JPH0575051B2 - - Google Patents

Info

Publication number
JPH0575051B2
JPH0575051B2 JP60255494A JP25549485A JPH0575051B2 JP H0575051 B2 JPH0575051 B2 JP H0575051B2 JP 60255494 A JP60255494 A JP 60255494A JP 25549485 A JP25549485 A JP 25549485A JP H0575051 B2 JPH0575051 B2 JP H0575051B2
Authority
JP
Japan
Prior art keywords
light
laser
detector
displacement
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60255494A
Other languages
Japanese (ja)
Other versions
JPS62115315A (en
Inventor
Masakazu Myatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25549485A priority Critical patent/JPS62115315A/en
Publication of JPS62115315A publication Critical patent/JPS62115315A/en
Publication of JPH0575051B2 publication Critical patent/JPH0575051B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、物体表面の変位を測定するレーザ変
位計に係わり、特にタービンブレードの輪郭・断
面プロフアイルの計測等に使用するレーザ変位計
に関する。 〔従来の技術〕 従来、この種の用途に用いられるレーザ変位計
は、第2図に示す如く半導体レーザ1、デテクタ
(受光器)2、第1及び第2の集光レンズ3,4
をレーザヘツド7内に収容して構成されている。
このレーザ変位計では、半導体レーザ1からのレ
ーザビーム5を第1の集光レンズ3により集光し
てワーク(被検出物)8上に照射する。ワーク8
からの反射光6を第2の集光レンズ4により集光
してデテクタ2上に入射させる。そして、デテク
タ2上の反射光スポツトの位置の移動に基づいて
ワーク8の変位を測定するものとなつている。 なお、ワーク8の変位が測定できる原理は次の
通りである。即ち、測定レンジl分の変位が発生
した時、デテクタ2上の反射光スポツトの重心の
変位をWとすると、三角法により l∝W となる。従つて、デテクタ2上のスポツト光の変
位から実際の変位が算出されることになる。 〔発明が解決しようとする問題点〕 しかしながら、この種の変位計にあつては次の
ような問題があつた。即ち、レーザビームがワー
クに当り、その際の乱反射モード(反射光の強
さ)は、ワークが金属であるか非金属であるかに
よつて大きく異なる。第3図にワークの真上から
レーザ光を当てた時の乱反射モードの例を示す。
これによると、レーザ光の入射位置(この場合ワ
ークに垂直であれば鏡と同じでその反射光のピー
クも入射位置と同じである)から角度βまでは比
較的均一な乱射反射モードである。しかし、角度
βを越えると、反射光強度は急激に減少してい
る。つまり、前記第2図を見ると、レーザビーム
5から角度αの反射光6及び反射光6の延長上に
あるデテクタ2を、第3図の角度βに置換えた場
合、半導体レーザ1のレーザビーム5の軸と、反
射光6及びデテクタ2を結ぶ軸との交差角度がβ
を越えるとき、デテクタ2の受ける受光量(反射
光)は急激に減少する。 この受光量の変化が、以下に述べるようにレー
ザ変位計の精度に関係し、データのバラツキ、即
ち測定精度の低下を招くことになる。受光量の変
化が精度に影響する理由は、次の通りである。第
4図に示す如くワーク8の変位を検出している際
に、図中A−A′断面における反射光強度が第5
図に示す如くなつたとする。この場合、第5図に
示す如く、デテクタ2の受光量(反射光)がa,
bのように変化すると、光の重心も変化する。つ
まり、乱反射の光レベルaでの光の重心はBとな
り、乱反射の光レベルbでの光の重心はBとな
る。光の重心が変化すると、デテクタ2上ではワ
ーク8の変位として検出される。つまり、データ
のバラツキが生じることになる。 本発明は上記事情を考慮してなされたもので、
その目的とするところは、被検出物として特に金
属製のワークの変位検出を高精度に行うことがで
き、タービンブレード等の変位検出に好適するレ
ーザ変位計を提供することにある。 〔問題点を解決するための手段〕 本発明の骨子は、入射光に対する乱反射モード
が均一となる角度範囲を予め求めておき、半導体
レーザからの入射光の光軸と、デテクタへの反射
光の光軸との角度が上記角度範囲となるように設
定することにある。 非金属(セラミツクス)、金属(ステンレス)
の表面に0.2φのレーザビームを真上から照射し、
その時の入射位置(反射光ピーク)より各角度の
乱反射モードを計測した。その結果を第6図及び
第7図に示す。セラミツクスでは乱反射モードが
略均一となる角度β=70°であり、ステンレスで
はβ=30°である。従つて、半導体レーザとデテ
クタとの取付け角度は、タービンブレード(ステ
ンレス)の計測を考慮すると30度が良いことにな
る。 本発明はこのような点に着目してなされたもの
で、半導体レーザからのレーザ光を第1の集光レ
ンズを介して被検出物の表面に照射し、該検出物
表面からの反射光を第2の集光レンズを介して受
光器に入射させ、この受光器上のスポツト光位置
の変位を検出することにより、上記被検出物表面
の変位を計測するレーザ変位計において、前記被
検出物の表面に光を垂直に照射したときの乱反射
モードが略均一となる角度範囲を−θ〜+θとす
るとき、前記半導体レーザ及び第1の集光レンズ
を結ぶ光軸と、前記受光器と第2の集光レンズと
を結ぶ光軸とが、上記角度θで交わる位置に、前
記半導体レーザ、受光器、第1及び第2の集光レ
ンズをレーザヘツド内に配置するようにしたもの
である。 〔作用〕 半導体レーザからのレーザビームの光軸とデテ
クタに入射する反射光の光軸との角度が30度とな
るように、半導体レーザとデテクタとの取付け角
度をセツトすると、金属製のワークに対しその真
上からレーザビームを照射したときに、バラツキ
のない検出出力を得ることができる。また、ワー
クを0〜30度傾けてもレーザ反射光ピークとデテ
クタの相対角度は常に0〜30度の範囲に収まる。
つまり、データのバラツキが未然に解消すること
になる。 〔実施例〕 以下、本発明の詳細を図示の実施例によつて説
明する。 第1図は本発明の一実施例に係わるレーザ変位
計を示す概略構成図である。半導体レーザ1、デ
テクタ2、第1及び第2の集光レンズ3,4がレ
ーザヘツド7内に収容固定されている。半導体レ
ーザ1から放射されたレーザビーム5は、第1の
集光レンズ3により集束されたのちワーク8の表
面に照射される。ワーク8の表面で反射した反射
光は、第2の集光レンズ4により集光されたのち
デテクタ2に入射される。そして、デテクタ2上
の反射光スポツト位置に基づいてワーク8の変位
を測定するものとなつている。 ここで、上記半導体レーザ1、デテクタ2及び
レンズ3,4は、半導体レーザ1からのレーザビ
ーム5の光軸とデテクタ2に入射する反射光6の
光軸との交差角が30度となるようにレーザヘツド
7に固定されている。なお、この時の測定距離L
は、レーザヘツド7の大きさ、つまり半導体レー
ザ1とデテクタ2との距離mにより決定され、そ
れに従い集光レンズ3,4の焦点距離を変える。
また、レーザビーム5の光軸と反射光6の光軸と
が同一平面にて交差するように、半導体レーザ
1、デテクタ2及び集束レンズ3,4を調整し、
セツトさせなければならない。 このような構成において、第8図に示す如くワ
ーク8を傾けた場合、乱反射光ピークとデテクタ
との角度は下記表のようになる。
[Industrial Field of Application] The present invention relates to a laser displacement meter for measuring the displacement of the surface of an object, and particularly to a laser displacement meter used for measuring the outline and cross-sectional profile of a turbine blade. [Prior Art] Conventionally, a laser displacement meter used for this type of application includes a semiconductor laser 1, a detector (light receiver) 2, and first and second condensing lenses 3, 4, as shown in FIG.
is housed in the laser head 7.
In this laser displacement meter, a laser beam 5 from a semiconductor laser 1 is focused by a first condensing lens 3 and irradiated onto a workpiece (object to be detected) 8 . Work 8
The reflected light 6 is collected by the second condensing lens 4 and is made to be incident on the detector 2. Then, the displacement of the workpiece 8 is measured based on the movement of the position of the reflected light spot on the detector 2. The principle by which the displacement of the workpiece 8 can be measured is as follows. That is, when a displacement corresponding to the measurement range l occurs, and if W is the displacement of the center of gravity of the reflected light spot on the detector 2, then l∝W is obtained by trigonometry. Therefore, the actual displacement is calculated from the displacement of the spot light on the detector 2. [Problems to be Solved by the Invention] However, this type of displacement meter has the following problems. That is, the diffuse reflection mode (intensity of reflected light) when a laser beam hits a workpiece differs greatly depending on whether the workpiece is metal or non-metallic. Figure 3 shows an example of the diffuse reflection mode when a laser beam is applied from directly above the workpiece.
According to this, there is a relatively uniform diffuse reflection mode from the incident position of the laser beam (in this case, if it is perpendicular to the workpiece, it is the same as a mirror and the peak of the reflected light is also the same as the incident position) to the angle β. However, beyond the angle β, the reflected light intensity decreases rapidly. That is, looking at FIG. 2, if the reflected light 6 from the laser beam 5 at an angle α and the detector 2 located on the extension of the reflected light 6 are replaced with the angle β in FIG. 3, the laser beam of the semiconductor laser 1 The intersection angle between the axis of 5 and the axis connecting the reflected light 6 and the detector 2 is β
When the value exceeds , the amount of light received by the detector 2 (reflected light) decreases rapidly. This change in the amount of received light is related to the accuracy of the laser displacement meter, as described below, and causes data variation, that is, a decrease in measurement accuracy. The reason why changes in the amount of received light affect accuracy is as follows. As shown in Fig. 4, when detecting the displacement of the workpiece 8, the reflected light intensity at the A-A' cross section in the figure is 5th.
Suppose the situation is as shown in the figure. In this case, as shown in FIG. 5, the amount of light received by the detector 2 (reflected light) is a,
When the light changes as shown in b, the center of gravity of the light also changes. That is, the center of gravity of the light at the light level a of diffuse reflection is B, and the center of gravity of the light at the light level b of diffuse reflection is B. When the center of gravity of the light changes, it is detected as a displacement of the workpiece 8 on the detector 2. In other words, variations in data will occur. The present invention was made in consideration of the above circumstances, and
The purpose is to provide a laser displacement meter that can detect displacement of a metal workpiece with high precision as an object to be detected, and is suitable for detecting displacement of a turbine blade or the like. [Means for solving the problem] The gist of the present invention is to obtain in advance an angular range in which the diffuse reflection mode for incident light is uniform, and to align the optical axis of the incident light from the semiconductor laser with the reflected light to the detector. The purpose is to set the angle with the optical axis to fall within the above angle range. Non-metals (ceramics), metals (stainless steel)
A 0.2φ laser beam is irradiated onto the surface of the
The diffuse reflection mode at each angle was measured from the incident position (reflected light peak) at that time. The results are shown in FIGS. 6 and 7. For ceramics, the angle at which the diffuse reflection mode is approximately uniform is β = 70°, and for stainless steel, β = 30°. Therefore, considering the measurement of the turbine blade (stainless steel), a good mounting angle between the semiconductor laser and the detector is 30 degrees. The present invention has been made with attention to such points, and the present invention irradiates the surface of an object to be detected with laser light from a semiconductor laser through a first condensing lens, and collects the reflected light from the surface of the object. In the laser displacement meter, the displacement of the surface of the object to be detected is measured by making the spot light enter a light receiver through a second condensing lens and detecting the displacement of the position of the spot light on the light receiver. When the angle range in which the diffuse reflection mode is approximately uniform when light is irradiated perpendicularly to the surface of The semiconductor laser, the light receiver, and the first and second condenser lenses are arranged in the laser head at a position where the optical axis connecting the second condenser lens intersects at the angle θ. [Operation] If the mounting angle of the semiconductor laser and the detector is set so that the angle between the optical axis of the laser beam from the semiconductor laser and the optical axis of the reflected light incident on the detector is 30 degrees, it will be possible to attach the laser beam to the metal workpiece. On the other hand, when a laser beam is irradiated from directly above it, a consistent detection output can be obtained. Further, even if the workpiece is tilted by 0 to 30 degrees, the relative angle between the laser reflected light peak and the detector is always within the range of 0 to 30 degrees.
In other words, data variations can be eliminated before they occur. [Example] Hereinafter, details of the present invention will be explained with reference to illustrated examples. FIG. 1 is a schematic configuration diagram showing a laser displacement meter according to an embodiment of the present invention. A semiconductor laser 1, a detector 2, and first and second condensing lenses 3 and 4 are housed and fixed in a laser head 7. The laser beam 5 emitted from the semiconductor laser 1 is focused by the first condenser lens 3 and then irradiated onto the surface of the workpiece 8 . The reflected light reflected from the surface of the workpiece 8 is focused by the second condensing lens 4 and then enters the detector 2 . The displacement of the workpiece 8 is then measured based on the position of the reflected light spot on the detector 2. Here, the semiconductor laser 1, the detector 2, and the lenses 3 and 4 are arranged so that the intersection angle between the optical axis of the laser beam 5 from the semiconductor laser 1 and the optical axis of the reflected light 6 incident on the detector 2 is 30 degrees. is fixed to the laser head 7. In addition, the measured distance L at this time
is determined by the size of the laser head 7, that is, the distance m between the semiconductor laser 1 and the detector 2, and the focal lengths of the condensing lenses 3 and 4 are changed accordingly.
Further, the semiconductor laser 1, the detector 2, and the focusing lenses 3 and 4 are adjusted so that the optical axis of the laser beam 5 and the optical axis of the reflected light 6 intersect on the same plane,
must be set. In such a configuration, when the workpiece 8 is tilted as shown in FIG. 8, the angle between the diffusely reflected light peak and the detector is as shown in the table below.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ワークを0〜30度の範囲で傾
けても、デテクタで検出される反射光強度は不変
であり、データのバラツキを未然に防止すること
ができる。このため、変位測定精度の大幅な向上
をはかり得る。従つて、金属製のワーク、特にタ
ービンブレード等の変位測定(輪郭や断面プロフ
アイルの測定)に極めて有効である。
According to the present invention, even if the workpiece is tilted within a range of 0 to 30 degrees, the intensity of reflected light detected by the detector remains unchanged, making it possible to prevent data variations. Therefore, displacement measurement accuracy can be significantly improved. Therefore, it is extremely effective for measuring the displacement (measuring the contour and cross-sectional profile) of metal workpieces, especially turbine blades.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わるレーザ変位
計を示す概略構成図、第2図は従来のレーザ変位
計を示す概略構成図、第3図はレーザ光を真上か
ら照射した場合のワークからの乱反射モードの例
を示す模式図、第4図はレーザビームがワークに
当りその反射光がデテクタに検知される仕組みを
示す模式図、第5図は乱反射光のレベル変化に対
する光の重心変化を説明するための模式図、第6
図はセラミツクスにレーザビームを当てた場合の
乱反射モードを示す特性図、第7図はステンレス
にレーザビームを当てた場合の乱反射モードを示
す特性図、第8図はワークを傾けた場合のレーザ
の反射光ピークとデテクタとの相対角度を説明す
るための模式図である。 1……半導体レーザ、2……デテクタ(受光
器)、3……第1の集光レンズ、4……第2の集
光レンズ、5……レーザビーム、6……反射光、
7……レーザヘツド、8……ワーク(被検出物)。
Fig. 1 is a schematic configuration diagram showing a laser displacement meter according to an embodiment of the present invention, Fig. 2 is a schematic configuration diagram showing a conventional laser displacement meter, and Fig. 3 is a schematic configuration diagram showing a laser displacement meter according to an embodiment of the present invention. A schematic diagram showing an example of the diffuse reflection mode from a workpiece. Figure 4 is a schematic diagram showing the mechanism in which a laser beam hits a workpiece and the reflected light is detected by a detector. Figure 5 is a diagram showing the center of gravity of light with respect to changes in the level of diffusely reflected light. Schematic diagram for explaining changes, No. 6
The figure is a characteristic diagram showing the diffuse reflection mode when a laser beam is applied to ceramics, Figure 7 is a characteristic diagram showing the diffuse reflection mode when a laser beam is applied to stainless steel, and Figure 8 is a characteristic diagram showing the diffuse reflection mode when a laser beam is applied to stainless steel. FIG. 3 is a schematic diagram for explaining the relative angle between a reflected light peak and a detector. DESCRIPTION OF SYMBOLS 1... Semiconductor laser, 2... Detector (light receiver), 3... First condensing lens, 4... Second condensing lens, 5... Laser beam, 6... Reflected light,
7... Laser head, 8... Work (object to be detected).

Claims (1)

【特許請求の範囲】[Claims] 1 半導体レーザからのレーザ光を第1の集光レ
ンズを介して被検出物の表面に照射し、該検出物
表面からの反射光を第2の集光レンズを介して受
光器に入射させ、この受光器上のスポツト光位置
の変位を検出することにより、上記被検出物表面
の変位を計測するレーザ変位計において、前記被
検出物の表面に垂直に光を照射したときの乱反射
モードが略均一となる角度範囲を−θ〜+θとす
るとき、前記半導体レーザ及び第1の集光レンズ
を結ぶ光軸と、前記受光器と第2の集光レンズと
を結ぶ光軸とが、上記角度θで交わる位置に、前
記半導体レーザ、受光器、第1及び第2の集光レ
ンズをレーザヘツド内に配置したことを特徴とす
るレーザ変位計。
1. Irradiating the surface of an object to be detected with laser light from a semiconductor laser through a first condensing lens, and causing reflected light from the surface of the object to enter a light receiver through a second condensing lens, In a laser displacement meter that measures the displacement of the surface of the object to be detected by detecting the displacement of the spot light position on the light receiver, the diffuse reflection mode when light is irradiated perpendicularly to the surface of the object to be detected is approximately When the uniform angle range is -θ to +θ, the optical axis connecting the semiconductor laser and the first condensing lens and the optical axis connecting the light receiver and the second condensing lens are at the above angle. A laser displacement meter characterized in that the semiconductor laser, the light receiver, and the first and second condensing lenses are arranged in a laser head at positions where they intersect at θ.
JP25549485A 1985-11-14 1985-11-14 Laser displacement gauge Granted JPS62115315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25549485A JPS62115315A (en) 1985-11-14 1985-11-14 Laser displacement gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25549485A JPS62115315A (en) 1985-11-14 1985-11-14 Laser displacement gauge

Publications (2)

Publication Number Publication Date
JPS62115315A JPS62115315A (en) 1987-05-27
JPH0575051B2 true JPH0575051B2 (en) 1993-10-19

Family

ID=17279530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25549485A Granted JPS62115315A (en) 1985-11-14 1985-11-14 Laser displacement gauge

Country Status (1)

Country Link
JP (1) JPS62115315A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637170B2 (en) * 1988-06-21 1997-08-06 株式会社日立製作所 Method and apparatus for measuring brush wear of motor
JPH07115990B2 (en) * 1990-06-11 1995-12-13 松下電器産業株式会社 Crystal surface inspection method and crystal growth apparatus
JP4827402B2 (en) * 2004-11-29 2011-11-30 株式会社三和自動機製作所 Bundling device
JP7114658B2 (en) * 2020-08-04 2022-08-08 東芝エレベータ株式会社 Installation method of chain elongation detector and reflective optical sensor for passenger conveyor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934344A (en) * 1972-07-28 1974-03-29
JPS5761905A (en) * 1980-09-30 1982-04-14 Matsushita Electric Works Ltd Measuring device of surface coarseness
JPS59202012A (en) * 1983-04-30 1984-11-15 Matsushita Electric Ind Co Ltd Optical range finder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934344A (en) * 1972-07-28 1974-03-29
JPS5761905A (en) * 1980-09-30 1982-04-14 Matsushita Electric Works Ltd Measuring device of surface coarseness
JPS59202012A (en) * 1983-04-30 1984-11-15 Matsushita Electric Ind Co Ltd Optical range finder

Also Published As

Publication number Publication date
JPS62115315A (en) 1987-05-27

Similar Documents

Publication Publication Date Title
JPS63500119A (en) Instruments for measuring surface morphology
EP0279347B1 (en) Optical axis displacement sensor
JPH0812057B2 (en) Light beam device
JPH0575051B2 (en)
CN106969717B (en) Calibration method and measurement method of symmetrical optical bridge type self-stabilizing laser diameter measuring system
JPS5979122A (en) Laser power measuring device
Wang Long-range optical triangulation utilising collimated probe beam
US5359418A (en) Photometric grinder and lathe gauge
JP2603317B2 (en) Laser distance meter and calibration method for thickness gauge using laser distance meter
JPH09189545A (en) Distance measuring device
JPS5856094B2 (en) Microvibration measuring device
JPH06281418A (en) Optical thickness measuring method of plate-shaped transparent body having ruggedness
JP3374941B2 (en) Transparent plate thickness measuring device
JPH05215526A (en) Surface-shape measuring apparatus
JPH05332769A (en) Optical displacement gauge
JPS6262208A (en) Range-finding apparatuws and method
JPS6298211A (en) Displacement measuring method by laser displacement gage
JPH0357914A (en) Optical probe
JPS62127614A (en) Surface displacement measuring method by laser light
JPS6018288A (en) Monitoring method of laser working device
JPH0334563B2 (en)
JPH0626842A (en) One-dimensional scanning type surface displacement meter
Ando et al. 11.2-A new method of contour measurement by gas lasers
JPS5973192A (en) Laser working machine
JPS63137596A (en) Laser sensing method