JPH0575810B2 - - Google Patents

Info

Publication number
JPH0575810B2
JPH0575810B2 JP63039497A JP3949788A JPH0575810B2 JP H0575810 B2 JPH0575810 B2 JP H0575810B2 JP 63039497 A JP63039497 A JP 63039497A JP 3949788 A JP3949788 A JP 3949788A JP H0575810 B2 JPH0575810 B2 JP H0575810B2
Authority
JP
Japan
Prior art keywords
alloy
weight
porcelain
strength
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63039497A
Other languages
Japanese (ja)
Other versions
JPH01215938A (en
Inventor
Michio Ogawa
Mitsuhiko Matsui
Sunao Urabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP3949788A priority Critical patent/JPH01215938A/en
Publication of JPH01215938A publication Critical patent/JPH01215938A/en
Publication of JPH0575810B2 publication Critical patent/JPH0575810B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、歯科用の新規なパラジウム合金を提
供する。 〔従来技術及び本発明が解決しようとする問題
点〕 歯科用パラジウム合金は歯科陶材焼付用として
使用される合金であり、該陶材焼付用合金とは、
歯科補綴物の一種である金属焼付陶材の基体部分
が作る金属のことである。また金属焼付陶材と
は、金属基体上に陶材を接合した補綴物である。
陶材と金属基体とを接合する方法は、一般的には
まず金属基体を高温に保持し該金属基体表面に酸
化被膜を形成させ、次いで該酸化被膜に覆われた
金属基体上に陶材粉末を水で溶いた泥状物を築盛
し、乾燥させた後高温で焼成し、同時に該金属基
体と接合せしめるという方法である。従つて、歯
科用合金特に陶材焼付用合金は、歯科用合金に要
求される強度、耐食性、生体親和性を有すること
はもちろんのこと、陶材と熱膨張係数が一致し、
かつ陶材と強固に接合すること、また高温強度が
高いこと、さらには高強度、高弾性率で変形しに
くいこと等が要求される。 現在使用されている陶材焼付用合金は、Au−
Pt−Pd−あるいはAu−Pd−Agを主成分とする
貴金属系合金が主流である。ところが該貴金属系
合金は、Au及びPtが高価で経済的に不利である
こと、及び合金強度が不十分であるという問題点
がある。そこでこのような問題点を解決したPd
系合金が開発され、提案(特開昭59−28545ある
いは特開昭61−186437に示されるようなPd−Cu
−Gaを主成分とするPd合金されている。これら
Cu、Gaを主添加元素とするPd合金は、比較的低
価格で高強度、高耐食性、生体為害性が少ないと
いう点で優れた合金である。しかし該合金は硬く
比較的脆いため、実用上大きな外力が加わつたと
きに破折する場合があるうえ、研削あるいは圧延
等の加工がしにくく、また、該合金は融点が低い
ため鋳造性は良いが、一方で高温強度が十分とは
言えず、陶材を接合するための、前処理を含めた
熱処理中に変形を生じ易いという問題点があり、
精度を要求される歯科補綴物においては適合が悪
くなるという欠点を有している。 また特開昭61−295348号には、“パラジウム60
〜80%、金0〜8%、白金0〜5%、ルテニウム
および/またはレニウム0〜1%、銅2〜20%、
錫および/またはインジウム1〜12%、タングス
テン、モリブデン、ニオブおよびタンタルなる元
素の1種以上0.2〜5%およびコバルト0〜15%
から成り、錫およびインジウムの全含有量が5〜
14%でなければならない組成を有する銀不含パラ
ジウム合金を使用する歯科用陶材溶着用材料”が
提案されている。上記材料は高強度であり且つ比
較的大きな伸びを有し、また融点も低過ぎること
もない優れたものである。 しかし、該材料は弾性率が比較的低いため、外
力が加わつた場合比較的大きな歪を生ずる。従つ
て、該材料に陶材を接合した状態で外力が加わつ
た場合、ほとんど伸びを示さない該陶材が上記歪
に耐えきれず割れるという場合が生ずるケースが
あり、改良の余地があつた。 〔問題点を解決するための手段〕 本発明者らは、合金強度が高く高弾性率であ
り、かつ適度に大きな伸びを有し、陶材との接合
強度が高く、また融点が作業性を損わない程度に
適度に高く従つて熱処理による変形の少ない、前
記諸問題のない歯科用合金を得るため鋭意研究し
て来た。その結果、本発明を完成するに至つた。 即ち、本発明は、銅5〜15重量%;錫8〜18重
量%;ゲルマニウム2〜4重量%及び残部がパラ
ジウムからなる歯科用パラジウム合金である。 また、本発明は、銅5〜15重量%;錫8〜18重
量%;ゲルマニウム1〜4重量%:インジウム、
鉄及びコバルトよりなる群から選ばれた少くとも
1種を合計0.001〜5重量%及び残部がパラジウ
ムからなる歯科用パラジウム合金をも提供するも
のである。 本発明の歯科用合金にあつては、合金を構成す
る成分とその組成比が本発明の目的を達成するた
めに極めて重要な要件である。 本発明の合金を構成する成分の1つは銅であ
る。該銅(Cu)は得られる合金の融点及び熱膨
張係数の調整と合金強度の向上、及び陶材とのぬ
れが良い緻密な外部酸化被膜の形成に効果的であ
る。該銅の組成比は合金中に5〜15重量%存在せ
しめると好適である。 該銅の含有量が5重量%未満になると融点が高
くなり作業性が劣るとともに、合金強度が低くな
り実用に耐えない。反対に該銅の含有量が15重量
%をこえると外部酸化被膜が厚くなり合金素地と
の密着性が悪くなるため、陶材との接合強度の低
下をまねき、かつ該外部酸化被膜の色が黒色化
し、審美性を損うので好ましくない。 本発明の合金を構成する成分の他の1つは錫
(Sn)である。該錫はゲルマニウムと特定割合と
なるように複合添加することによつて極めて効果
的な成果を発揮する。即ち合金中に、錫を8〜18
重量%好ましくは10〜15重量%と比較的多量に含
有させ、かつゲルマニウムを共存させることによ
り、高強度、高弾性率、大きな伸び及び適切な融
点が得られる。また、錫は熱膨張係数を調整する
効果、さらには、合金表面直下に内部酸化層を形
成し、後述する銅の外部酸化被膜の厚さを制御
し、該外部酸化被膜と合金素地の結合性を高める
効果がある。合金中の錫の含有量が8重量%未満
であると合金強度が低下し、かつ融点が高くなり
鋳造が容易でなくなる傾向があり、また、上記内
部酸化層が不完全となり、外部酸化被膜の厚さを
適切に制御し難くなり、陶材との接合強度が低下
するので好ましくない。反対に合金中の錫の含有
量が18重量%をこえると、外部酸化被膜に悪影響
を及ぼし陶材との接合強度が低下するとともに、
合金が脆化し始めるので好ましくない。 本発明の合金を構成する更に他の1つはゲルマ
ニウム(Ge)である。本発明の合金中には該ゲ
ルマニウムは2〜4重量%の範囲で含有されるの
が好ましい。該ゲルマニウムは前記のように比較
的多量含まれる錫との共存によつて本発明の優れ
た効果が発揮される。即ち、該ゲルマニウム
(Ge)は少量の添加で、合金を脆化させることな
く合金強度、弾性率を高め、かつ融点を適度に下
げ溶解時の溶湯の性状を良くし鋳造性を向上する
効果がある。また、前述の内部酸化層を微細化、
緻密化し後述する外部酸化被膜の厚さ、性状をよ
り最適に制御する効果も発揮する。 該合金中に含まれるゲルマニウムが2重量%未
満であると上記の全ての効果がバランス良く発現
し難くなり、逆に4重量%をこえると合金が脆化
する傾向があるので好ましくない。 但し、更にインジウム、鉄、及びコバルトより
なる群から選ばれた少なくとも1種の金属を添加
させる合金においては、ゲルマニウム含量は1重
量%以上4重量%以下であれば上記効果が十分発
現する上に添加による新たな効果も生じる。 本発明の合金は前記各成分及び構成比の残部は
パラジウム(Pd)である。該パラジウムは、本
発明合金のベース元素であり、本発明合金の全て
の性質の基盤となつており、特に合金の耐食性を
高める上で重要な役割を果している。 本発明で提案する特定量の銅、錫、ゲルマニウ
ムを含み残部がパラジウムよりなる合金は前記の
ように歯科用合金として数々の優れた性質を有し
ている。かかる性質を更に優れたものとするため
に上記成分に更に、インジウム、鉄及びコバルト
からなる群から選ばれた少くとも1種の成分を特
定量含有させることはしばしば好適である。 該インジウム(In)は、合金強度の向上及び前
記錫との相互作用により微細な内部酸化層を形成
し、外部酸化被膜の厚さ、性状をより最適に制御
する効果がある。また、鉄(Fe)及びコバルト
(Co)は合金強度の向上及び外部酸化被膜の構成
要素となり陶材との接合強度を高めるとともに該
外部酸化被膜の色を淡くする効果がある。また、
熱膨張係数を高める効果もあり、より熱膨張係数
の大きい陶材に対応することも出来る。 本発明の合金中に上記インジウム、鉄及びコバ
ルトは必要に応じて1成分でもよく、2成分或い
は3成分を含有させてもよい。該インジウム、鉄
及びコバルトから群から選ばれた少くとも1種の
成分な合金中に最大5重量%までの含有量にとど
めると好ましい。一般には該成分を0.001〜5重
量%の範囲で含有させれば好適である。該成分の
含有量が合金中に5重量%を越えると合金が脆化
する傾向が生ずるので好ましくない。 本発明の合金の製造方法は特に限定されるもの
ではない。一般に例えば本発明の合金成分例えば
Pd、Cu、Sn、Ge、In、Co、Feをそれぞれ単体、
あるいはこれら元素群から選ばれた2種あるいは
それ以上をあらかじめ合金化した母合金をも含め
て原料とし、これらを真空中、不活性ガス中、大
気中を問わず、アーク溶解、高周波溶解、炉内溶
解等を用いたいかなる溶解法によつて合金化して
もよい。尚溶製順序は一般的には、量が多く融点
が適度でありさほど活性でない原料から溶解さ
せ、順次、少量あるいは活性な原料を添加してゆ
く方法がとられる。本発明合金においては、例え
ば、Pd、Co、Fe、Cu、Sn、Ge、Inの順序で添
加、溶製してゆくことになるが、この順序に限定
されることはなく、また2種以上の原料を同時に
添加してもよく、さらには全原料を一括して同時
に溶製してもよい。また、各元素単体の粉末、あ
るいは母合金粉末を含めた各原料粉末を混合した
後焼成、焼結させる粉末治金法等により作製して
もよい。 〔発明の効果〕 本発明の合金はどのような陶材に対しても優れ
た機能を発揮する。特に歯科用陶材例えばSiO2
が40〜70重量%、Al2O3が10〜20重量%、K2Oが
1〜10重量%、Na2Oが3〜7重量%、SnO2が0
〜15重量%、CaOが0〜7重量%、ZrOが0〜5
重量%、TiO2が0〜3重量%、B2O30〜10重量
%、ZnOが0〜1重量%等の組成を有するフリツ
トガラスに対して優れた機能を発揮する。 また本発明の合金は、高強度、高弾性率、大き
な伸び及び適切な融点を有し、かつ陶材との接合
強度が高い。さらに本発明の合金は一般的に歯科
用合金に要求される諸物性を満足しており、口腔
内に長期間、安全かつ安定に維持できる補綴物例
えば鋳造歯冠、橋義歯、義歯床に使用することが
できるし、人工骨やインプラント等の生体材料等
の歯科用材料としてもすぐれた合金となる。 〔実施例〕 本発明をより具体的に説明するために以下、実
施例及び比較例を挙げて説明するが、本発明はこ
れらの実施例に限定されるものではない。また、
各実施例及び比較例の結果は表1にそれぞれ、各
合金の組成、融点、硬度、引張強度、伸び、弾性
率及び合金と陶材との接合強度をまとめて示し
た。それぞれの測定法は以下に示すとおりであ
る。 (1) 合金の融点 熱分析装置(DTA)により測定した合金の
液相点温度を融点とした。 (2) 合金の強度 10mm×10mmの板状試験片を鋳造し、表面を鏡
面研磨した後マイクロビツカース硬度計を用
い、荷重500g、保持時間15秒の条件で測定し
た。 (3) 合金の引張強度、伸び及び弾性率 直径φ2.3mm、標点間距離15mmの棒状試験片を
鋳造し、表面をエメリーペーパー#1500で仕上
げた後、これを引張り破断させ、この時の破断
強度を引張強度とし、この時の標点間の伸び率
を伸びとした。また、この試験により得られる
応力−歪曲線から弾性率を求めた。 (4) 合金と陶材との接合強度 長さ25m、幅6mm、厚さ1mmの2枚の試験片
の表面を鏡面状に研磨した後、980℃の大気中
で5分間加熱し、合金表面に酸化皮膜を形成さ
せた。次に、一方の試験片の端から長さ4mm、
幅6mmの部分に水を加えて泥状にしたVITA社
製のオペーク陶材(VMK68、511、A2)を盛
り、この厚さが0.1mmになるようにして、他方
の試験片ではさんだ。なお、2枚の試験片は、
水平方向に互いに逆向きに重ね合せた。陶材を
乾燥させた後、重ね合わせた試験片を800℃の
電気炉に入れ、真空中で980℃まで毎分5℃で
昇温して陶材と試験片を焼付けた。両試験片を
引張試験機で、水平方向に互いに反対側に引張
つてこれを破断させ、この時の平均応力を陶材
と金属との接合強度とした。
[Industrial Application Field] The present invention provides a novel palladium alloy for dental use. [Prior art and problems to be solved by the present invention] Dental palladium alloy is an alloy used for baking dental porcelain, and the alloy for baking porcelain is:
A metal made from the base of metal-baked porcelain, a type of dental prosthesis. Furthermore, metal-baked porcelain is a prosthesis in which porcelain is bonded onto a metal base.
Generally speaking, the method for joining porcelain and metal substrates is to first hold the metal substrate at a high temperature to form an oxide film on the surface of the metal substrate, and then apply porcelain powder on the metal substrate covered with the oxide film. This method involves building up a slurry made by dissolving the metal in water, drying it, firing it at a high temperature, and simultaneously bonding it to the metal substrate. Therefore, dental alloys, especially alloys for porcelain baking, not only have the strength, corrosion resistance, and biocompatibility required for dental alloys, but also have a coefficient of thermal expansion that matches that of porcelain.
In addition, it is required to bond firmly with the porcelain material, to have high high temperature strength, and to be resistant to deformation due to high strength and high modulus of elasticity. The currently used porcelain baking alloy is Au-
Precious metal alloys whose main components are Pt-Pd- or Au-Pd-Ag are mainstream. However, the noble metal alloy has problems in that Au and Pt are expensive and economically disadvantageous, and the alloy strength is insufficient. Therefore, Pd that solved these problems
Pd-Cu alloys were developed and proposed (as shown in JP-A-59-28545 or JP-A-61-186437).
- Pd alloy with Ga as the main component. these
Pd alloys containing Cu and Ga as the main additive elements are excellent alloys in that they are relatively inexpensive, have high strength, high corrosion resistance, and are less harmful to living organisms. However, since this alloy is hard and relatively brittle, it may break when a large external force is applied in practice, and it is difficult to process such as grinding or rolling.Also, this alloy has a low melting point, so it has good castability. However, on the other hand, it does not have sufficient high-temperature strength and has the problem of being easily deformed during heat treatment, including pre-treatment, for joining porcelain materials.
This has the disadvantage of poor fitting in dental prostheses that require precision. Also, in Japanese Patent Application Laid-Open No. 61-295348, “Palladium 60
~80%, gold 0-8%, platinum 0-5%, ruthenium and/or rhenium 0-1%, copper 2-20%,
1-12% tin and/or indium, 0.2-5% of one or more of the elements tungsten, molybdenum, niobium and tantalum, and 0-15% cobalt
The total content of tin and indium is 5~
A material for dental porcelain welding using a silver-free palladium alloy with a composition of 14% has been proposed. The material has high strength and relatively high elongation, and also has a low melting point. It is an excellent material that is not too low. However, since the elastic modulus of this material is relatively low, it will cause a relatively large strain when an external force is applied. When stress is added, there are cases where the porcelain material, which shows almost no elongation, cannot withstand the strain and cracks, so there is room for improvement. [Means for solving the problem] The present inventors has high alloy strength, high modulus of elasticity, moderately large elongation, high bonding strength with porcelain, and a moderately high melting point that does not impair workability, so it is resistant to deformation due to heat treatment. We have conducted intensive research to obtain a dental alloy that does not have the above-mentioned problems.As a result, we have completed the present invention.That is, the present invention consists of 5 to 15% by weight of copper; 8 to 18% by weight of tin. %; germanium 2 to 4% by weight and the balance being palladium. The present invention also provides a dental palladium alloy consisting of copper 5 to 15% by weight; tin 8 to 18% by weight; germanium 1 to 4% by weight: indium;
The present invention also provides a dental palladium alloy comprising a total of 0.001 to 5% by weight of at least one selected from the group consisting of iron and cobalt, and the balance being palladium. In the dental alloy of the present invention, the components constituting the alloy and their composition ratios are extremely important requirements for achieving the object of the present invention. One of the components constituting the alloy of the present invention is copper. The copper (Cu) is effective in adjusting the melting point and coefficient of thermal expansion of the resulting alloy, improving the strength of the alloy, and forming a dense external oxide film that has good wettability with porcelain. It is preferable that the copper be present in the alloy in an amount of 5 to 15% by weight. If the copper content is less than 5% by weight, the melting point will be high, resulting in poor workability, and the alloy strength will be low, making it impractical. On the other hand, if the copper content exceeds 15% by weight, the outer oxide film will become thicker and its adhesion to the alloy base will deteriorate, leading to a decrease in bonding strength with the porcelain and the color of the outer oxide film will change. It is not preferable because it turns black and impairs aesthetics. Another component constituting the alloy of the present invention is tin (Sn). Very effective results can be obtained by adding tin and germanium in a specific proportion. In other words, add 8 to 18 tin in the alloy.
By containing a relatively large amount, preferably 10 to 15% by weight, and coexisting with germanium, high strength, high elastic modulus, large elongation, and appropriate melting point can be obtained. In addition, tin has the effect of adjusting the coefficient of thermal expansion, and furthermore, it forms an internal oxide layer just below the alloy surface, controls the thickness of the outer oxide film of copper, which will be described later, and improves the bond between the outer oxide film and the alloy base. It has the effect of increasing If the tin content in the alloy is less than 8% by weight, the alloy strength will decrease and the melting point will become high, making it difficult to cast.In addition, the internal oxide layer will be incomplete and the external oxide layer will deteriorate. This is not preferable because it becomes difficult to control the thickness appropriately and the bonding strength with the porcelain material decreases. On the other hand, if the tin content in the alloy exceeds 18% by weight, it will adversely affect the external oxide film and reduce the bonding strength with the porcelain.
This is undesirable because the alloy begins to become brittle. Yet another constituent of the alloy of the present invention is germanium (Ge). The alloy of the present invention preferably contains germanium in an amount of 2 to 4% by weight. The excellent effects of the present invention are exhibited by the coexistence of germanium with tin, which is contained in a relatively large amount as described above. In other words, by adding a small amount of germanium (Ge), it has the effect of increasing the alloy strength and elastic modulus without embrittling the alloy, lowering the melting point to an appropriate level, improving the properties of the molten metal during melting, and improving castability. be. In addition, the internal oxide layer mentioned above is made finer,
It also has the effect of more optimally controlling the thickness and properties of the outer oxide film, which will be densified and will be described later. If the amount of germanium contained in the alloy is less than 2% by weight, it will be difficult to achieve all the above-mentioned effects in a well-balanced manner, and if it exceeds 4% by weight, the alloy will tend to become brittle, which is not preferable. However, in alloys to which at least one metal selected from the group consisting of indium, iron, and cobalt is added, the above effects can be sufficiently expressed if the germanium content is 1% by weight or more and 4% by weight or less. New effects also arise from addition. In the alloy of the present invention, the balance of each of the above components and composition ratios is palladium (Pd). Palladium is the base element of the alloy of the present invention and is the basis of all the properties of the alloy of the present invention, and plays an important role in improving the corrosion resistance of the alloy in particular. The alloy proposed in the present invention containing specific amounts of copper, tin, and germanium, with the remainder being palladium, has many excellent properties as a dental alloy, as described above. In order to further improve such properties, it is often preferable to further include a specific amount of at least one component selected from the group consisting of indium, iron and cobalt. The indium (In) has the effect of improving the alloy strength and forming a fine internal oxide layer by interacting with the tin, thereby controlling the thickness and properties of the external oxide film more optimally. Further, iron (Fe) and cobalt (Co) have the effect of improving the alloy strength and becoming constituent elements of the outer oxide film, increasing the bonding strength with the porcelain material and lightening the color of the outer oxide film. Also,
It also has the effect of increasing the coefficient of thermal expansion, and can be used with porcelain materials with higher coefficients of thermal expansion. The indium, iron and cobalt mentioned above may be contained as one component, two components or three components in the alloy of the present invention, if necessary. The content of at least one component selected from the group consisting of indium, iron and cobalt is preferably limited to a maximum of 5% by weight in the alloy. Generally, it is suitable to contain this component in a range of 0.001 to 5% by weight. If the content of this component exceeds 5% by weight in the alloy, the alloy tends to become brittle, which is undesirable. The method for producing the alloy of the present invention is not particularly limited. In general, for example, the alloy components of the present invention, e.g.
Single Pd, Cu, Sn, Ge, In, Co, Fe,
Alternatively, a master alloy prepared by pre-alloying two or more of these element groups can be used as raw materials, and these can be melted by arc melting, high frequency melting, furnace melting, etc., whether in vacuum, inert gas, or air. Alloying may be performed by any melting method such as internal melting. Generally speaking, the order of melting is to start by melting raw materials that are large in amount, have moderate melting points, and are not very active, and then sequentially add smaller amounts or more active raw materials. In the alloy of the present invention, for example, Pd, Co, Fe, Cu, Sn, Ge, and In are added and melted in this order, but the order is not limited to this, and two or more These raw materials may be added at the same time, or all the raw materials may be melted at the same time. Alternatively, it may be produced by a powder metallurgy method in which powders of individual elements or raw material powders including mother alloy powders are mixed and then fired and sintered. [Effects of the Invention] The alloy of the present invention exhibits excellent functionality for any porcelain. Especially dental porcelains e.g. SiO2
40-70% by weight, Al 2 O 3 10-20% by weight, K 2 O 1-10% by weight, Na 2 O 3-7% by weight, SnO 2 0
~15 wt%, CaO 0-7 wt%, ZrO 0-5
It exhibits an excellent function for frit glass having a composition of 0 to 3% by weight of TiO 2 , 0 to 10% by weight of B 2 O 3 , and 0 to 1% by weight of ZnO. Furthermore, the alloy of the present invention has high strength, high modulus of elasticity, large elongation, appropriate melting point, and high bonding strength with porcelain. Furthermore, the alloy of the present invention satisfies various physical properties generally required for dental alloys, and is used for prosthetics such as cast crowns, bridge dentures, and denture bases that can be maintained safely and stably in the oral cavity for a long period of time. It is also an excellent alloy for dental materials such as biomaterials such as artificial bones and implants. [Examples] In order to explain the present invention more specifically, Examples and Comparative Examples will be described below, but the present invention is not limited to these Examples. Also,
The results of each example and comparative example are summarized in Table 1, including the composition, melting point, hardness, tensile strength, elongation, elastic modulus, and bonding strength between the alloy and the porcelain of each alloy. Each measurement method is as shown below. (1) Melting point of alloy The liquidus temperature of the alloy measured by a thermal analyzer (DTA) was taken as the melting point. (2) Strength of alloy A 10 mm x 10 mm plate-shaped specimen was cast, the surface mirror-polished, and then measured using a micro-Vickers hardness tester under the conditions of a load of 500 g and a holding time of 15 seconds. (3) Tensile strength, elongation, and elastic modulus of the alloy A rod-shaped test piece with a diameter of 2.3 mm and a gauge distance of 15 mm was cast, and the surface was finished with #1500 emery paper. The breaking strength was defined as tensile strength, and the elongation rate between gauge points at this time was defined as elongation. Further, the elastic modulus was determined from the stress-strain curve obtained by this test. (4) Bond strength between alloy and porcelain After polishing the surfaces of two test pieces 25 m long, 6 mm wide, and 1 mm thick to a mirror finish, they were heated in air at 980°C for 5 minutes to bond the alloy surface. An oxide film was formed on the surface. Next, a length of 4 mm from the end of one test piece,
VITA's opaque porcelain (VMK68, 511, A2) made into a slurry by adding water to a 6 mm wide area was placed so that the thickness was 0.1 mm, and sandwiched between the other test pieces. In addition, the two test pieces are
They were stacked horizontally in opposite directions. After drying the porcelain, the stacked test pieces were placed in an electric furnace at 800°C, and the temperature was raised to 980°C at a rate of 5°C per minute in a vacuum to bake the porcelain and the test pieces. Both test pieces were pulled horizontally in opposite directions using a tensile testing machine to cause them to break, and the average stress at this time was taken as the bonding strength between the porcelain and the metal.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 銅5〜15重量%;錫8〜18重量%;ゲルマニ
ウム2〜4重量%及び残部がパラジウムからなる
歯科用パラジウム合金。 2 銅5〜15重量%;錫8〜18重量%;ゲルマニ
ウム1〜4重量%;インジウム、鉄及びコバルト
よりなる群から選ばれた少くとも1種を合計
0.001〜5重量%及び残部がパラジウムからなる
歯科用パラジウム合金。
[Scope of Claims] 1. A dental palladium alloy consisting of 5 to 15% by weight of copper; 8 to 18% by weight of tin; 2 to 4% by weight of germanium, and the balance being palladium. 2 5 to 15% by weight of copper; 8 to 18% by weight of tin; 1 to 4% by weight of germanium; a total of at least one selected from the group consisting of indium, iron, and cobalt
A dental palladium alloy consisting of 0.001 to 5% by weight and the balance being palladium.
JP3949788A 1988-02-24 1988-02-24 Palladium alloy for dental use Granted JPH01215938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3949788A JPH01215938A (en) 1988-02-24 1988-02-24 Palladium alloy for dental use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3949788A JPH01215938A (en) 1988-02-24 1988-02-24 Palladium alloy for dental use

Publications (2)

Publication Number Publication Date
JPH01215938A JPH01215938A (en) 1989-08-29
JPH0575810B2 true JPH0575810B2 (en) 1993-10-21

Family

ID=12554685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3949788A Granted JPH01215938A (en) 1988-02-24 1988-02-24 Palladium alloy for dental use

Country Status (1)

Country Link
JP (1) JPH01215938A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2873770B2 (en) * 1993-03-19 1999-03-24 新日本製鐵株式会社 Palladium fine wire for wire bonding of semiconductor devices
CN107779790B (en) * 2017-09-25 2019-04-19 北京科技大学 Germanic no without phosphorus large scale palladium base amorphous alloy of nickel of one kind and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204142A (en) * 1982-04-27 1983-11-28 ザ・ジエイ・エム・ネイ・コンパニ− Dental alloy
JPS5928545A (en) * 1982-07-21 1984-02-15 ジエネリツク・インダストリ−ズ・インコ−ポレ−テツド Dental alloy for metal-fused ceramic article
JPS59145743A (en) * 1983-02-08 1984-08-21 ドクタ−・テ−ハ−・ヴィ−ラント Silver-free dental palladium alloy for soldering ceramics
JPS61186437A (en) * 1985-02-12 1986-08-20 Shiyoufuu:Kk Dental alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204142A (en) * 1982-04-27 1983-11-28 ザ・ジエイ・エム・ネイ・コンパニ− Dental alloy
JPS5928545A (en) * 1982-07-21 1984-02-15 ジエネリツク・インダストリ−ズ・インコ−ポレ−テツド Dental alloy for metal-fused ceramic article
JPS59145743A (en) * 1983-02-08 1984-08-21 ドクタ−・テ−ハ−・ヴィ−ラント Silver-free dental palladium alloy for soldering ceramics
JPS61186437A (en) * 1985-02-12 1986-08-20 Shiyoufuu:Kk Dental alloy

Also Published As

Publication number Publication date
JPH01215938A (en) 1989-08-29

Similar Documents

Publication Publication Date Title
JP3520925B2 (en) Manufacturing method of dental prosthesis and dental porcelain
Akagi et al. Properties of test metal ceramic titanium alloys
US7491361B2 (en) Burning-on alloy for the production of ceramically veneered dental restorations
JPH02255135A (en) Dental prosthetic appliance
EP1900836B1 (en) Palladium-cobalt based alloys and dental articles including the same
JPS60204845A (en) Dental noble metal alloy
Papazoglou et al. Effects of dental laboratory processing variables and in vitro testing medium on the porcelain adherence of high-palladium casting alloys
WO1996018373A1 (en) Low-fusing temperature porcelain
US6656420B2 (en) Dental alloys
US4129944A (en) Dental constructions and dental alloys
JPH0575810B2 (en)
US4336290A (en) Palladium alloys for fusion to porcelain
JP4368343B2 (en) Silver palladium alloy for dental porcelain baking
JPH05194130A (en) Coating material for dental prosthesis
CA1227954A (en) Dental prostheses alloy
NL9200566A (en) Dental alloys
JP3916098B2 (en) Porcelain-precious metal alloy for dental casting
US4249943A (en) Non-precious ceramic alloy
JPH0293033A (en) Dental palladium alloy
JPH0547607B2 (en)
JPH0575811B2 (en)
US4268308A (en) Dental alloys
CA1151446A (en) Dental constructions and dental alloys
EP0858520A1 (en) A method for coating titanium and titanium alloys with ceramics
JPH039741B2 (en)