JPH0574683A - Method for aligning reduction stepper - Google Patents

Method for aligning reduction stepper

Info

Publication number
JPH0574683A
JPH0574683A JP3234621A JP23462191A JPH0574683A JP H0574683 A JPH0574683 A JP H0574683A JP 3234621 A JP3234621 A JP 3234621A JP 23462191 A JP23462191 A JP 23462191A JP H0574683 A JPH0574683 A JP H0574683A
Authority
JP
Japan
Prior art keywords
exposure
die
alignment
linear
errors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3234621A
Other languages
Japanese (ja)
Inventor
Kazuhiko Hashimoto
一彦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP3234621A priority Critical patent/JPH0574683A/en
Publication of JPH0574683A publication Critical patent/JPH0574683A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately align a reduction stepper without lowering its throughput by performing die-by-die exposure only on wafers on which nonlinear deviations occur in such a way that the die-by-die exposure is performed when remaining errors become larger than allowable values and global exposure is performed in accordance with measured results when the remaining errors are lower than the allowable values. CONSTITUTION:An aligning exposing device measures the position of the shot of a wafer as fine alignment after performing pre-alignment and search alignment. Each correcting amount of shift, scaling, rotation, and orthgonality which causes a deviation from ideal coordinates is calculated from the measured results of the position. At the time of calculation, remaining errors Rx and Yy which are not included in the correcting amounts are also calculated simultaneously. When the errors Rx and Yy are lower than allowable values, global exposure is performed with the correcting amounts and, when the errors exceed the allowable value, die-by-die exposure is performed. Therefore, alignment can be performed with high accuracy without lowering the throughput.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体製造装置であ
る縮小投影露光装置に関し、特にアライメント(重ね合
わせ)方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reduction projection exposure apparatus which is a semiconductor manufacturing apparatus, and more particularly to an alignment (superposition) method.

【0002】[0002]

【従来の技術】従来の縮小投影露光装置のアライメント
方法を図2に示す。また線形な目ズレ成分を図3〜図6
に示す。ウェーハははじめにプリアライメントによりO
Fの位置合わせを行い、サーチアライメントでX方向,
Y方向,回転方向のウェーハのアライメントが行われ
る。次にファインアライメントにより任意のショットの
位置計測を行い、線形な目ズレ成分シフト(Sx,S
y),スケーリング(Mx,My),オーソゴナリティ
(θxーθy),ローテーション(θy)が算出され
る。ダイバイダイ露光(ダイバイダイアライメント)で
は、その後ショット毎に位置計測を行いながら露光して
いく。グローバル露光(エンハンストグローバルアライ
メント)では、ファインアライメントで算出された(シ
フト,スケーリング,オーソゴナリティ,ローテーショ
ン)により、各ショットの位置を予測して露光を行う。
この2つの方法が、用意されており、必要なアライメン
ト精度によりあらかじめ区別されて使い分けられてい
る。
2. Description of the Related Art FIG. 2 shows a conventional alignment method for a reduction projection exposure apparatus. In addition, the linear misalignment component is shown in FIGS.
Shown in. The wafer is initially O
Align F, search alignment in X direction,
Wafers are aligned in the Y direction and the rotation direction. Next, the position of an arbitrary shot is measured by fine alignment, and a linear shift component shift (Sx, S
y), scaling (Mx, My), orthogonality (θx-θy), and rotation (θy) are calculated. In die-by-die exposure (die-by-die alignment), exposure is performed while measuring the position for each shot thereafter. In global exposure (enhanced global alignment), exposure is performed by predicting the position of each shot based on (shift, scaling, orthogonality, rotation) calculated by fine alignment.
These two methods are prepared and used by being distinguished in advance according to the required alignment accuracy.

【0003】なお、図3〜図7において、点線は理想位
置であり、実線はズレが生じた位置である。
In FIGS. 3 to 7, the dotted line is the ideal position and the solid line is the position where the deviation occurs.

【0004】[0004]

【発明が解決しようとする課題】微細化が進むにしたが
い、アライメント(重ね合わせ)精度の向上が必要とな
ってきていたが、従来のエンハンストグローバルアライ
メントでは、ショット毎に位置計測をして露光すること
ができないため、ウェーハのソリ,歪等で発生する非線
形なズレの場合は、精度良くアライメントができないと
いう欠点があった。
As the miniaturization progresses, it has become necessary to improve the alignment (superposition) accuracy. In the conventional enhanced global alignment, position measurement is performed for each shot and exposure is performed. Therefore, in the case of a non-linear shift caused by warp or distortion of the wafer, there is a drawback that the alignment cannot be performed accurately.

【0005】また、ダイバイダイ露光では、ショット毎
に位置計測を行うため、エンハンストグローバルアライ
メントに比べて、スループットが低下するという欠点が
あった。
Further, in the die-by-die exposure, since the position is measured for each shot, there is a drawback that the throughput is lower than that in the enhanced global alignment.

【0006】[0006]

【課題を解決するための手段】この発明のアライメント
方法は、任意のショットの位置計測後、ズレが線形なズ
レであるか、非線形なズレであるかを判断して自動的に
切り換えて、残留エラーが許容値以上になればダイバイ
ダイ露光を行い、以下であれば計測結果よりグローバル
露光を行う。
According to the alignment method of the present invention, after measuring the position of an arbitrary shot, it is determined whether the deviation is a linear deviation or a non-linear deviation, and it is automatically switched to the residual. If the error exceeds the allowable value, die-by-die exposure is performed.

【0007】[0007]

【作用】上記の構成によると、非線形な目ズレが発生し
ているウェーハだけダイバイダイアライメント露光を行
うため、全ウェーハをダイバイダイアライメント露光を
行うよりもスループットは向上し精度良くアライメント
できる。
According to the above construction, since the die-by-die alignment exposure is performed only on the wafer in which the non-linear shift has occurred, the throughput is improved and the alignment can be performed with higher accuracy than the die-by-die alignment exposure for all the wafers.

【0008】[0008]

【実施例】以下、この発明の実施例について説明する。Embodiments of the present invention will be described below.

【0009】図7,図8はウェーハのズレ方向を示して
おり、図7は線形なズレが発生しているウェーハ,図8
は非線形なズレが発生しているウェーハである(図にお
いて、矢印はズレ方向のベクトル表示であり、○印はフ
ァインアライメントの位置計測ショットである)。目合
露光装置は、図1のようにプリアライメントおよびサー
チアライメント後、ファインアライメントとしてウェー
ハの○印のショットの位置計測を行う。この計測結果よ
り、理想座標にズレを生じさせるシフト,スケーリン
グ,ローテーション,オーソゴナリティの各補正量を算
出する。この時、同時に上記に含まれない残留エラーR
x,Ryも算出する。このRx,Ryがある許容値以下
ならば、補正量にてグローバル露光を行い、許容値を越
えればダイバイダイアライメント露光を実施する。これ
により図7のウェーハは、グローバル露光を行い、図8
のウェーハはダイバイダイアライメント露光となり、ア
ライメント精度を低下させないという利点がある。
FIGS. 7 and 8 show the direction of wafer deviation, and FIG. 7 shows a wafer in which a linear deviation occurs.
Indicates a wafer in which a non-linear shift has occurred (in the figure, the arrow indicates a vector in the shift direction, and the circle indicates a fine alignment position measurement shot). As shown in FIG. 1, the mesh exposure apparatus measures the position of the shot marked with ◯ on the wafer as fine alignment after pre-alignment and search alignment. Based on this measurement result, each correction amount of shift, scaling, rotation, and orthogonality that causes a deviation in ideal coordinates is calculated. At this time, at the same time, the residual error R not included in the above
x and Ry are also calculated. If Rx and Ry are below a certain allowable value, global exposure is carried out with a correction amount, and if exceeding the allowable value, die-by-die alignment exposure is carried out. As a result, the wafer of FIG.
The wafer is subjected to die-by-die alignment exposure, which has the advantage of not lowering the alignment accuracy.

【0010】[0010]

【発明の効果】この発明は、以上のように残留エラーの
許容値を設定したことにより、非線形なズレの発生ウェ
ーハのみダイバイダイアライメント露光を行うため、ス
ループットを低下させることなく精度良くアライメント
ができる。
As described above, according to the present invention, by setting the allowable value of the residual error as described above, the die-by-die alignment exposure is performed only on the wafer in which the non-linear deviation occurs, so that the alignment can be performed accurately without lowering the throughput. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明のアライメント方法のフローチャー
FIG. 1 is a flowchart of an alignment method of the present invention.

【図2】 従来のアライメント方法のフローチャートFIG. 2 is a flowchart of a conventional alignment method.

【図3】 シフトのズレ成分を説明する図面FIG. 3 is a diagram illustrating a shift component of a shift.

【図4】 スケーリングのズレ成分を説明する図面FIG. 4 is a drawing for explaining a displacement component of scaling.

【図5】 ローテーションのズレ成分を説明する図面FIG. 5 is a drawing for explaining a rotation deviation component.

【図6】 オーソゴナリティのズレ成分を説明する図面FIG. 6 is a drawing for explaining a deviation component of orthodoxness.

【図7】 線形なズレの発生ウェーハを示すFIG. 7 shows a wafer with a linear shift.

【図8】 非線形なズレの発生ウェーハを示すFIG. 8 shows a wafer having a non-linear shift.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】縮小投影露光のアライメント(重ね合わ
せ)方法において、ウェーハ内の任意のショットの位置
計測(ファインアライメント)の段階で、線形な目ズレ
か非線形な目ズレかを判断し、自動的に切換えて非線形
な目ズレの発生のウェーハはショット毎に位置計測を行
いながら露光を行い(ダイバイダイ露光)、その他のウ
ェーハはグローバル露光を行うことを特徴とする縮小投
影露光のアライメント方法。
1. In a reduction projection exposure alignment (superposition) method, at the stage of position measurement (fine alignment) of an arbitrary shot in a wafer, it is determined whether a linear misalignment or a non-linear misalignment is detected, and automatically. A reduced projection exposure alignment method characterized by performing exposure while performing position measurement for each shot (die-by-die exposure) for wafers that have a non-linear shift, and performing global exposure for other wafers.
【請求項2】線形な目ズレか非線形な目ズレかの判断時
に残留エラーを算出し、この残留エラーが許容値以内の
場合は補正をかけてグローバル露光を行い、許容値を越
える場合はダイバイダイアライメント露光を行う縮小投
影露光のアライメント方法。
2. A residual error is calculated when determining a linear or non-linear deviation, and if the residual error is within a permissible value, global exposure is performed by correction, and if it exceeds the permissible value, the diver is exposed. Reduction projection exposure alignment method for performing red eye alignment exposure.
JP3234621A 1991-09-13 1991-09-13 Method for aligning reduction stepper Pending JPH0574683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3234621A JPH0574683A (en) 1991-09-13 1991-09-13 Method for aligning reduction stepper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3234621A JPH0574683A (en) 1991-09-13 1991-09-13 Method for aligning reduction stepper

Publications (1)

Publication Number Publication Date
JPH0574683A true JPH0574683A (en) 1993-03-26

Family

ID=16973914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3234621A Pending JPH0574683A (en) 1991-09-13 1991-09-13 Method for aligning reduction stepper

Country Status (1)

Country Link
JP (1) JPH0574683A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543785A (en) * 2010-12-08 2012-07-04 无锡华润上华科技有限公司 Alignment specification verification method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543785A (en) * 2010-12-08 2012-07-04 无锡华润上华科技有限公司 Alignment specification verification method

Similar Documents

Publication Publication Date Title
US5894350A (en) Method of in line intra-field correction of overlay alignment
JP6191534B2 (en) Wafer warpage evaluation method and wafer selection method
JPH07321012A (en) Alignment method and manufacture of element using the same
JP2000133579A5 (en)
US6239858B1 (en) Exposure method, exposure apparatus and semiconductor device manufactured by using the exposure apparatus
JPH09148217A (en) Method of alignment
JPH0878317A (en) Semiconductor exposure system and exposure method
KR100439472B1 (en) Method and apparatus for measuring of processing error and method and apparatus for measuring of overlay
JPH0574683A (en) Method for aligning reduction stepper
JPH04278515A (en) Demagnification projection exposure
JP2000195770A (en) Tilt correcting method and manufacture of device
JP3303834B2 (en) Alignment method
KR100722136B1 (en) Method of alignment of wafer
JP2003037038A (en) Projection exposure method
US6873399B2 (en) Exposure system and method
JPH1079333A (en) Aligning method
KR20070077688A (en) Exposural system and method for manufacturing semiconductor device using the same
KR20030013625A (en) Wafer alignment system in exposing apparatus
JPH10172902A (en) Lap inspecting method
JPH07142329A (en) Exposure method and aligner and mask
JP2000124125A (en) Semiconductor aligner
KR20010065021A (en) Method for correcting overlay parameter of semiconductor device
JPH0529195A (en) Contraction projection type exposure apparatus
JPH0287615A (en) Alignment of reduction projection exposure device
JPH05144703A (en) Reduction projection aligner