JPH0576329B2 - - Google Patents
Info
- Publication number
- JPH0576329B2 JPH0576329B2 JP60155099A JP15509985A JPH0576329B2 JP H0576329 B2 JPH0576329 B2 JP H0576329B2 JP 60155099 A JP60155099 A JP 60155099A JP 15509985 A JP15509985 A JP 15509985A JP H0576329 B2 JPH0576329 B2 JP H0576329B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- air supply
- supply pipe
- tank
- stirring blade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003756 stirring Methods 0.000 claims description 55
- 239000002002 slurry Substances 0.000 claims description 24
- 230000002745 absorbent Effects 0.000 claims description 17
- 239000002250 absorbent Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 description 16
- 230000003647 oxidation Effects 0.000 description 13
- 238000010521 absorption reaction Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 239000010440 gypsum Substances 0.000 description 9
- 229910052602 gypsum Inorganic materials 0.000 description 9
- 235000019738 Limestone Nutrition 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000006028 limestone Substances 0.000 description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000006477 desulfuration reaction Methods 0.000 description 5
- 230000023556 desulfurization Effects 0.000 description 5
- 239000003546 flue gas Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 3
- 229910052815 sulfur oxide Inorganic materials 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- GBAOBIBJACZTNA-UHFFFAOYSA-L calcium sulfite Chemical compound [Ca+2].[O-]S([O-])=O GBAOBIBJACZTNA-UHFFFAOYSA-L 0.000 description 2
- 235000010261 calcium sulphite Nutrition 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は湿式排煙脱硫装置における気泡発生装
置の運転方法に係り、特にプロペラ型撹拌翼を用
いて吸収剤スラリ中に微細な気泡を発生させる気
泡発生装置の運転方法に関するものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of operating a bubble generator in a wet flue gas desulfurization equipment, and particularly to a method for generating fine bubbles in an absorbent slurry using a propeller-type stirring blade. This invention relates to a method of operating a bubble generator.
現在実用化されている湿式排煙脱硫装置は、カ
ルシウム系の吸収剤を使用し、副生品として石膏
を回収するものが主流である。すなわち吸収剤と
して石灰石、生石灰、硝石灰を使用する石灰石・
石膏法(または石灰・石膏法)である。第7図
は、石灰石を吸収剤とし、副生品として石膏を回
収する従来の排煙脱硫装置を示したものである。
ボイラ等の排ガス1は除じん塔2に導びかれ、こ
こで冷却除じんされて一部は脱硫されたのち、吸
収塔3に導びかれ、ここで循環液スラリと接触
し、デミスタ4でミストを除去され、吸収塔3か
ら排出される。一方、吸収剤スラリである石灰石
スラリ20は、石灰石スラリポンプ21により吸
収塔循環タンク5に供給され、そのスラリは吸収
塔循環ポンプ7により吸収塔3内に設置されたス
プレーノズル22に供給され、ここから吸収塔3
内に噴霧されて排ガス1と接触し、排ガス1中の
硫黄酸化物を吸収除去して吸収塔循環タンク5へ
戻り、循環使用される。吸収後の吸収塔循環タン
ク5のスラリは、吸収塔ブリードポンプ8によ
り、除じん塔循環タンク6へ供給され、除じん塔
2内でスプレーノズル22からスプレーされ、更
に排ガス1と接触し、排ガス1中の硫黄酸化物を
除去することによりスラリ中の未反応の石灰石の
量を減じて副生品回収系、すなわち、酸化塔供給
タンク10へ供給される。酸化塔供給タンク10
で、未反応石灰石は硫酸を添加することにより石
膏とし、また、酸化に好適なPHに調整される。PH
調整されたスラリは、酸化塔供給ポンプ11によ
り酸化塔12に供給され、ここで亜硫酸カルシウ
ムは空気酸化され石膏とされた後、導管13を通
つてシツクナ14へ導びかれ、タンク15、ポン
プ16で濃縮された後、石膏スラリは、遠心分離
機17で脱水され、粉体の石膏18が回収され
る。シツクナ14および遠心分離機17での濾過
水19は循環再利用される。
The mainstream wet flue gas desulfurization equipment currently in use uses calcium-based absorbents and recovers gypsum as a byproduct. In other words, limestone, which uses limestone, quicklime, and nitrate as absorbents.
This is the plaster method (or lime/gypsum method). FIG. 7 shows a conventional flue gas desulfurization device that uses limestone as an absorbent and recovers gypsum as a byproduct.
Exhaust gas 1 from a boiler, etc. is led to a dust removal tower 2, where it is cooled and dust removed and a portion is desulfurized, and then led to an absorption tower 3, where it comes into contact with circulating fluid slurry, and is removed by a demister 4. The mist is removed and discharged from the absorption tower 3. On the other hand, limestone slurry 20, which is an absorbent slurry, is supplied to the absorption tower circulation tank 5 by a limestone slurry pump 21, and the slurry is supplied to a spray nozzle 22 installed in the absorption tower 3 by an absorption tower circulation pump 7, Absorption tower 3 from here
It is sprayed into the exhaust gas 1 and comes into contact with the exhaust gas 1, absorbs and removes sulfur oxides in the exhaust gas 1, returns to the absorption tower circulation tank 5, and is used for circulation. The slurry in the absorption tower circulation tank 5 after absorption is supplied to the dust removal tower circulation tank 6 by the absorption tower bleed pump 8, and is sprayed from the spray nozzle 22 in the dust removal tower 2, and further comes into contact with the exhaust gas 1, and the exhaust gas is By removing the sulfur oxides in the slurry, the amount of unreacted limestone in the slurry is reduced and the slurry is supplied to the by-product recovery system, that is, the oxidation tower supply tank 10. Oxidation tower supply tank 10
The unreacted limestone is turned into gypsum by adding sulfuric acid, and the pH is adjusted to be suitable for oxidation. PH
The adjusted slurry is supplied to the oxidation tower 12 by the oxidation tower supply pump 11, where the calcium sulfite is air-oxidized to gypsum, and then guided to the sikuna 14 through the conduit 13, to the tank 15, and to the pump 16. After being concentrated in , the gypsum slurry is dehydrated in a centrifuge 17 and powdered gypsum 18 is recovered. The filtered water 19 from the filter 14 and the centrifugal separator 17 is recycled and reused.
以上述べた様にボイラ排ガスを対象とする石
灰・石膏法湿式排煙脱硫装置では排ガス中の硫黄
酸化物を吸収して生成した亜硫酸カルシウムを含
む吸収剤スラリを酸化して石膏に転じる処理が必
要である。この吸収剤スラリの酸化は従来から微
細な空気の気泡による気液反応で行われており、
気泡を発生させる手段としては吸収剤スラリを撹
拌する高速回転体の近傍に空気を供給する方法が
一般に採用されている。 As mentioned above, in lime/gypsum wet flue gas desulfurization equipment for boiler exhaust gas, it is necessary to oxidize the absorbent slurry containing calcium sulfite produced by absorbing sulfur oxides in the exhaust gas and convert it into gypsum. It is. Oxidation of this absorbent slurry has traditionally been carried out through a gas-liquid reaction using fine air bubbles.
As a means for generating air bubbles, a method generally employed is to supply air near a high-speed rotating body that stirs the absorbent slurry.
空気を微細化するための回転体としてはパドル
翼、タービン翼あるいは円筒形、傘型のアトマイ
ザが使用されている。ところがこれらの気泡発生
装置は気泡の発生には問題ないが発生した気泡を
吸収液スラリ中の広い範囲にわたつて均一に分散
させる効果は少なく、従つて吸収剤スラリタンク
中の局所で酸化反応が行なわれ、タンクの全域で
酸化反応を進めるのは困難であつた。 As a rotating body for atomizing air, a paddle blade, a turbine blade, or a cylindrical or umbrella-shaped atomizer is used. However, although these bubble generators have no problem in generating bubbles, they are not effective in uniformly dispersing the generated bubbles over a wide range in the absorbent slurry, and therefore, oxidation reactions may occur locally in the absorbent slurry tank. However, it was difficult to proceed with the oxidation reaction throughout the tank.
本発明はかかる従来の欠点を解消しようとする
もので、その目的とするところは、空気供給量の
少ない領域でも微細な気泡を発生させることがで
き、しかも消費動力の少ない気泡発生装置の運転
方法を提供するものである。
The present invention attempts to eliminate such conventional drawbacks, and its purpose is to operate a bubble generator that can generate fine bubbles even in areas with a small amount of air supply and that consumes less power. It provides:
本発明は前述の目的を達成するために、吸収剤
スラリを貯蔵したタンク内に撹拌翼と、この撹拌
翼の背面に空気供給管を設け、タンク内に空気を
吹き込み気液反応を行うものにおいて、
起動時には先ず前記空気供給管から空気を供給
した後、前記撹拌翼を回転させることを特徴とす
るものである。
In order to achieve the above-mentioned object, the present invention provides a stirring blade in a tank storing an absorbent slurry and an air supply pipe on the back side of the stirring blade to blow air into the tank to perform a gas-liquid reaction. When starting up, air is first supplied from the air supply pipe, and then the stirring blades are rotated.
以下本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明の実施例に係る気泡発生装置の
概略系統図、第2図および第3図は実験装置の平
面図および側面図、第4図および第5図は第2図
および第3図の実験装置によつて得られた空気供
給量と酸化速度、空気供給量と消費動力の低下割
合を示す特性図、第6図a,bは撹拌翼による気
泡の発生状態を示した説明図である。 FIG. 1 is a schematic system diagram of a bubble generator according to an embodiment of the present invention, FIGS. 2 and 3 are a plan view and a side view of the experimental apparatus, and FIGS. A characteristic diagram showing the air supply amount, oxidation rate, air supply amount and reduction rate of power consumption obtained using the experimental apparatus shown in the figure. Figures 6a and b are explanatory diagrams showing the state of air bubble generation by the stirring blade. It is.
以下、本発明の実施例を説明する以前に、発明
者等が行つた第2図、第3図の実験装置と、第4
図、第5図および第6図a,bの実験結果から紹
介する。 Hereinafter, before explaining the embodiments of the present invention, the experimental apparatus shown in FIGS. 2 and 3 and the experimental device shown in FIG.
We will introduce the experimental results shown in Fig. 5, Fig. 5, and Fig. 6 a and b.
第2図、第3図および第6図a,bにおいて、
22はNa2SO4水溶液の吸収剤スラリ、23は吸
収剤スラリ22を貯蔵したタンク、24はプロペ
ラ型撹拌翼、25は空気供給管、26は流量計、
27は開閉弁、28は撹拌軸である。 In Fig. 2, Fig. 3 and Fig. 6 a, b,
22 is an absorbent slurry of Na 2 SO 4 aqueous solution, 23 is a tank storing the absorbent slurry 22, 24 is a propeller type stirring blade, 25 is an air supply pipe, 26 is a flow meter,
27 is an on-off valve, and 28 is a stirring shaft.
この様な構造において、実験装置は第2図およ
び第3図に示す様にタンク23の側壁に第2図に
示す様に4台のプロペラ型撹拌翼24を取付けタ
ンク23内でNa2SO3水溶液の酸化を行い、気泡
の観察、撹拌所要動力の測定及び酸化用空気の微
細化の尺度となるNa2SO3の酸化速度を測定し
た。 In such a structure, the experimental apparatus is equipped with four propeller type stirring blades 24 on the side wall of the tank 23 as shown in FIGS. 2 and 3, and Na 2 SO 3 inside the tank 23. An aqueous solution was oxidized, and bubbles were observed, the power required for stirring was measured, and the oxidation rate of Na 2 SO 3 was measured, which is a measure of the fineness of the oxidizing air.
実験装置は直径0.8mの円筒形タンク23の底
より0.1mの高さに4台のプロペラ型撹拌翼24
を有する撹拌機を取付け、撹拌軸28はタンク2
3の中心と15度の角度で偏心して配置した。 The experimental equipment consists of four propeller-type stirring blades 24 at a height of 0.1 m from the bottom of a cylindrical tank 23 with a diameter of 0.8 m.
Attach a stirrer with a
It was placed eccentrically at an angle of 15 degrees from the center of 3.
プロペラ型撹拌翼24の外径は120mmであり、
幅30mmの羽根が撹拌軸28に対し30度の角度で取
付けられている。各撹拌翼24に対し各1ケの空
気供給管25が取付けられており、流量計26と
開閉弁27を用いて任意の空気量がプロペラ型撹
拌翼24に通気できるようにした。 The outer diameter of the propeller type stirring blade 24 is 120 mm,
A blade with a width of 30 mm is attached to the stirring shaft 28 at an angle of 30 degrees. One air supply pipe 25 is attached to each stirring blade 24, and a flow meter 26 and an on-off valve 27 are used to allow any amount of air to be vented to the propeller type stirring blade 24.
実験はタンク23に濃度40mmol/の
Na2SO3水溶液の吸収剤スラリ22を250を入
れ、プロペラ型撹拌翼24を1000rpmの回転速度
で回転させ、更に各撹拌翼24に空気供給管25
から均等に空気を所定流量通気することによつて
実験を開始した。尚、気泡と気液撹拌の状態は目
視とストロボ写真撮影で観察し、撹拌所要動力は
撹拌軸28に取付けた図示していない回転トルク
計で測定した。気泡の微細化状況はタンク23内
のNa2SO3濃度変化によつても測定した。 In the experiment, a concentration of 40 mmol/ was placed in tank 23.
Add 250 ml of the absorbent slurry 22 of Na 2 SO 3 aqueous solution, rotate the propeller type stirring blades 24 at a rotation speed of 1000 rpm, and connect the air supply pipe 25 to each stirring blade 24.
The experiment was started by evenly ventilating a predetermined flow rate of air. Note that the state of bubbles and gas-liquid stirring was observed visually and by taking strobe photography, and the power required for stirring was measured with a rotating torque meter (not shown) attached to the stirring shaft 28. The state of bubble refinement was also measured by changing the Na 2 SO 3 concentration in the tank 23.
そして、発明者等の観察によればプロペラ型撹
拌翼24に空気供給管25から通気すると気泡の
微細化と同時に気泡がタンク23の内部に押し出
されタンク23内の吸収液スラリ22の全域に気
泡が広がり、タンク23の全域で気液反応が進行
する様子がうかがえた。 According to the observations of the inventors, when the propeller-type stirring blades 24 are ventilated through the air supply pipe 25, the bubbles become finer and at the same time the bubbles are pushed out into the tank 23. It was seen that the gas-liquid reaction was progressing throughout the tank 23.
しかし、本発明者等は更にプロペラ型撹拌翼2
4による通気撹拌を検討した結果、プロペラ型撹
拌翼24の運転条件によつては微細気泡の生成が
不良である領域、つまり第6図aに示す様に空気
供給管25から吹込んだ空気が単にプロペラ型撹
拌翼24の中心軸上を通り抜けるだけの領域Aが
あることを知り、更にこの領域Aではプロペラ型
撹拌翼24の撹拌所要動力が空気を吹込まない時
と同一であり所要動力が低下しないことを知つ
た。通常、液中に微細な気泡を発生させて気液反
応を行う方式は発酵工業、合成化学工業、排水処
理工業において液量に比べて反応させる気体の量
が少ない場合に使用されるので、気体の量が少な
いと微細な気泡が形成されないのでプロペラ型撹
拌翼24は使用されなかつた。 However, the present inventors further proposed a propeller-type stirring blade 2.
As a result of examining the aeration stirring according to No. 4, it was found that depending on the operating conditions of the propeller-type stirring blade 24, the generation of fine bubbles is poor, that is, the air blown from the air supply pipe 25 as shown in FIG. We learned that there is a region A where the propeller-type stirring blade 24 simply passes over the center axis, and furthermore, in this region A, the required power for stirring by the propeller-type stirring blade 24 is the same as when no air is blown, and the required power is lower. I learned that it does not deteriorate. Normally, the method of generating fine bubbles in a liquid to perform a gas-liquid reaction is used in the fermentation industry, synthetic chemical industry, and wastewater treatment industry when the amount of gas to be reacted is small compared to the amount of liquid. If the amount of is small, fine bubbles will not be formed, so the propeller type stirring blade 24 was not used.
ところが、本発明者等は更にプロペラ型撹拌翼
24による気泡形成の検討を進め、第6図aに示
す如く空気が微細化されないで通り抜ける現象は
通気量を増加させていく初期の段階で発生し、一
旦、第6図bに示す様にこの領域Aを過ぎて空気
がプロペラ型撹拌翼24にまとわりつくいわゆる
キヤビテーシヨンに類似した現象(以下単にキヤ
ビテーシヨン類似現象という)が発生してしまえ
ば再度、空気供給管25からの空気量を減少させ
てもキヤビテーシヨン類似現象Bはそのまま持続
しプロペラ型撹拌翼24から微細な気泡を発生さ
せ続けることを知り本発明に到達した。 However, the present inventors further investigated the formation of air bubbles by the propeller-type stirring blades 24, and found that the phenomenon in which air passes through without being atomized, as shown in FIG. , once a phenomenon similar to so-called cavitation (hereinafter simply referred to as cavitation-like phenomenon) occurs, in which air passes through this region A and clings to the propeller-type stirring blade 24, as shown in FIG. 6b, the air supply is stopped again. The inventors discovered that even if the amount of air from the pipe 25 is reduced, the cavitation-like phenomenon B continues as it is, and the propeller-type stirring blades 24 continue to generate fine bubbles, resulting in the present invention.
つまり、空気供給管25からの空気の供給量を
変化させNa2SO3水溶液の酸化速度とプロペラ型
撹拌翼24の撹拌所要動力を測定した結果を第4
図および第5図に示す。第4図において点Cから
D点へ空気供給量を増加させていくと5m3/h付
近で第6図bで説明したキヤビテーシヨン類似現
象Bが発生して第5図の点Eから点Fへ急激に撹
拌所要動力が減少し、Na2SO3の酸化速度は急激
に向上する。しかしながら、このキヤビテーシヨ
ン類似現象Bが発生した状態で逆に空気供給量を
10m3/hから減少させていくと5m3/h以下にな
つてもキヤビテーシヨン類似現象Bが発生したま
まであり、撹拌所要動力は、第5図の点Eまでは
増加せず、またNa2SO3の酸化速度も第4図の点
Cまでは低下しない。この現象によつて本発明に
よる一時的な空気供給量増加の履歴が空気供給量
の少ない領域における酸化、つまり微細気泡の形
成に効果があることが明らかになつた。又、以上
の実験データからも明らかなように気泡の形成状
態は撹拌所要動力、つまり、プロペラ型撹拌翼2
4の回転トルクと密接な関係があるので空気供給
量を時間とともに変化させる方法の他に、回転ト
ルクの検出値で空気供給量を制御する方法も可能
である。つまり第4図および第5図の例において
酸化反応を空気量5m3/hでキヤビテーシヨン類
似現象Bによつて気泡を発生させている時、モー
タなどの故障による空気供給量の変動等によつて
空気の吹抜けが生じたとすれば、酸化速度は約半
分に低下しプロペラ型撹拌翼24の回転トルクは
約1.5倍に上昇する。そこで回転トルクがその半
分程度に低下するまで空気供給量を増加させてキ
ヤビテーシヨン類似現象Bを確実に発生させた後
に回転トルクもしくは空気供給量が元の状態にな
るまで空気供給量を減少させれば良い。尚、撹拌
所要動力は撹拌軸28の回転トルクだけでなく撹
拌動力源の消費動力もしくはプロペラ型撹拌翼2
4によつて生起される液の流れの強さとも密接な
関係があるのでこれらの検出値も回転トルクの検
出値と同様に制御の因子に使用してもよい。 In other words, the results of measuring the oxidation rate of the Na 2 SO 3 aqueous solution and the required stirring power of the propeller-type stirring blades 24 by varying the amount of air supplied from the air supply pipe 25 are shown in the fourth table.
As shown in FIG. When the air supply amount is increased from point C to point D in Figure 4, cavitation-like phenomenon B, which was explained in Figure 6b, occurs around 5 m 3 /h, and the air flow increases from point E to point F in Figure 5. The power required for stirring rapidly decreases, and the oxidation rate of Na 2 SO 3 rapidly increases. However, when this cavitation-like phenomenon B occurs, the air supply amount is
When decreasing from 10 m 3 /h to 5 m 3 /h or less, cavitation-like phenomenon B continues to occur, and the required stirring power does not increase to point E in Figure 5, and Na 2 The oxidation rate of SO 3 also does not decrease to point C in FIG. This phenomenon revealed that the history of temporarily increasing the amount of air supplied according to the present invention is effective in oxidation, that is, the formation of fine bubbles, in areas where the amount of air supplied is small. Furthermore, as is clear from the above experimental data, the state of bubble formation depends on the required stirring power, that is, the propeller type stirring blade 2.
In addition to the method of changing the air supply amount over time, it is also possible to control the air supply amount using the detected value of the rotational torque, since it is closely related to the rotational torque of No. 4. In other words, in the examples shown in Figs. 4 and 5, when the oxidation reaction is being performed at an air flow rate of 5 m 3 /h to generate bubbles due to cavitation-like phenomenon B, the air flow rate may change due to fluctuations in the air supply amount due to failure of the motor, etc. If air blow-through occurs, the oxidation rate decreases by about half and the rotational torque of the propeller-type stirring blade 24 increases by about 1.5 times. Therefore, if you increase the air supply amount until the rotational torque decreases to about half of that amount to ensure cavitation-like phenomenon B occurs, then reduce the air supply amount until the rotational torque or air supply amount returns to the original state. good. Note that the power required for stirring is determined not only by the rotational torque of the stirring shaft 28 but also by the power consumption of the stirring power source or the propeller type stirring blade 2.
Since there is a close relationship with the strength of the liquid flow caused by 4, these detected values may also be used as control factors in the same way as the detected value of rotational torque.
以上の実験データをもとに、第1図を用いて本
発明の気泡発生装置の系統図について説明する。 Based on the above experimental data, a system diagram of the bubble generator of the present invention will be explained using FIG. 1.
第1図において、22は吸収剤スラリ、23は
タンク、24は撹拌翼、25は空気供給管、27
は開閉弁、28は撹拌軸、29は空気供給管25
に並列に設けた副空気供給管、30は副空気供給
管29の副開閉弁、31は空気タンク、32はモ
ータ、33はタイマ、34は空気供給口である。 In FIG. 1, 22 is an absorbent slurry, 23 is a tank, 24 is a stirring blade, 25 is an air supply pipe, 27
is an on-off valve, 28 is a stirring shaft, 29 is an air supply pipe 25
30 is a sub-opening/closing valve of the sub air supply pipe 29, 31 is an air tank, 32 is a motor, 33 is a timer, and 34 is an air supply port.
この様な構造において本発明の特徴は空気供給
口34に供給する空気流量の制御にあり、空気タ
ンク31から空気供給口34に至る空気供給管2
5と副空気供給管29を2系列配置し、タイマ3
3と開閉弁27と含開閉弁30によつてタンク2
3へ供給する空気供給量を増減させるものであ
る。起動時にタイマ33を稼動させるとまずタイ
マ33からの信号によつて開閉弁27と副開閉弁
30が開き空気タンク31からの空気が空気供給
管25、副空気供給管29を通つて空気供給口3
4に送られる。次いでタイマ33からモータ32
に信号が送られ撹拌翼24の回転が始まる。一定
時間経過し撹拌翼24の回転速度が上昇するとタ
イマ33からの信号が副開閉弁30に送られて副
開閉弁30は閉じられ副空気供給29からの空気
供給は停止し、従つて空気流量が所定の流量まで
低下して運転される。 In such a structure, the feature of the present invention is to control the flow rate of air supplied to the air supply port 34, and the air supply pipe 2 from the air tank 31 to the air supply port 34 is controlled.
5 and auxiliary air supply pipe 29 are arranged, and timer 3
3, the on-off valve 27, and the on-off valve 30, the tank 2
This is to increase or decrease the amount of air supplied to No. 3. When the timer 33 is activated at startup, the on-off valve 27 and the auxiliary on-off valve 30 are first opened by a signal from the timer 33, and air from the air tank 31 passes through the air supply pipe 25 and the auxiliary air supply pipe 29 to the air supply port. 3
Sent to 4. Then, from the timer 33 to the motor 32
A signal is sent to the stirring blade 24 and the rotation of the stirring blade 24 is started. When the rotational speed of the stirring blade 24 increases after a certain period of time has elapsed, a signal from the timer 33 is sent to the auxiliary on-off valve 30, which closes and the air supply from the auxiliary air supply 29 is stopped, thus reducing the air flow rate. is operated with the flow rate reduced to a predetermined flow rate.
更に運転途中において空気供給の一時的な途絶
等の事故によつて第6図bで説明したキヤビテー
シヨン類似現象Bが発生しなくなるとモータ32
が過負荷になり消費電力が上昇するので過負荷の
場合に発生するモータ32からの信号がタイマ3
3に作用し、タイマ33の状態は再度、起動時に
戻る。タイマ33からの信号によつて副開閉弁3
0が開き副空気供給管29による空気供給が再開
され空気供給口34からの空気量は多くなる。開
閉弁27はこの時点では開いているのでタイマ3
3から信号による開放指令が送られてきてもその
ままの状態を維持しモータ32も同項に回転した
ままである。 Furthermore, if the cavitation-like phenomenon B described in FIG. 6b does not occur due to an accident such as a temporary interruption of the air supply during operation, the motor 32
Since the motor 32 becomes overloaded and the power consumption increases, the signal from the motor 32 generated in the case of overload is transmitted to the timer 3.
3, and the state of the timer 33 returns again to the time of startup. The auxiliary on-off valve 3 is activated by the signal from the timer 33.
0 opens, air supply by the sub air supply pipe 29 is resumed, and the amount of air from the air supply port 34 increases. Since the on-off valve 27 is open at this point, timer 3
Even if an opening command is sent by a signal from 3, the state remains as it is, and the motor 32 also continues to rotate in the same manner.
この様に撹拌翼24による微細な気泡の形成に
は第6図bで説明したキヤビテーシヨン類似現象
Bを発生させることによつて、撹拌翼24に空気
を通過させるだけでなく、撹拌翼24に空気をま
とわりつかせることが重要である。 In this way, in order to form fine bubbles by the stirring blades 24, the cavitation-like phenomenon B explained in FIG. It is important to surround yourself with
しかしながら、このキヤビテーシヨン類似現象
Bは空気量が少ない場合は発生しないが、空気供
給管25と副空気供給管29の両方から空気を供
給させて一時的に空気量を増加させ、一旦キヤビ
テーシヨン類似現象Bを発生させれば、空気量を
減少してもその状態が維持されるので、微細ない
泡が発生し、撹拌翼24と消費動力も低下する。 However, this cavitation-like phenomenon B does not occur when the amount of air is small, but if air is supplied from both the air supply pipe 25 and the auxiliary air supply pipe 29 to temporarily increase the air amount, the cavitation-like phenomenon B If this is generated, that state will be maintained even if the amount of air is reduced, so fine bubbles will be generated, and the stirring blades 24 and power consumption will also be reduced.
本発明は前述のような構成になつているため、
空気供給量の少ない領域でも微細な気泡を発生さ
せることができ、しかも消費動力の少ない気泡発
生装置の運転方法が得られる。
Since the present invention is configured as described above,
A method of operating a bubble generator that can generate fine bubbles even in a region where the amount of air supplied is small and that consumes less power can be obtained.
第1図は本発明の実施例に係る気泡発生装置の
概略系統図、第2図および第3図は実験装置の平
面図および側面図、第4図および第5図は第2図
および第3図の実験装置で得られた実験データの
特性図、第6図a,bは撹拌翼による気泡の発生
状態を示した説明図、第7図は湿式排煙脱硫装置
の概略系統図である。
22……吸収剤スラリ、23……タンク、24
……撹拌翼、25……空気供給管、27……開閉
弁、29……副空気供給管、30……副開閉弁。
FIG. 1 is a schematic system diagram of a bubble generator according to an embodiment of the present invention, FIGS. 2 and 3 are a plan view and a side view of the experimental apparatus, and FIGS. 6A and 6B are explanatory diagrams showing the state of bubble generation by the stirring blade, and FIG. 7 is a schematic system diagram of the wet flue gas desulfurization device. 22... Absorbent slurry, 23... Tank, 24
... Stirring blade, 25... Air supply pipe, 27... On-off valve, 29... Sub-air supply pipe, 30... Sub-on-off valve.
Claims (1)
と、この撹拌翼の背面に空気供給管を設け、タン
ク内に空気を吹き込み気液反応を行うものにおい
て、 起動時には先ず前記空気供給管から空気を供給
した後、前記撹拌翼を回転させることを特徴とす
る気泡発生装置の運転方法。 2 前記空気供給管と並列に副開閉弁を有する副
空気供給管を設け、前記空気供給管に付設されて
いる開閉弁と前記副空気供給管に付設されている
副開閉弁の両方の弁をともに開いて空気を供給
し、ついで前記撹拌翼を回転させ、所定時間経過
後にいずれか一方の開閉弁を閉じることを特徴と
する特許請求の範囲第1項記載の気泡発生装置の
運転方法。[Claims] 1. In a tank storing absorbent slurry, a stirring blade is provided, and an air supply pipe is provided on the back side of the stirring blade, and air is blown into the tank to perform a gas-liquid reaction. A method of operating a bubble generator, comprising rotating the stirring blade after supplying air from an air supply pipe. 2. A sub-air supply pipe having a sub-on/off valve is provided in parallel with the air supply pipe, and both the on-off valve attached to the air supply pipe and the sub-on/off valve attached to the sub-air supply pipe are operated. 2. The method of operating a bubble generator according to claim 1, wherein both valves are opened to supply air, then the stirring blades are rotated, and after a predetermined period of time, one of the on-off valves is closed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60155099A JPS6219225A (en) | 1985-07-16 | 1985-07-16 | Bubble generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60155099A JPS6219225A (en) | 1985-07-16 | 1985-07-16 | Bubble generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6219225A JPS6219225A (en) | 1987-01-28 |
JPH0576329B2 true JPH0576329B2 (en) | 1993-10-22 |
Family
ID=15598602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60155099A Granted JPS6219225A (en) | 1985-07-16 | 1985-07-16 | Bubble generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6219225A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4774878B2 (en) * | 2005-09-08 | 2011-09-14 | マツダ株式会社 | Injection molding product manufacturing apparatus and manufacturing method thereof |
-
1985
- 1985-07-16 JP JP60155099A patent/JPS6219225A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6219225A (en) | 1987-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK174985B1 (en) | Flue gas desulphurisation apparatus for wet treatment | |
AU2006322822B2 (en) | Wet flue-gas desulfurization apparatus and method of wet flue-gas desulfurization | |
DK172817B1 (en) | Process for desulphurizing flue gas by the wet method | |
CN100534589C (en) | Gas outburst spinning dive desulfurization dust cleaning apparatus | |
CA2177309C (en) | Process for the desulfurization of sulfurous acid gas-containing waste gas | |
US11065576B2 (en) | Wet flue gas desulfurization apparatus | |
KR0147183B1 (en) | Gas-liquid contactor and wet flue gas desulfurization system | |
JPH09239233A (en) | Method and apparatus for exhaust gas desulfurization and ship carrying the apparatus | |
WO1996014137A1 (en) | Forced oxidation system for a flue gas scrubbing apparatus | |
JPH0576329B2 (en) | ||
KR20190108775A (en) | Wet flue gas desulfurization apparatus | |
JP3308590B2 (en) | Method and apparatus for removing sulfur dioxide from a gas stream | |
CN1048188C (en) | Flue gas desulfurization method and system | |
EP1948354B1 (en) | Aeration system and method | |
JPH10128053A (en) | Stack gas treating device and treatment of stack gas | |
JP3068452B2 (en) | Wet flue gas desulfurization equipment | |
JP2000202204A (en) | Method for controlling bubble content in liquid and device therefor | |
JPH0248022Y2 (en) | ||
KR102089773B1 (en) | Wet flue gas desulfurization apparatus | |
KR102061168B1 (en) | Wet flue gas desulfurization apparatus | |
JPH0469089B2 (en) | ||
JPH0536367B2 (en) | ||
JPH0227868Y2 (en) | ||
JPS62262728A (en) | Method for operating wet exhaust gas desulfurizer | |
JPH0239544Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |