JPH0575759B2 - - Google Patents

Info

Publication number
JPH0575759B2
JPH0575759B2 JP32841391A JP32841391A JPH0575759B2 JP H0575759 B2 JPH0575759 B2 JP H0575759B2 JP 32841391 A JP32841391 A JP 32841391A JP 32841391 A JP32841391 A JP 32841391A JP H0575759 B2 JPH0575759 B2 JP H0575759B2
Authority
JP
Japan
Prior art keywords
compound
ethylidene
formula
glucopyranose
dichloroacetyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32841391A
Other languages
Japanese (ja)
Other versions
JPH0525192A (en
Inventor
Tadashi Fujii
Yukio Chikui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP32841391A priority Critical patent/JPH0525192A/en
Publication of JPH0525192A publication Critical patent/JPH0525192A/en
Publication of JPH0575759B2 publication Critical patent/JPH0575759B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】式 【化1】 ■■■ 亀の甲 [1245] ■■■ 〔式中、R1は−COCHX2又は−COCX3(Xは
ハロゲン原子を示す。)を示す。〕 で表わされるβ−D−グルコース。 【発明の詳細な説明】 【0001】 【産業上の利用分野】 本発明はエトポシド用の
中間体として有用な下記式(6)で示されるβ−D−
グルコースに関する。 エトポシドは抗腫瘍活性を示し、制癌剤として
有用な物質である。 【従来の技術】 化合物(1)の製造法としては次の
工程によるものが既に知られている。(特公昭46
−37837号公報参照) 【0002】 【化2】 ■■■ 亀の甲 [1246] ■■■ 【0003】 (式中Aはホルミル又はアセチル、B
はベンジルオキシカルボニルを示す) 【発明が解決しようとする課題】 しかし、上記
の方法は、Aを除去した後、Bを除去するという
2工程を必要とし、しかもAの除去による長時間
(例えば20〜30時間反応させても完結しない)を
必要とし、又、着色物などの副生物が増加するた
め得られるエトポシドの品質が悪く、収率も低い
という欠点がある。 【課題を解決するための手段】 そこで本発明者
らはエトポシドの新規製法につき種々検討した結
果、ジ又はトリハロゲノアセチルハロゲン化物を
利用して得られる式(3) 【0004】 【化3】 ■■■ 亀の甲 [1247] ■■■ 【0005】 〔式中R1及びR2は同じか異なつて式
−COCHX2又は−COCX3(式中Xはハロゲン原
子を示す。)を示す。〕 で表わされる化合物にアルコール類、アミン類及
び/又はアンモニアを反応させるとR1とR2が一
挙に除去されてエトポシドが得られること、得ら
れたエトポシドは不純物が少なく、精製も容易で
あることが判明し、式(6) 【0006】 ■■■ 亀の甲 [1248] ■■■ 【0007】 〔式中、R1は−COCHX2又は−
COCX3(Xはハロゲン原子を示す。)を示す。〕 で表わされるβ−D−グルコースがエトポシド用
中間体として有用であることを見い出した。 上記式(6)において、R1におけるXとしては例
えばフツ素、塩素、臭素、ヨウ素などがあげられ
るが、塩素又は臭素が実用的に好ましい。R1
しては例えばジフルオロアセチル、ジクロロアセ
チル、ジブロモアセチル、ジヨウドアセチル、ト
ルフルオロアセチル、トリクロロアセチル、トリ
ブロモアセチル、トリヨードアセチルなどがあげ
られる。 【0008】 ここで化合物(6)は新規化合物であり、
公知の4,6−O−エチリデン−1−O−ベンジ
ルオキシカルボニル−β−D−グルコピラノース
(7)を原料として、例えば次の反応経路を経て合成
される。 【0009】 【化5】 ■■■ 亀の甲 [1249] ■■■ 【0010】 (式中R1は前記に同じである。) 即ち、4,6−O−エチリデン−1−O−ペン
ジルオキシカルボニル−β−D−グルコピラノー
ス(7)を不活性溶媒中、ジハロゲン又はトリハロゲ
ノアセチルクロライドを反応させて得られる4,
6−O−エチリデン−1−O−ベンジルオキシカ
ルボニル−2,3−ジ−O−ハロゲノアセチル−
β−D−グルコピラノース、(8)を水素化分解する
ことにより、化合物(6)を得ることができる。な
お、水素化分解に際し若干のα−体の生成は避け
られないが、化合物(6)は反応液からβ−体のみが
選択的に結晶化してくるので、α−体とβ−体の
分離が容易であるという性質を有する。又、化合
物(6)のβ−体は安定性が良好でα−体への異性化
がほとんどみられないので、長時間の保存が可能
である。 【0011】 【実施例】 実施例 1 (a) 4,6−O−エチリデン−1−O−ベンジル
オキシカルボニル−2,3−ジ−O−ジクロロ
アセチル−β−D−グルコピラノース(8)(R1
=COCHCl2) 4,6−O−エチリデン−1−O−ベンジルオ
キシカルボニル−β−D−グルコピラノース(7)
34.0gを1,2−ジクロロエタン340mlに懸濁し、
ピリジン23.7gを加えた後0〜5℃に冷却する。
これにジクロロアセチルクロライド32.4gを約1
時間かけて滴下した後、更に0.5時間撹拌を続け
る。ついで反応液を水洗し有機層を無水硫酸マグ
ネシウムで乾燥した後減圧濃縮して化合物(8)
(R1=COCHCl2)51.0gを得た(収率90.7%)。 m.p.150〜151℃ IRνnax(KBr)1770,1255,1100,820cm-1 (b) 4,6−O−エチリデン−2,3−ジ−O−
ジクロロアセチル−β−D−グルコピラノース
(6)(R1=COCHCl2) 化合物(8)(R1=−COCHCl2)10.0gをアセト
ン50mlに溶解し、パラジウム黒1.0gを加えて−
5〜10℃で加圧下に水素化分解を行う。反応終了
後触媒をろ別し、溶媒を減圧下に留去する。残渣
にジイソプロピルエーテル17mlを加えて0℃迄冷
却後吸引ろ過して化合物(6)(R1=−COCHCl2
7.3gを得た(収率95.9%)。 m.p.133〜135℃ IRνnax(KBr)3445,1775,1305,1165,
1095,1005,815cm-1 【0012】 実施例 2 (a) 4,6−O−エチリデン−1−O−ベンジル
オキシカルボニル−2,3−ジ−O−ジブロモ
アセチル−β−D−グルコピラノース(8)(R2
=COCHBr2) 4,6−O−エチリデン−1−O−ベンジルオ
キシカルボニル−β−D−グルコピラノース(7)
5.1gを1,2−ジクロロエタン51mlに懸濁しピ
リジン3.6gを加えた後0〜5℃に冷却する。 これにジブロモアセチルクロライド7.8gを約
1時間かけて滴下した後更に30分間撹拌を続け
る。ついで、反応液を水洗し、有機層を無水硫酸
マグネシウムで乾燥した後25mlになるまで減圧濃
縮することにより化合物(8)((R1=COCHBr2
の1,2−ジクロロエタン溶液を得た。 (b) 4,6−O−エチリデン−2,3−ジ−O−
ジプロモアセチル−β−D−グルコピラノース
(6)(R1=−COCHBr2) (a)の化合物(8)(R1=−COCHBr2)の1,2−
ジクロロエタン溶液25mlにパラジウム黒0.4gを
加えて−10〜−5℃で加圧下に水素添加を行う。
反応終了後触媒をろ別し化合物(6)(R1=−
COCHBr2)の1,2−ジクロロエタン溶液を得
た。 【0013】 実施例 3 (a) 4,6−O−エチリデン−1−O−ベンジル
オキシカルボニル−2,3−ジ−O−トリクロ
ロアセチル−β−D−グルコピラノース(8)
(R1=−COCCl3) 実施例2(a)においてジブロモアセチルクロライ
ドの代りにトリクロロアセチルクロライド3.5g
を用いて化合物(8)(R1=COCCl3)の1,2−ジ
クロロエタン溶液25mlを得た。 (b) 4,6−O−エチリデン−2,3−O−トリ
クロロアセチル−β−D−グルコピラノース(6)
(R1=−COCCl3) (a)で得れた溶液25mlを用い、実施例2(6)と同様
にして化合物(6)(R1=−COCCl3)の1,2−ジ
クロロエタン溶液25mlを得た。 【0014】 参考例 (a) 4′−ジクロロアセチル−4′−デメチル−エピ
ポドフイロトキシン(5)(R2=COCHCl2) 4′−デメチル−エピポドフイロトキシン(4)8g
をアセトン160mlに溶解し、ピリジン3.2gを加え
た後−5〜−10℃に冷却する。これにジクロロア
セチルクロライド4.1gを約1.5時間かけて滴下
し、更に0.5時間撹拌する。ついで、減圧下にア
セトンを留去し、得られた固体を1,2−ジクロ
ロエタン160mlに溶解した後水洗する。次いでこ
の1,2−ジクロロエタン溶液を無水硫酸マグネ
シウムで乾燥後減圧下に濃縮して化合物(5)(R2
=−COCHCl2)9.5gを得た(収率93.4%)。 m.p.207〜208℃ IRνnax(KBr)3540,1775,1600,1485,
1235,1130cm-1 (b) 4′−ジクロロアセチル−4′−デメチル−エピ
ポドフイロトキシン−β−D−2,3−ジ−O
−ジクロロアセチル−4,6−O−エチリデン
グルコシド(3)(R1,R2=−COCHCl2) 化合物(5)(R2=−COCHCl2)3.0gを1,2−
ジクロロエタン60mlに溶解し、ついで化合物(6)
(R1=−COCHCl2)2.5gを加えて−10℃に冷却
する。三フツ化ホウ素エチルエーテラート1.1g
を約1.5時間かけて滴下し、終了後更に0.5時間撹
拌を続ける。ピリジン0.8gを内温−5〜−10℃
に保ちながら滴下した後水を加えて洗浄する。有
機層を無水硫酸マグネシウムで乾燥後、減圧下に
濃縮し、残渣をメタノールから再結晶して化合物
(3)(R1,R2=−COCHCl2)4.4gを得た(収率
81.4%)。 m.p.207〜208℃ (c) 4′−ジクロロアセチル−4′−デメチル−エピ
ポドフイロトキシン−β−D−2,3−ジ−O
−ジクロロアセチル−4,6−O−エチリデン
グルコシド(3)(R1,R2=−COCHCl2)1g及
び酢酸アンモニウム1gをメタノール20mlに溶
解し、室温で1.5時間撹拌する。反応終了後メ
タノールを10mlまで濃縮し、冷却することによ
りエトポシドの結晶0.55gを得た(収率86.1
%)。 ここで得た結晶のTLCのRf値(シリカゲル、
展開溶媒クロロホルム:メタノール=9:1)、
IR、NMR及び旋光度は特公昭46−37837号の
方法により得られた物質のそれ同一であつた。 m.p.259〜260℃、Rf=0.44 【0015】 【効果】 上記参考例から明らかなように本発明
のβ−D−グルコースを用いることにより少ない
工程数でエトポシドが高純度で収率よく得ること
ができる。
Claim 1: Formula [Chemical 1] ■■■ Turtle Shell [1245] ■■■ [In the formula, R 1 represents -COCHX 2 or -COCX 3 (X represents a halogen atom). ] β-D-glucose represented by: Detailed Description of the Invention [0001] [Industrial Application Field] The present invention provides β-D-
Regarding glucose. Etoposide exhibits antitumor activity and is a useful substance as an anticancer agent. [Prior Art] The following process is already known as a method for producing compound (1). (Tokuko Showa 46
-Refer to Publication No. 37837) [0002] [Chemical formula 2] ■■■ Turtle shell [1246] ■■■ [0003] (In the formula, A is formyl or acetyl, B
(represents benzyloxycarbonyl) [Problems to be Solved by the Invention] However, the above method requires two steps: removing A and then removing B, and moreover, the removal of A requires a long time (for example, 20 The reaction is not completed even after being allowed to react for up to 30 hours), and the quality of etoposide obtained is poor due to the increase in by-products such as colored substances, and the yield is also low. [Means for Solving the Problems] Therefore, the present inventors investigated various new methods for producing etoposide, and found that the formula (3) obtained using di- or trihalogenoacetyl halides [0004] [Chemical formula 3] ■■ Turtle Shell [1247] ■■■ [0005] [In the formula, R 1 and R 2 are the same or different and represent the formula -COCHX 2 or -COCX 3 (in the formula, X represents a halogen atom). ] When the compound represented by is reacted with alcohols, amines and/or ammonia, R 1 and R 2 are removed at once to obtain etoposide, and the obtained etoposide has few impurities and is easy to purify. It was found that the formula (6) [0006] ■■■ Tortoise shell [1248] ■■■ [0007] [In the formula, R 1 is −COCHX 2 or −
COCX 3 (X represents a halogen atom). ] It has been found that β-D-glucose represented by the following is useful as an intermediate for etoposide. In the above formula (6), examples of X in R 1 include fluorine, chlorine, bromine, and iodine, with chlorine or bromine being practically preferred. Examples of R 1 include difluoroacetyl, dichloroacetyl, dibromoacetyl, diiodoacetyl, trifluoroacetyl, trichloroacetyl, tribromoacetyl, triiodoacetyl, and the like. [0008] Here, compound (6) is a new compound,
Known 4,6-O-ethylidene-1-O-benzyloxycarbonyl-β-D-glucopyranose
It is synthesized using (7) as a raw material, for example, through the following reaction route. [0009] [Chemical formula 5] ■■■ Turtle shell [1249] ■■■ [0010] (In the formula, R 1 is the same as above.) That is, 4,6-O-ethylidene-1-O-penzyloxy 4, obtained by reacting carbonyl-β-D-glucopyranose (7) with dihalogen or trihalogenoacetyl chloride in an inert solvent.
6-O-ethylidene-1-O-benzyloxycarbonyl-2,3-di-O-halogenoacetyl-
Compound (6) can be obtained by hydrogenolyzing β-D-glucopyranose (8). Although some α-form is unavoidable during hydrogenolysis, since only the β-form of compound (6) selectively crystallizes from the reaction solution, it is difficult to separate the α- and β-forms. It has the property of being easy to use. Furthermore, the β-form of compound (6) has good stability and isomerization to the α-form is hardly observed, so it can be stored for a long time. [Example] Example 1 (a) 4,6-O-ethylidene-1-O-benzyloxycarbonyl-2,3-di-O-dichloroacetyl-β-D-glucopyranose (8) ( R 1
= COCHCl2 ) 4,6-O-ethylidene-1-O-benzyloxycarbonyl-β-D-glucopyranose (7)
Suspend 34.0g in 340ml of 1,2-dichloroethane,
After adding 23.7 g of pyridine, the mixture is cooled to 0-5°C.
Add 32.4g of dichloroacetyl chloride to this about 1
After the dropwise addition over time, stirring is continued for an additional 0.5 hour. Then, the reaction solution was washed with water, the organic layer was dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain compound (8).
51.0 g of (R 1 =COCHCl 2 ) was obtained (yield 90.7%). mp150~151℃ IRν nax (KBr) 1770, 1255, 1100, 820cm -1 (b) 4,6-O-ethylidene-2,3-di-O-
Dichloroacetyl-β-D-glucopyranose
(6) (R 1 = COCHCl 2 ) Compound (8) (R 1 = -COCHCl 2 ) 10.0 g was dissolved in 50 ml of acetone, 1.0 g of palladium black was added and -
Hydrogenolysis is carried out under pressure at 5-10°C. After the reaction is completed, the catalyst is filtered off and the solvent is distilled off under reduced pressure. Add 17 ml of diisopropyl ether to the residue, cool to 0°C, and filter with suction to obtain compound (6) (R 1 = -COCHCl 2 ).
7.3g was obtained (yield 95.9%). mp133~135℃ IRν nax (KBr) 3445, 1775, 1305, 1165,
1095, 1005, 815 cm -1 [0012] Example 2 (a) 4,6-O-ethylidene-1-O-benzyloxycarbonyl-2,3-di-O-dibromoacetyl-β-D-glucopyranose ( 8)( R2
= COCHBr2 ) 4,6-O-ethylidene-1-O-benzyloxycarbonyl-β-D-glucopyranose (7)
Suspend 5.1 g in 51 ml of 1,2-dichloroethane, add 3.6 g of pyridine, and cool to 0-5°C. 7.8 g of dibromoacetyl chloride was added dropwise to this over about 1 hour, and stirring was continued for an additional 30 minutes. Then, the reaction solution was washed with water, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to a volume of 25 ml to obtain compound (8) ((R 1 = COCHBr 2 ).
A 1,2-dichloroethane solution of was obtained. (b) 4,6-O-ethylidene-2,3-di-O-
Dipromoacetyl-β-D-glucopyranose
(6) (R 1 = -COCHBr 2 ) 1,2- of compound (8) (R 1 = -COCHBr 2 ) of (a)
Add 0.4 g of palladium black to 25 ml of dichloroethane solution and perform hydrogenation under pressure at -10 to -5°C.
After the reaction was completed, the catalyst was filtered off and compound (6) (R 1 = -
A 1,2-dichloroethane solution of COCHBr 2 ) was obtained. Example 3 (a) 4,6-O-ethylidene-1-O-benzyloxycarbonyl-2,3-di-O-trichloroacetyl-β-D-glucopyranose (8)
(R 1 =-COCCl 3 ) In Example 2(a), 3.5 g of trichloroacetyl chloride was used instead of dibromoacetyl chloride.
Using this, 25 ml of a 1,2-dichloroethane solution of compound (8) (R 1 =COCCl 3 ) was obtained. (b) 4,6-O-ethylidene-2,3-O-trichloroacetyl-β-D-glucopyranose (6)
(R 1 = -COCCl 3 ) Using 25 ml of the solution obtained in (a), 25 ml of a 1,2-dichloroethane solution of compound (6) (R 1 = -COCCl 3 ) was prepared in the same manner as in Example 2 (6). I got it. [0014] Reference example (a) 4'-dichloroacetyl-4'-demethyl-epipodophyllotoxin (5) (R 2 = COCHCl 2 ) 4'-demethyl-epipodophyllotoxin (4) 8 g
was dissolved in 160 ml of acetone, 3.2 g of pyridine was added, and the mixture was cooled to -5 to -10°C. 4.1 g of dichloroacetyl chloride was added dropwise to this over about 1.5 hours, and the mixture was further stirred for 0.5 hour. Then, acetone is distilled off under reduced pressure, and the resulting solid is dissolved in 160 ml of 1,2-dichloroethane and washed with water. Next, this 1,2-dichloroethane solution was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to obtain compound (5) (R 2
= -COCHCl2 ) 9.5g was obtained (yield 93.4%). mp207~208℃ IRν nax (KBr) 3540, 1775, 1600, 1485,
1235, 1130cm -1 (b) 4'-dichloroacetyl-4'-demethyl-epipodophyllotoxin-β-D-2,3-di-O
-dichloroacetyl-4,6-O-ethylidene glucoside (3) (R 1 , R 2 = -COCHCl 2 ) Compound (5) (R 2 = -COCHCl 2 ) 3.0 g to 1,2-
Dissolve in 60ml of dichloroethane, then compound (6)
Add 2.5 g (R 1 =-COCHCl 2 ) and cool to -10°C. Boron trifluoride ethyl etherate 1.1g
was added dropwise over about 1.5 hours, and stirring was continued for an additional 0.5 hours. 0.8g of pyridine at an internal temperature of -5 to -10℃
After dripping while maintaining the temperature, wash by adding water. The organic layer was dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and the residue was recrystallized from methanol to obtain the compound.
(3) 4.4 g of (R 1 , R 2 = -COCHCl 2 ) was obtained (yield
81.4%). mp207-208℃ (c) 4'-dichloroacetyl-4'-demethyl-epipodophyllotoxin-β-D-2,3-di-O
1 g of -dichloroacetyl-4,6-O-ethylidene glucoside (3) ( R1 , R2 = -COCHCl2 ) and 1 g of ammonium acetate are dissolved in 20 ml of methanol and stirred at room temperature for 1.5 hours. After the reaction was completed, methanol was concentrated to 10 ml and cooled to obtain 0.55 g of etoposide crystals (yield: 86.1
%). TLC Rf value of the crystal obtained here (silica gel,
Developing solvent chloroform:methanol=9:1),
The IR, NMR and optical rotation were the same as those of the material obtained by the method of Japanese Patent Publication No. 46-37837. mp259-260°C, Rf=0.44 [0015] [Effect] As is clear from the above reference examples, etoposide can be obtained with high purity and high yield in a small number of steps by using the β-D-glucose of the present invention. .
JP32841391A 1991-11-18 1991-11-18 Beta-d-glucose Granted JPH0525192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32841391A JPH0525192A (en) 1991-11-18 1991-11-18 Beta-d-glucose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32841391A JPH0525192A (en) 1991-11-18 1991-11-18 Beta-d-glucose

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25948087A Division JPS63119494A (en) 1987-10-16 1987-10-16 Intermediate for etoposide

Publications (2)

Publication Number Publication Date
JPH0525192A JPH0525192A (en) 1993-02-02
JPH0575759B2 true JPH0575759B2 (en) 1993-10-21

Family

ID=18209988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32841391A Granted JPH0525192A (en) 1991-11-18 1991-11-18 Beta-d-glucose

Country Status (1)

Country Link
JP (1) JPH0525192A (en)

Also Published As

Publication number Publication date
JPH0525192A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
JPS6328438B2 (en)
KR100317907B1 (en) Novel Intermediates, process for preparing macrolide antibiotic agent therefrom
JP2899577B2 (en) Method for selective isolation of 2 ', 2'-difluorocytidines
JP3677790B2 (en) Nucleoside derivatives and process for producing the same
JP3029806B2 (en) Glycosidation of colchicine derivative and product thereof
JPH0575759B2 (en)
AU641644B2 (en) A process for the preparation of etoposides
JPS5827798B2 (en) Intermediates for new antibacterial agents
CN1982301B (en) A manufacturing process of 2',2'-difluoronucleoside and intermediate
JPS61263995A (en) Production of cytosine nucleoside
JP3837876B2 (en) Azidohalogenobenzyl derivatives and methods for protecting hydroxyl groups
JP2571059B2 (en) Method for producing 1,3,4-tri-O-acyl-2-deoxy-β-D-erythro-pentapyranose
JPH031317B2 (en)
JP3061476B2 (en) Method for producing etoposide phosphate
JPH023799B2 (en)
JP5192807B2 (en) Stable crystals of protected pseudouridine
JPH032875B2 (en)
JP3023804B2 (en) Method for producing 3'-deoxy-3'-fluorothymidine
JPH0529038B2 (en)
JPS593476B2 (en) Optically active chlorpheniramine/acylphenylglycine salt and method for producing the same
JPH0597847A (en) New process for producing nucleic acid compound
JP2898029B2 (en) Cephem derivative dimethylformamide solvated crystal
JPH0427239B2 (en)
JP2000178294A (en) Production of pentaacetyl-beta-d-glucose
JPH0356482A (en) Optically active 2-phthalimidoxy-phenylacetic acid derivative and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term