams showing various sensors. 1...Coherent light source, 2...Beam splitter, 3, 7...Lens, 5...Reference grating, 6...
Scanning grating, 8... Photoelectric conversion element, 9... Pickup, 10... Analog synthesis circuit, 11... Resistance voltage divider circuit, 12... Comparison circuit, 13... Direction discrimination circuit, 20-22... Amplifier, 23, 24... Comparator, 25... Direction discrimination circuit, 26... Counter, 27, 28... Arithmetic unit, 29... Adder, 3
0,70,71...A/D converter, 31...Arithmetic control circuit, 32...Display section, 33...Square root circuit, 34...Arithmetic circuit, 42...Lens, 44,
45... Mirror, 48, 49, 54... Light receiving element, 41... Coherent light source, 43... Reflective scale, 46, 47... Half mirror, 50, 51...
...Amplifier, 52...Signal processing circuit, 53...Display section, 60...Glass, 61...Metal anti-transparent surface.

Claims (1)

【特許請求の範囲】 1 被測定物理量の変化に応じ位相が90゜異なる
2つの正弦波或いはその一周期未満の一部分を出
力するセンサと、該正弦波の各瞬時値をそれぞれ
自乗演算して加算し平方根をとるアナログ回路
と、該アナログ回路の出力を基準電圧とし前記正
弦波の何れか一方若しくは前記正弦波を入力する
演算回路の出力を入力とするA/D変換器と、前
記正弦波が多数の繰り返し信号となる場合に該正
弦波をパルスに変換する比較回路と、2つの前記
正弦波の90゜の位相のずれから物理量の変化方向
を弁別する方向弁別回路と、該方向弁別回路の出
力パルスを計数するカウンタと、該カウンタの内
容を前記A/D変換器の出力で補間演算し、前記
物理量の変化量を算出する演算制御回路とを具備
したことを特徴とする物理量測定システム。 2 前記演算回路として2つの正弦波の何れか1
つを選択するスイツチを用いたことを特徴とする
特許請求の範囲第1項記載の物理量測定システ
ム。 3 前記センサとして可干渉性光源の出力をスケ
ールに照射し、反射回折光同士の干渉光を電気信
号に変換してスケールの移動量に応じた信号を出
力する光学式センサを用いたことを特徴とする特
許請求の範囲第1項記載の物理量測定システム。
[Claims] 1. A sensor that outputs two sine waves whose phases differ by 90 degrees depending on changes in a physical quantity to be measured, or a portion of less than one cycle thereof, and a sensor that calculates the squares of the instantaneous values of the sine waves and adds them together. an analog circuit that takes the square root of the sine wave; an A/D converter that uses the output of the analog circuit as a reference voltage and inputs either one of the sine waves or the output of an arithmetic circuit that inputs the sine wave; a comparator circuit that converts the sine wave into a pulse in the case of a large number of repetitive signals; a direction discrimination circuit that discriminates the direction of change in the physical quantity from a 90° phase shift between the two sine waves; and the direction discrimination circuit. A physical quantity measuring system comprising: a counter that counts output pulses; and an arithmetic control circuit that interpolates the contents of the counter with the output of the A/D converter to calculate the amount of change in the physical quantity. 2 Any one of the two sine waves as the arithmetic circuit
2. The physical quantity measuring system according to claim 1, further comprising a switch for selecting one of the physical quantities. 3. The sensor is characterized by using an optical sensor that irradiates the scale with the output of a coherent light source, converts interference light between reflected diffracted lights into an electrical signal, and outputs a signal according to the amount of movement of the scale. A physical quantity measuring system according to claim 1.
JP4818783A 1983-03-23 1983-03-23 Physical quantity measuring system Granted JPS59173709A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4818783A JPS59173709A (en) 1983-03-23 1983-03-23 Physical quantity measuring system
US06/591,511 US4629886A (en) 1983-03-23 1984-03-20 High resolution digital diffraction grating scale encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4818783A JPS59173709A (en) 1983-03-23 1983-03-23 Physical quantity measuring system

Publications (2)

Publication Number Publication Date
JPS59173709A JPS59173709A (en) 1984-10-01
JPH057641B2 true JPH057641B2 (en) 1993-01-29

Family

ID=12796377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4818783A Granted JPS59173709A (en) 1983-03-23 1983-03-23 Physical quantity measuring system

Country Status (1)

Country Link
JP (1) JPS59173709A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115012A (en) * 1986-10-31 1988-05-19 Canon Inc Displacement measuring instrument

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826208A (en) * 1981-08-08 1983-02-16 Fujitsu Ltd Detector for position and speed

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826208A (en) * 1981-08-08 1983-02-16 Fujitsu Ltd Detector for position and speed

Also Published As

Publication number Publication date
JPS59173709A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
US4629886A (en) High resolution digital diffraction grating scale encoder
US5517307A (en) Probe measurement apparatus using a curved grating displacement interferometer
US4979826A (en) Displacement measuring apparatus
US5909283A (en) Linear encoder using diverging light beam diffraction
JP2697919B2 (en) Signal interpolation circuit and displacement measuring device provided with the circuit
JPH0749971B2 (en) measuring device
US5098190A (en) Meterology using interferometric measurement technology for measuring scale displacement with three output signals
NL8005258A (en) INTERFEROMETER.
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
JPH046884B2 (en)
JPH057641B2 (en)
JPS62200225A (en) Rotary encoder
JPS632323B2 (en)
JP4404184B2 (en) Displacement detector
EP0486050B1 (en) Method and apparatus for measuring displacement
JP5902891B2 (en) Encoder and calibration method
JP4404185B2 (en) Displacement detector
JPH05296791A (en) Signal interpolation circuit and displacement measuring device therewith
US5287166A (en) Displacement meter with stared displacement values
JPS628489Y2 (en)
JP2001041730A (en) Linear scale
JPS6210641Y2 (en)
JPS6234242Y2 (en)
JPH0244173Y2 (en)
JP2767487B2 (en) Displacement gauge