JPH0575213A - Manufacture of semiconductor laser element - Google Patents

Manufacture of semiconductor laser element

Info

Publication number
JPH0575213A
JPH0575213A JP23666891A JP23666891A JPH0575213A JP H0575213 A JPH0575213 A JP H0575213A JP 23666891 A JP23666891 A JP 23666891A JP 23666891 A JP23666891 A JP 23666891A JP H0575213 A JPH0575213 A JP H0575213A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
gaas
ammonium sulfide
sulfide solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23666891A
Other languages
Japanese (ja)
Inventor
Hitoshi Kuribayashi
均 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP23666891A priority Critical patent/JPH0575213A/en
Publication of JPH0575213A publication Critical patent/JPH0575213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To get a current checking layer excellent in crystal property by performing the surface treatment using ammonium sulfide solution thereby removing the surface oxide when performing selective epitaxial growth. CONSTITUTION:With the SiO2 film 8 made on a base of multilayer structure as a mask, selective etching is performed, and a stripe shaped mesa part 9, which includes a p-GaAs ohmic contact layer 6, is made leaving only the p- AlGaAs second clad layer 5 by h in thickness. At this point of time, the surface treatment by ammonium sulfide solution is applied to remove the oxide produced, whereby the stable surface condition of the mesa part 9 is gotten. Then, n-GaAs is buried in the mesa part 9 so as to form current checking layers 7 on both sides of the mesa part 9. In the current checking layer 7 being made this way, marked improvement of the crystal property can be seen. Lastly, a p-type electrode 10 and an n-type electrode 11 are made by removing the SiO2 film, whereby a semiconductor element is gotten.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザ素子を製造
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor laser device.

【0002】[0002]

【従来の技術】一般に、半導体レーザ素子は、コンパク
トディスクやビデオディスク等の光源として利用される
ので、素子の構造は光の損失と無駄な再結合をできるだ
け少なくするために、特定の領域に光エネルギーおよび
注入電流を閉じ込めること、さらに1μmオーダーの微
小スポットに光を絞り込む必要があり、素子の活性層に
平行な方向の光の閉じ込め、即ち横モード発振の制御可
能な構造を有する。実際にはこれらの構造条件を満たす
リッジ埋め込み型の半導体レーザ素子が有効であること
が知られている。
2. Description of the Related Art Generally, a semiconductor laser device is used as a light source for a compact disc, a video disc, etc., and therefore the structure of the device is designed to reduce light loss and unnecessary recombination as much as possible. It is necessary to confine energy and injected current, and further to confine light to a minute spot of the order of 1 μm, and confine light in a direction parallel to the active layer of the device, that is, have a structure capable of controlling transverse mode oscillation. In fact, it is known that a ridge-embedded semiconductor laser device satisfying these structural conditions is effective.

【0003】図2はこのリッジ埋め込み型の半導体レー
ザ素子の構造を示す模式断面図である。図2のようにこ
の素子は、n−GaAs基板1の上にn−GaAsバッ
ファー層2,n−AlGaAs第1クラッド層3,Al
GaAs活性層4,p−AlGaAs第2クラッド層
5,がこの順に形成されており、第2クラッド層5とオ
ーミックコンタクト層6に形成されたストライプ状メサ
部のレーザ光進行方向と平行な両側面を電流阻止層7で
埋め込んである。この電流阻止層7は光の吸収層の役割
を持っており、第2クラッド層5上のメサ部の正面から
見た幅を適切に選ぶことにより、素子の安定な横モード
発振を可能とし、さらに電流阻止層7が活性層4の発光
領域に近いため、電流が活性層4の一部に集中して流
れ、発振しきい値電流を低減させることができるもので
ある。
FIG. 2 is a schematic sectional view showing the structure of this ridge-embedded semiconductor laser device. As shown in FIG. 2, this device comprises an n-GaAs substrate 1, an n-GaAs buffer layer 2, an n-AlGaAs first cladding layer 3, and an Al layer.
A GaAs active layer 4 and a p-AlGaAs second cladding layer 5 are formed in this order, and both side surfaces of the stripe-shaped mesa portion formed on the second cladding layer 5 and the ohmic contact layer 6 are parallel to the laser light traveling direction. Are embedded with the current blocking layer 7. The current blocking layer 7 has a role of a light absorbing layer, and by appropriately selecting the width of the mesa portion on the second cladding layer 5 when viewed from the front, stable transverse mode oscillation of the device is possible, Further, since the current blocking layer 7 is close to the light emitting region of the active layer 4, the current concentrates in a part of the active layer 4 and the oscillation threshold current can be reduced.

【0004】このようなリッジ埋め込み型の半導体レー
ザ素子は、通常次のようにして製造される。図1(a)
〜(d)はその主な工程順を示したものであり、図2と
共通部分を同一符号で表わしてある。まずn−GaAs
基板1上に、減圧MOCVD法(有機金属気相成長法)
を用いてn−GaAsバッファー層2,n−AlGaA
s第1クラッド層3,AlGaAs活性層4,p−Al
GaAs第2クラッド層5,p−GaAsオーミックコ
ンタクト層6を順次成長させた後、この積層体の上面に
SiO2 膜8のマスクを形成する[図1(a)]。
Such a ridge-embedded semiconductor laser device is usually manufactured as follows. Figure 1 (a)
(D) shows the order of the main steps, and the same parts as those in FIG. 2 are represented by the same reference numerals. First, n-GaAs
Low pressure MOCVD method (metal organic chemical vapor deposition method) on the substrate 1
N-GaAs buffer layer 2, n-AlGaA
s first cladding layer 3, AlGaAs active layer 4, p-Al
After the GaAs second cladding layer 5 and the p-GaAs ohmic contact layer 6 are sequentially grown, a mask of the SiO 2 film 8 is formed on the upper surface of this stack [FIG. 1 (a)].

【0005】次に、SiO2 膜8をマスクとして、p−
GaAsオーミックコンタクト層6およびp−AlGa
As第2クラッド層5の途中まで、硫酸と過酸化水素水
と水からなるSHエッチング液を用いて選択エッチング
を行ない、厚さhだけp−AlGaAs第2クラッド層
5を残して、p−GaAsオーミックコンタクト層6を
含むストライプ状メサ部9を形成する[図1(b)]。
Next, using the SiO 2 film 8 as a mask, p-
GaAs ohmic contact layer 6 and p-AlGa
Selective etching is performed up to the middle of the As second clad layer 5 using an SH etching solution consisting of sulfuric acid, hydrogen peroxide solution and water, leaving the p-AlGaAs second clad layer 5 by a thickness h and leaving the p-GaAs. A stripe-shaped mesa portion 9 including the ohmic contact layer 6 is formed [FIG. 1 (b)].

【0006】次いでSiO2 膜8を選択成長用マスクと
し、減圧MOCVD法を用いて選択エピタキシャル成長
により、SiO2 膜7の付着している部分を除き、n−
GaAsをメサ部9に埋め込み、メサ部9の両側に電流
阻止層7を形成する[図1(c)]。
Next, the SiO 2 film 8 is used as a mask for selective growth and selective epitaxial growth is performed using a low pressure MOCVD method to remove the portion where the SiO 2 film 7 is adhered.
GaAs is embedded in the mesa portion 9 and the current blocking layer 7 is formed on both sides of the mesa portion 9 [FIG. 1 (c)].

【0007】そして、SiO2 膜8を除去した後、p型
電極10およびn型電極11を形成することにより、図
2に示した構造を持つ半導体レーザ素子が得られる[図
1(d)]。
After the SiO 2 film 8 is removed, a p-type electrode 10 and an n-type electrode 11 are formed to obtain a semiconductor laser device having the structure shown in FIG. 2 [FIG. 1 (d)]. ..

【0008】[0008]

【発明が解決しようとする課題】しかし、以上の方法に
より半導体レーザ素子を製造するとき、次のような問題
がある。それは、この構造の半導体レーザ素子は、上述
のように電流阻止層7を形成する際、減圧MOCVD法
を用いた選択エピタキシャル成長により、p−AlGa
As第2クラッド層5の上にGaAsを結晶成長させね
ばならないが、このとき、AlGaAsは非常に酸化さ
れやすい物質であるから、とくに選択エッチング後の表
面には、かなりの酸化膜が生成されているのが観察され
る。したがって、選択エッチング後の表面に直接選択エ
ピタキシャル成長を行なうと、電流阻止層7に酸化物に
起因する欠陥が多量に発生して、良質の電流阻止層7を
形成することができなくなる。結晶性の良い電流阻止層
7を形成することは、無効電流を抑制しストライプ状の
メサ部9のみに効率よく電流を流すために、また組み立
て後の素子の表面から効率よく熱を逃がすためにも、非
常に重要である。
However, when the semiconductor laser device is manufactured by the above method, there are the following problems. This is because the semiconductor laser device having this structure has p-AlGa by selective epitaxial growth using the low pressure MOCVD method when forming the current blocking layer 7 as described above.
GaAs must be crystal-grown on the As second cladding layer 5. At this time, since AlGaAs is a material that is very easily oxidized, a considerable oxide film is formed on the surface after the selective etching. Is observed. Therefore, if the selective epitaxial growth is directly performed on the surface after the selective etching, a large number of defects due to the oxide are generated in the current blocking layer 7, and it becomes impossible to form the good current blocking layer 7. The formation of the current blocking layer 7 having good crystallinity is intended to suppress the reactive current and to efficiently pass the current only to the stripe-shaped mesa portion 9 and to efficiently release the heat from the surface of the assembled element. Is also very important.

【0009】本発明は上述の点に鑑みてなされたもので
あり、その目的は、選択エピタキシャル成長を行なう
際、硫化アンモニュウム溶液を用いた表面処理を行なっ
て、表面酸化物を除去することにより、結晶性の良い電
流阻止層が得られるる半導体レーザ素子の製造方法を提
供することにある。
The present invention has been made in view of the above-mentioned points, and an object thereof is to perform surface treatment using an ammonium sulfide solution to remove surface oxides during selective epitaxial growth to obtain crystals. It is an object of the present invention to provide a method for manufacturing a semiconductor laser device that can obtain a current blocking layer having good properties.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は半導体レーザ素子を製造する過程におい
て、選択エッチングによりストライプ状メサ部を形成し
た後、硫化アンモニュウム溶液を用いて表面処理を行な
い、その後に選択エピタキシャル成長により電流阻止層
を埋め込む工程を加えるものである。
In order to solve the above-mentioned problems, the present invention provides a method of manufacturing a semiconductor laser device, in which a stripe-shaped mesa portion is formed by selective etching, and then surface treatment is performed using an ammonium sulfide solution. Then, a step of burying the current blocking layer by selective epitaxial growth is added.

【0011】[0011]

【作用】本発明は以上の方法を用いることにより、凸形
のストライプ状メサ部表面に生ずる酸化膜を除去して安
定な表面が得られるので、、続いてこのメサ部に埋め込
まれる電流阻止層は、酸化膜に起因する結晶欠陥がなく
なり、結晶性のよい良質の電流阻止層を均一に、再現性
よく形成することができる。
According to the present invention, by using the above method, a stable surface can be obtained by removing the oxide film formed on the surface of the convex stripe mesa portion. Therefore, the current blocking layer subsequently embedded in the mesa portion is obtained. Eliminates the crystal defects caused by the oxide film, and can form a high-quality current blocking layer having good crystallinity uniformly and with good reproducibility.

【0012】[0012]

【実施例】以下本発明を実施例に基づき説明する。本発
明の方法により得られる半導体レーザ素子の構造は、図
2に示すものと同じであるから図示を省き、また本発明
の方法に関わる製造工程も基本的には図1と同じである
から、ここでも図1(a)〜(d)を参照して述べる。
本発明の方法が従来と異なる点は、図1(b)の工程終
了後、図1(c)の工程に移る過程にある。即ち、スト
ライプ状メサ部9を形成した時点で、メサ部9の表面は
酸化された状態にあるので、本発明はここで硫化アンモ
ニュウム溶液による表面処理を施して、そこに生成され
ている酸化膜を取り除き、メサ部9の安定な表面状態を
得るための工程をとり入れていることである。
EXAMPLES The present invention will be described below based on examples. Since the structure of the semiconductor laser device obtained by the method of the present invention is the same as that shown in FIG. 2, illustration thereof is omitted, and the manufacturing process related to the method of the present invention is basically the same as that of FIG. Here too, description will be given with reference to FIGS.
The point that the method of the present invention is different from the conventional method is in the process of moving to the process of FIG. 1C after the process of FIG. That is, since the surface of the mesa portion 9 is in an oxidized state at the time when the stripe-shaped mesa portion 9 is formed, the present invention performs the surface treatment with the ammonium sulfide solution, and the oxide film formed there. Is taken in and a process for obtaining a stable surface state of the mesa portion 9 is incorporated.

【0013】硫化アンモニュウム溶液はGaAsおよび
AlGaAsの酸化物を溶かす性質を持っており、また
硫化アンモニュウム溶液に含まれるS(サルファー)原
子は、GaAsやAlGaAs表面で単原子層の安定な
結合をつくり、表面の欠陥準位を減らす効果を有するも
のである。本発明に用いる硫化アンモニュウム溶液中の
S濃度は0.5〜2%とするのがよい。それは酸化膜は
エッチングするが、GaAsやAlGaAs自体はエッ
チングされないS濃度として、0.5%以上が必要であ
り、S濃度が増して2%以上になるとGaAsやAlG
aAs自体もエッチングされるようになるからである。
このS濃度範囲で硫化アンモニュウム溶液中に5分間浸
せきした後、超純水で10分間洗浄する。
The ammonium sulfide solution has a property of dissolving oxides of GaAs and AlGaAs, and the S (sulfur) atom contained in the ammonium sulfide solution forms a stable bond of a monoatomic layer on the surface of GaAs or AlGaAs. It has the effect of reducing the defect level on the surface. The S concentration in the ammonium sulfide solution used in the present invention is preferably 0.5 to 2%. It etches the oxide film, but does not etch GaAs or AlGaAs itself. The S concentration needs to be 0.5% or more. When the S concentration increases to 2% or more, GaAs or AlG
This is because aAs itself will also be etched.
After being immersed in an ammonium sulfide solution for 5 minutes in this S concentration range, it is washed with ultrapure water for 10 minutes.

【0014】その後、図1(c)以降の工程に入ること
は前に述べた通りである。かくして形成された電流阻止
層7は、上記の硫化アンモニュウム処理を行なうことに
よって、従来のこの処理を行なわない場合に比べて、格
段に結晶性の改善がみられた。なお、本発明の方法は、
上に述べた各積層膜と逆導電型を持つ構造の半導体レー
ザ素子についても同様の効果を得ることができる。
After that, the process starting from FIG. 1C is started as described above. The current blocking layer 7 thus formed was remarkably improved in crystallinity by performing the above-mentioned ammonium sulfide treatment, as compared with the conventional case where this treatment is not performed. The method of the present invention is
The same effect can be obtained also in the semiconductor laser device having a structure having a conductivity type opposite to that of each laminated film described above.

【0015】[0015]

【発明の効果】本発明は半導体レーザ素子を製造するに
当たり、実施例で述べたように、選択エッチングを行な
って形成した凸形のストライプ状メサ部の表面に生ずる
酸化膜を、硫化アンモニュウム溶液を用いて除去する工
程をとり入れたために、その後に選択成長によりメサ部
に埋め込む電流阻止層は、酸化膜の悪影響を受けること
なく、良好な結晶性を持つ電流阻止層が再現性よく形成
されるので、得られる半導体レーザ素子は均一な優れた
特性を示すようになる。
According to the present invention, when manufacturing a semiconductor laser device, as described in the embodiments, an oxide film formed on the surface of a convex stripe mesa formed by selective etching is treated with an ammonium sulfide solution. The current blocking layer embedded in the mesa portion by selective growth after that has been incorporated by the use, because the current blocking layer having good crystallinity is formed with good reproducibility without being adversely affected by the oxide film. The obtained semiconductor laser device exhibits uniform and excellent characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(d)は半導体レーザ素子の製造工程
1A to 1D are manufacturing process diagrams of a semiconductor laser device.

【図2】半導体レーザ素子の模式断面図FIG. 2 is a schematic sectional view of a semiconductor laser device.

【符号の説明】[Explanation of symbols]

1 基板 2 バッファー層 3 第1クラッド層 4 活性層 5 第2クラッド層 6 オーミックコンタクト層 7 電流阻止層 8 SiO2 膜 9 メサ部 10 p型電極 11 n型電極1 substrate 2 buffer layer 3 first clad layer 4 active layer 5 second clad layer 6 ohmic contact layer 7 current blocking layer 8 SiO 2 film 9 mesa portion 10 p-type electrode 11 n-type electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一導電型半導体基板の一主面上に一導電型
のAlGaAs第1クラッド層,活性層,逆導電型のA
lGaAs第2クラッド層,オーミックコンタクト層を
備え、前記第2クラッド層と前記コンタクト層で形成し
た凸形のストライプ状メサ部に一導電型の電流阻止層を
埋め込んだ半導体レーザ素子の製造方法であって、選択
エッチングにより前記メサ部を形成した後、硫化アンモ
ニュウム溶液を用いて表面処理を行ない、引き続き選択
エピタキシャル成長により前記電流阻止層を埋め込む工
程を含むことを特徴とする半導体レーザ素子の製造方
法。
1. A one conductivity type AlGaAs first cladding layer, an active layer, and a reverse conductivity type A on one main surface of a one conductivity type semiconductor substrate.
A method of manufacturing a semiconductor laser device, comprising: a 1 GaAs second clad layer and an ohmic contact layer, and embedding a current blocking layer of one conductivity type in a convex striped mesa portion formed by the second clad layer and the contact layer. And forming the mesa portion by selective etching, performing a surface treatment using an ammonium sulfide solution, and subsequently burying the current blocking layer by selective epitaxial growth.
【請求項2】請求項1記載の製造方法において、硫化ア
ンモニュウム溶液のS濃度を0.5〜2%とすることを
特徴とする半導体レーザ素子の製造方法。
2. The method for manufacturing a semiconductor laser device according to claim 1, wherein the S concentration of the ammonium sulfide solution is 0.5 to 2%.
JP23666891A 1991-09-18 1991-09-18 Manufacture of semiconductor laser element Pending JPH0575213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23666891A JPH0575213A (en) 1991-09-18 1991-09-18 Manufacture of semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23666891A JPH0575213A (en) 1991-09-18 1991-09-18 Manufacture of semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH0575213A true JPH0575213A (en) 1993-03-26

Family

ID=17004020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23666891A Pending JPH0575213A (en) 1991-09-18 1991-09-18 Manufacture of semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH0575213A (en)

Similar Documents

Publication Publication Date Title
US5737351A (en) Semiconductor laser including ridge structure extending between window regions
JPS5811111B2 (en) Manufacturing method of semiconductor laser device
JP2525788B2 (en) Method for manufacturing semiconductor laser device
JP2007184644A (en) Semiconductor device and method of manufacturing same
US5111470A (en) Semiconductor laser device and a method of fabricating the same
JPH0575213A (en) Manufacture of semiconductor laser element
KR930008359B1 (en) Method of producing a semiconductor laser
JP2629678B2 (en) Semiconductor laser device and method of manufacturing the same
US20040095979A1 (en) Semiconductor device and method for producing the same
JP2006319120A (en) Semiconductor laser and manufacturing method thereof
JP3375755B2 (en) InGaP surface treatment method and semiconductor laser manufacturing method
KR100363240B1 (en) Semiconductor laser diode and its manufacturing method
JP4799582B2 (en) Manufacturing method of semiconductor device
JP2525776B2 (en) Method for manufacturing semiconductor device
JP2001053391A (en) Manufacture of semiconductor device and semiconductor laser, and quantum wire structure
JPH0669599A (en) Semiconductor laser diode and its manufacture
JPS61281561A (en) Manufacture of semiconductor-surface light-emitting element
JP3722532B2 (en) Semiconductor laser device and manufacturing method thereof
JPH05226774A (en) Semiconductor laser element and its production
JPH0918082A (en) Semiconductor laser element
JP2008028093A (en) Semiconductor laser device and its manufacturing method
JPH11243250A (en) Semiconductor laser element and manufacture thereof
JPH02105474A (en) Manufacture of semiconductor light emitting element
JPS63168065A (en) Manufacture of semiconductor laser
JPH0669591A (en) Manufacture of semiconductor laser element