JPH0575694B2 - - Google Patents

Info

Publication number
JPH0575694B2
JPH0575694B2 JP8721887A JP8721887A JPH0575694B2 JP H0575694 B2 JPH0575694 B2 JP H0575694B2 JP 8721887 A JP8721887 A JP 8721887A JP 8721887 A JP8721887 A JP 8721887A JP H0575694 B2 JPH0575694 B2 JP H0575694B2
Authority
JP
Japan
Prior art keywords
lithium
lithium oxide
purity
heating
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8721887A
Other languages
Japanese (ja)
Other versions
JPS62241819A (en
Inventor
Josefu Saamon Denisu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lithium Corp of America Inc
Original Assignee
Lithium Corp of America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lithium Corp of America Inc filed Critical Lithium Corp of America Inc
Publication of JPS62241819A publication Critical patent/JPS62241819A/en
Publication of JPH0575694B2 publication Critical patent/JPH0575694B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は低純度(85乃至95%)の過酸化リチウ
ムからの99%より高い純度の酸化リチウム製造用
の高温、2段法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a high temperature, two-step process for the production of lithium oxide of greater than 99% purity from low purity (85-95%) lithium peroxide.

<従来の技術> 酸化リチウムは典型的には酸化リチウムを製造
する原料に由来する不純物を含有している。酸化
リチウムは典型的には少量の水酸化リチウム又は
炭酸リチウムを含んでいる。酸化リチウムの主要
末端用途は医薬品、リチウム電池の製造と熱核融
合反応炉である。然し、熱核融合反応では不純
物、水酸化リチウム及び炭酸リチウムが余りにも
低い温度で融解するために高純度の酸化リチウム
が望ましい。リチウム電池の用途では、水酸化リ
チウム及び炭酸リチウム不純物がリチウム電池の
製造に使用される有機溶媒に溶けない。
<Prior Art> Lithium oxide typically contains impurities derived from the raw materials for producing lithium oxide. Lithium oxide typically contains small amounts of lithium hydroxide or lithium carbonate. The main end uses of lithium oxide are pharmaceuticals, lithium battery manufacturing and thermonuclear fusion reactors. However, in thermonuclear fusion reactions, high purity lithium oxide is desirable because the impurities, lithium hydroxide and lithium carbonate, melt at too low a temperature. In lithium battery applications, lithium hydroxide and lithium carbonate impurities are insoluble in the organic solvents used to manufacture lithium batteries.

過酸化リチウムから酸化リチウムを製造する方
法が、R.O.Bachによつて米国特許第3321277号で
開示されている。この方法は225乃至250℃にゆつ
くりと不活性雰囲気中、好ましくは1乃至5mm
Hgの真空下で24時間以下加熱することにより過
酸化リチウムを酸化リチウムに分解する。
A method for producing lithium oxide from lithium peroxide is disclosed by ROBach in US Pat. No. 3,321,277. This method is carried out slowly at 225 to 250°C in an inert atmosphere, preferably from 1 to 5 mm.
Lithium peroxide is decomposed into lithium oxide by heating under Hg vacuum for up to 24 hours.

R.A.Staufferに与えられた米国特許第2424512
号は珪酸塩又は燐酸塩鉱石からの酸化リチウムの
回収法を開示している。この方法は鉱石を石灰と
ペレツト化して、ペレツトを1mmHg以下の減圧
下900℃以上の温度に加熱して石灰と酸化リチウ
ムの置換を起こさせる。酸化物を蒸溜して取り出
して凝縮させる。
U.S. Patent No. 2424512 awarded to RAStauffer
No. 1, No. 1, No. 1, No. 1, No. 1, No. 1, No. 1, No. 1, No. 1, 2003, 2003, 2006, 2003, 2003, discloses a method for the recovery of lithium oxide from silicate or phosphate ores. In this method, ore is pelletized with lime, and the pellets are heated to a temperature of over 900° C. under reduced pressure of less than 1 mmHg to cause displacement of lime and lithium oxide. The oxide is distilled out and condensed.

A.J.CohenによるInorganic Synthesis、第5
巻、第1A章、3〜4頁、McGraw−Hill、New
York(1957年)は無水の水酸化リチウムを約675
℃に真空下で1/2時間加熱する酸化リチウムの製
造方法を報告している。
Inorganic Synthesis by AJCohen, No. 5
Volume, Chapter 1A, pp. 3-4, McGraw-Hill, New
York (1957) estimated that anhydrous lithium hydroxide
reported a method for producing lithium oxide by heating to 1/2 h under vacuum at 100°C.

James A.Anno及びHoward H.Bowingへの米
国特許第4221775号は少なくとも97%の純度を持
つた水酸化リチウムからの多孔性酸化リチウムの
製造を開示している。水酸化リチウム・1水化物
出発原料をその融点に加熱して結晶水を駆逐して
無水の水酸化ナトリウムをつくる。その融点以上
に無水の水酸化ナトリウムの連続加熱を次に不活
性雰囲気中、水酸化リチウムの酸化リチウムへの
変換を抑制しつつ実施した。不活性雰囲気で保護
しつつ溶解した無水の水酸化リチウムを次に150
℃以下の温度に冷却した。冷却した水酸化リチウ
ムを次に2μmHg以下の好ましくは1μmHgより低
い圧力下で150乃至約200℃に置き、その温度に酸
化リチウムへの完全な転化が起こる迄保つた。生
成物の純度は98.1%であつた。
US Pat. No. 4,221,775 to James A. Anno and Howard H. Bowing discloses the production of porous lithium oxide from lithium hydroxide having a purity of at least 97%. Anhydrous sodium hydroxide is produced by heating the lithium hydroxide monohydrate starting material to its melting point to drive off the water of crystallization. Continuous heating of anhydrous sodium hydroxide above its melting point was then carried out in an inert atmosphere while suppressing conversion of lithium hydroxide to lithium oxide. The dissolved anhydrous lithium hydroxide was then heated to 150 ml while protected in an inert atmosphere.
It was cooled to a temperature below °C. The cooled lithium hydroxide is then placed at a pressure of less than 2 μm Hg, preferably less than 1 μm Hg, at 150 to about 200° C. and maintained at that temperature until complete conversion to lithium oxide has occurred. The purity of the product was 98.1%.

高純度Li2O製造用の実用的プロセスについて
のたえざる要求が多くの酸化リチウム製造法を産
んだ。電池でも融合産業でもより高純度の酸化リ
チウムが望まれているが、99%又はそれ以上の純
度の酸化リチウムは得られていない。
The continuing need for practical processes for producing high-purity Li 2 O has led to a number of lithium oxide production methods. Although higher purity lithium oxide is desired in the battery and fusion industries, lithium oxide with a purity of 99% or higher is not available.

<発明の構成> 本発明は、不純な過酸化リチウムを不純な酸化
リチウムに、350乃至450℃で、実質上水の無い不
活性雰囲気中で分解し、次に不純な酸化リチウム
を約900℃以上で酸化リチウムの融点以下の温度
に真空下で加熱して99%又はそれ以上の純度の酸
化リチウムを製造することを特徴とする高純度の
99%又はそれ以上の酸化リチウム製造用の2段プ
ロセスを提供する。
<Structure of the Invention> The present invention decomposes impure lithium peroxide into impure lithium oxide at 350 to 450°C in an inert atmosphere substantially free of water, and then decomposes impure lithium oxide to impure lithium oxide at about 900°C. High-purity lithium oxide characterized by producing lithium oxide with a purity of 99% or more by heating it under vacuum to a temperature below the melting point of lithium oxide.
Provides a two-step process for the production of 99% or higher lithium oxide.

このプロセスの鍵となる特徴は、プロセスの工
程1の低温加熱時に活性酸素及び水分を無くする
ことである。これはるつぼ材料の腐食、生成物の
劣化及びシンターリングを減少し;それは更にる
つぼに入れる試料を僅かの水酸化リチウム及び炭
酸リチウム不純物しか含んでいない約90乃至95%
の酸化リチウムのより高い検定物質を確保する。
不純物を減少したので高温では、るつぼの腐食及
び酸性物のシンターリングが減少するか無くなつ
てしまう。本発明のプロセス条件下では、生成物
は容易に容器から取り出すことのできるもろい、
非焼結粉末として得られる。
A key feature of this process is the elimination of active oxygen and moisture during the low temperature heating in step 1 of the process. This reduces corrosion of the crucible material, product degradation and sintering; it also reduces the sample placed into the crucible by approximately 90 to 95% containing only minor lithium hydroxide and lithium carbonate impurities.
of lithium oxide to ensure a higher assay material.
With reduced impurities, crucible corrosion and acid sintering are reduced or eliminated at high temperatures. Under the process conditions of the present invention, the product is friable and can be easily removed from the container.
Obtained as a non-sintered powder.

<態様の詳細> 本発明の方法の第1工程は85%乃至95%純度の
過酸化リチウムを350乃至約450℃の温度で分解し
て、不純物として残存量の炭酸リチウム及び水酸
化リチウムを含有している不純な酸化リチウムを
つくる。450℃前後で水酸化リチウムが融解し、
生成物をシンター(焼結)させるために450℃を
越える温度は避ける。350℃より低いと過酸化リ
チウムは極めて徐々に分解するため350℃より低
い温度は使用しない。
<Details of Embodiments> The first step of the method of the present invention is to decompose 85% to 95% pure lithium peroxide at a temperature of 350 to about 450°C to contain residual amounts of lithium carbonate and lithium hydroxide as impurities. This produces impure lithium oxide. Lithium hydroxide melts at around 450℃,
Avoid temperatures above 450°C to sinter the product. Temperatures lower than 350°C are not used because lithium peroxide decomposes very slowly at temperatures lower than 350°C.

工程1で過酸化リチウムは不活性雰囲気、例え
ばアルゴン、窒素、ヘリウム、ネオン又はクリプ
トンの下ステンレス鋼、アルミニウム、ニツケル
又は耐熱ガラス(thermal glass)又は高い温度
でリチウム化合物に対して不活性であるその他の
材料であつても良い不活性容器中で加熱する。プ
ロセスから水を排除することは重要である。酸素
を排除することは有効ではあるが必ずしも必要で
は無い。
In step 1 the lithium peroxide is placed under an inert atmosphere such as argon, nitrogen, helium, neon or krypton on stainless steel, aluminum, nickel or thermal glass or other materials that are inert towards lithium compounds at elevated temperatures. The material may be heated in an inert container. It is important to exclude water from the process. Excluding oxygen is helpful but not necessary.

第1工程からの酸化リチウム生成物は、これら
汚染物質として20%迄又はそれ以上の炭酸リチウ
ム及び水酸化リチウムのかなりの量を含有してい
る、を中程度の真空度の下約900℃又はそれ以上
に、好ましくはるつぼ中で(このるつぼは振動又
は回転るつぼ、超音波エネルギーで振動されるる
つぼ又は何等かの回転又は撹拌手段を有するるつ
ぼであつても良い)加熱する。有用なるつぼはア
ルミナ、マグネシア、石墨、金属又は高温で不活
性なフイルム又はコーテイングを有する金属製で
ある。約900℃より低い温度も使用出来るが低い
純度の酸化リチウムが生成する。酸化リチウムの
融点より低いより高い温度が使用出来、そして微
粉化した生成物を生ずる。1000℃より高い温度は
本発明の所望生成物をつくり出すのに必要では無
く、従つて約900乃至1000℃の加熱が充分であり
好ましい。1200℃乃至1300℃迄の加熱も使用出来
るが、このような高温では酸化リチウム生成物る
つぼ浸食が過度に増加する。
The lithium oxide product from the first step contains significant amounts of lithium carbonate and lithium hydroxide, up to 20% or more as these contaminants, at about 900° C. or under moderate vacuum. Furthermore, it is preferably heated in a crucible, which may be a vibrating or rotating crucible, a crucible vibrated with ultrasonic energy or a crucible with some rotating or stirring means. Useful crucibles are made of alumina, magnesia, graphite, metal or metal with a high temperature inert film or coating. Temperatures below about 900°C can also be used, but will produce lithium oxide of lower purity. Higher temperatures below the melting point of lithium oxide can be used and result in a finely divided product. Temperatures above 1000°C are not necessary to produce the desired products of this invention; therefore, heating of about 900 to 1000°C is sufficient and preferred. Heating to 1200°C to 1300°C can also be used, but such high temperatures will excessively increase lithium oxide product crucible erosion.

本発明の方法の第2工程は中程度の真空(度
の)の下で実施する。中程度の真空(度)は酸素
を排除し且つ第1工程用の過酸化リチウム原料を
それから製造した少量の炭酸リチウム及び/又は
水酸化リチウムの分解生成物の除去を助けるため
に必要である。約0.2kPa又はそれ以下の真空を
発生できる市販の真空炉でつくり出される真空
(度)で充分である。好ましい真空(度)は約
0.1kPa又はそれ以下の範囲である。
The second step of the method of the invention is carried out under moderate vacuum. A moderate vacuum (degrees) is necessary to exclude oxygen and to help remove small amounts of lithium carbonate and/or lithium hydroxide decomposition products from which the lithium peroxide feedstock for the first step was produced. A vacuum (degrees) created by a commercially available vacuum furnace capable of generating a vacuum of about 0.2 kPa or less is sufficient. The preferred vacuum (degrees) is approximately
It is in the range of 0.1kPa or less.

炭酸リチウム及び水酸化リチウムは800乃至
1000℃の範囲の温度で分解して酸化リチウムと水
又は酸化リチウムと二酸化炭素を生ずる。この転
化反応は不活性雰囲気中900℃又は以上で常圧で
部分的に達成出来るが、真空下900℃又は以上で
完全に進行する。1000℃より高い温度ではるつぼ
のリチウム化合物による浸食が低い温度よりも大
である。酸化リチウム生成物中にるつぼ材料が入
るのが望ましくないのでるつぼ浸食を避ける。
Lithium carbonate and lithium hydroxide are 800 to
It decomposes at temperatures in the range of 1000°C to produce lithium oxide and water or lithium oxide and carbon dioxide. This conversion reaction can be partially accomplished at 900° C. or above at normal pressure in an inert atmosphere, but can proceed completely under vacuum at 900° C. or above. At temperatures higher than 1000°C, the erosion by lithium compounds in the crucible is greater than at lower temperatures. Avoid crucible erosion as it is undesirable to have crucible material in the lithium oxide product.

先行技術の観点では驚くべきことに、高純度酸
化リチウム製造用の本発明の方法は、風変わり又
は特別の装置又は例外的な操業条件を必要としな
いプロセス条件を用いて、これ迄到達できなかつ
た純度を有する酸化リチウムを製造する。
Surprisingly from the point of view of the prior art, the method of the present invention for producing high purity lithium oxide uses process conditions that do not require exotic or special equipment or exceptional operating conditions, and achieves processes hitherto inaccessible. Produce lithium oxide with purity.

以下の例で本発明を更に説明する。 The following examples further illustrate the invention.

実施例 1 8%の水酸化リチウム及び2%炭酸リチウムを
含んでいる乾燥した90%過酸化リチウム試料の
450℃をアルミニウム容器に入れた。次にアルゴ
ン下、無水、非酸化性条件下、425℃で試料を2
時間加熱した。第1段階加熱の生成物、12%の水
酸化リチウムと3%の炭酸リチウムを含んでいる
85%酸化リチウムの300gを高純度(99%)アル
ミナるつぼに入れ約0.1kPaの真空下で950℃に2
時間加熱した。生成物(270g)を分析し99.97%
の酸化リチウムであることが判明した。生成物は
殆ど微細な粉末で、いくつかの生成物の小塊が含
まれるだけであつた。
Example 1 A dry 90% lithium peroxide sample containing 8% lithium hydroxide and 2% lithium carbonate.
450°C was placed in an aluminum container. The sample was then heated for 2 hours at 425°C under argon, anhydrous, and non-oxidizing conditions.
heated for an hour. Product of first stage heating, containing 12% lithium hydroxide and 3% lithium carbonate
300g of 85% lithium oxide was placed in a high purity (99%) alumina crucible and heated to 950℃ under a vacuum of approximately 0.1kPa.
heated for an hour. Product (270g) was analyzed and found to be 99.97%
It turned out to be lithium oxide. The product was mostly a fine powder with only a few product globules.

比較例 A 第2段階の真空下の加熱時に850℃の加熱温度
を用いて実施例1を繰り返した。酸化リチウム生
成物の純度は97%であつた。
Comparative Example A Example 1 was repeated using a heating temperature of 850°C during the second stage of heating under vacuum. The purity of the lithium oxide product was 97%.

比較例 B 第2段階の950℃加熱時に真空を用いず、アル
ゴン下で加熱して実施例1を繰り返した。酸化リ
チウム純度は95%であつた。
Comparative Example B Example 1 was repeated without using vacuum during the second stage of heating to 950°C and heating under argon. The purity of lithium oxide was 95%.

比較例 C 真空下及びアルゴン下で900℃での一段加熱を
別々に試みた。だが過酸化リチウムの分解が余り
活発なので生成物と反応物の両方がるつぼから激
しく噴出した。
Comparative Example C Single heating at 900° C. under vacuum and under argon was attempted separately. However, the decomposition of the lithium peroxide was so active that both the products and reactants violently spewed out of the crucible.

Claims (1)

【特許請求の範囲】 1 (a) 過酸化リチウムを350乃至450℃の温度
で、不活性の、無水の雰囲気中で分解して不純
な酸化リチウムをつくり;次いで (b) 不純な酸化リチウムを0.2kPa以下の圧力下
で900℃以上に、少なくとも1時間加熱して99
%又はそれより高い純度の高純度酸化リチウム
を得ることを特徴とする高純度酸化リチウムを
製造する方法。 2 工程(a)からの不純な酸化リチウムを工程(b)
で、真空下、900℃乃至1000℃の温度に加熱する
特許請求の範囲第1項記載の方法。 3 工程(a)からの不純な酸化リチウムを工程(b)で
0.1kPa以下の圧力下で加熱する特許請求の範囲
第2項記載の方法。 4 工程(a)からの不純な酸化リチウムを工程(b)で
0.1kPaの圧力下で加熱する特許請求の範囲第3
項記載の方法。
[Claims] 1. (a) Lithium peroxide is decomposed at a temperature of 350 to 450° C. in an inert, anhydrous atmosphere to form impure lithium oxide; and (b) impure lithium oxide is decomposed. 99 by heating to 900℃ or higher for at least 1 hour under a pressure of 0.2kPa or lower.
A method for producing high-purity lithium oxide, characterized by obtaining high-purity lithium oxide with a purity of % or higher. 2. Transfer the impure lithium oxide from step (a) to step (b).
The method according to claim 1, wherein the material is heated to a temperature of 900° C. to 1000° C. under vacuum. 3 Impure lithium oxide from step (a) is processed in step (b).
The method according to claim 2, wherein the heating is performed under a pressure of 0.1 kPa or less. 4 Impure lithium oxide from step (a) is processed in step (b).
Claim 3 heating under a pressure of 0.1kPa
The method described in section.
JP8721887A 1986-04-11 1987-04-10 Manufacture of high purity lithium oxide Granted JPS62241819A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85063786A 1986-04-11 1986-04-11
US850637 1986-04-11

Publications (2)

Publication Number Publication Date
JPS62241819A JPS62241819A (en) 1987-10-22
JPH0575694B2 true JPH0575694B2 (en) 1993-10-21

Family

ID=25308718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8721887A Granted JPS62241819A (en) 1986-04-11 1987-04-10 Manufacture of high purity lithium oxide

Country Status (4)

Country Link
JP (1) JPS62241819A (en)
DE (1) DE3712141A1 (en)
FR (1) FR2597086A1 (en)
GB (1) GB2188917B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061256A1 (en) * 2009-11-20 2011-05-26 Chemetall Gmbh Galvanic elements containing oxygen-containing conversion electrodes
JP5950160B2 (en) * 2012-09-03 2016-07-13 東レ・ファインケミカル株式会社 Method for producing lithium oxide
JP7090083B2 (en) * 2016-12-21 2022-06-23 アルベマール・ジャーマニー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Lithium oxide manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3321277A (en) * 1964-01-15 1967-05-23 Lithium Corp Lithium oxide having active absorption capacity for carbon dioxide and method of preparing same

Also Published As

Publication number Publication date
DE3712141A1 (en) 1987-10-15
JPS62241819A (en) 1987-10-22
GB8707609D0 (en) 1987-05-07
GB2188917B (en) 1989-11-22
GB2188917A (en) 1987-10-14
FR2597086A1 (en) 1987-10-16

Similar Documents

Publication Publication Date Title
US4241037A (en) Process for purifying silicon
JP2020502025A (en) Method for producing lithium oxide
EP1437326B1 (en) Method for producing silicon
JPS59182221A (en) Manufacture of silicon
JP2015074567A (en) Method for producing lithium sulfide
US4221775A (en) Method of producing porous lithium oxide
US4446120A (en) Method of preparing silicon from sodium fluosilicate
JP2021525833A (en) A method for producing fine metal powder from a metal compound
US4732751A (en) High purity lithium oxide process
EP0209954A2 (en) Melt consolidation of silicon powder
CN110612269B (en) Method for producing commercial grade silicon
JPH0575694B2 (en)
US4781756A (en) Removal of lithium nitride from lithium metal
WO2004042095A1 (en) A process for the production of niobium and/or tantalum powder with large surface area
EP0272773B1 (en) Process for production silicon carbide whiskers
JPS6325216A (en) Manufacture of boron oxide
US3770422A (en) Process for purifying eu and yb and forming refractory compounds therefrom
JP2000327488A (en) Production of silicon substrate for solar battery
US2850379A (en) Process for production of refractory metals
US2974012A (en) Preparation of beryllium oxide of high purity
JPH01116038A (en) Manufacture of high purity rare earth metal
CA2365541A1 (en) Process for the production of elemental boron by solid reaction
JP5534434B2 (en) Silicon purification method
US3156528A (en) Process for recovering an alkali metal peroxide octahydrate
JPS59164613A (en) Manufacture of finely powdered silicon of high purity