JPH0574615B2 - - Google Patents

Info

Publication number
JPH0574615B2
JPH0574615B2 JP7111685A JP7111685A JPH0574615B2 JP H0574615 B2 JPH0574615 B2 JP H0574615B2 JP 7111685 A JP7111685 A JP 7111685A JP 7111685 A JP7111685 A JP 7111685A JP H0574615 B2 JPH0574615 B2 JP H0574615B2
Authority
JP
Japan
Prior art keywords
ethyl acrylate
ethylene
flame
weight
flame retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7111685A
Other languages
Japanese (ja)
Other versions
JPS61231040A (en
Inventor
Takashi Inoe
Motohide Okamoto
Masayoshi Karya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP7111685A priority Critical patent/JPS61231040A/en
Publication of JPS61231040A publication Critical patent/JPS61231040A/en
Publication of JPH0574615B2 publication Critical patent/JPH0574615B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は耐熱性、すなわち熱変形温度が高く、
かつ機械的強度のすぐれた難燃性エチレン−アク
リル酸エチル共重合体組成物に関する。 (従来技術) ポリオレフインは機械的強度、耐水性、耐薬品
性およびその顕著な電気的性質を有することによ
り、電線の絶縁、ケーブルの外被、その他の用途
に適していることはよく知られるところである。 しかしながら、ポリオレフインは易燃性であ
り、上記用途において、難燃化が必要とされてい
る。 従来、ポリオレフインの難燃化においては、最
も一般的にはハロゲン系難燃剤または該ハロゲン
系難燃剤と酸化アンチモンとの混合物が用いられ
ているが加熱、燃焼時に毒性の強いハロゲンガス
や煙が多量に発生し、人体に有害であるばかりで
なく、その腐食性故に周辺の機器類等をも腐食す
るという問題点を有する。 一方、難燃時に有害ガスの発生がなく、低煙性
の難燃剤として、水酸化マグネシウム、水酸化ア
ルミニウム等の無機系難燃剤が有効であることが
よく知られている。 また、上記無機難燃剤を使用する場合において
は、ポリオレフインとして、エチレン−酢酸ビニ
ル共重合体(以下EVAと称す)やエチレン−ア
クリル酸エチル共重合体(以下EEAと称す)の
ような含酸素樹脂と併用することによつて相剰的
難燃効果を示すことも知られている。その中でも
EEAは耐熱性、低温特性および電気特性等の点
でEVAよりすぐれ、高度な難燃性を要望される
昨今においては、そのニーズに合致し、急速に需
要を高めつつある。(それらの技術として例えば
特開昭51−132254号、同56−136832号、同60−
13832号等がある。) しかるに、従来、市販されているこれまでの
EEAは難燃性能の向上および難燃剤である無機
金属化合物の受容性を良くするためにアクリル酸
エチル(以下EAと称す)の含量を多くすると結
晶化度が著しく低下し、機械的強度や熱変形温度
が低下し、実用的でなくなつてしまうという欠点
を有している。一方、EA含量を減らすと無機金
属化合物の受容性が悪くなり、無機金属化合物の
添加量が自ずと制限されて、低温特性の悪化や難
燃性の低下を招く結果となつている。以上の様
に、EEAは無機難燃剤を添加した無公害型の難
燃性樹脂として好ましいにもかかわらずこれまで
のEEAは高度な難燃性を要求される昨今におい
て、機械的強度および耐熱性等の点において、十
分満足しているとは云い難い。 (発明が解決しようという問題点) 本発明は上記の点に鑑み、耐熱性、機械的強
度、低温特性が特にすぐれ、低煙性でかつ無公害
型の難燃性組成物を提供するものであり、この難
燃性組成物は電線、ケーブル、パツキング、シー
ル材、ホール類、フイルム、射出成形品等の成形
用途向けや、マスターバツチ等として利用される
ものである。 (問題点を解決する手段) 本発明はエチレン−アクリル酸エチル共重合体
を主成分とする樹脂成分100重量部に無機難燃剤
40〜150重量部を含有してなる組成物において、 該エチレン−アクリル酸エチル共重合体が (a) メルトインデツクスが0.2〜5g/10分、 (b) アクリル酸エチルの含量が10〜20重量%の範
囲で、かつ (c) アクリル酸エチルの含量(E)と融点(T)の関
係が下記式 T≧−0.8×E+109 を満足するものである難燃性エチレン−アクリル
酸エチル共重合体組成物を提供するものである。 本発明のエチレン−アクリル酸エチル共重合体
は、アクリル酸エチル含量が10〜20重量%である
と共に、メルトインデツクス(以下MIと称す)
が0.2〜5g/10分の範囲にあり、かつアクリル
酸エチル含量(E)と樹脂の融点(T)との関係が次
式T≧−0.8×E+109を満足する、特定範囲のも
のであることが必要である。 上記MIが0.2g/10分未満では加工性が悪くな
り、5g/10分を超えると強度が低下する。特に
好ましいMIは0.5〜2g/10分の範囲である。 またEA含量が10重量%未満においては、後述
の無機金属化合物を難燃化するに充分な量を添加
した場合に、機械的強度が大幅に低下し、かつ低
温特性が悪くなる。 一方、20重量%を超える場合には、融点の低下
が著しく、熱変形温度が低くなり、耐熱性がない
ものとなる。上記の点から特に好ましいEA含量
は14〜17重量%の範囲である。 更に本発明においては、EEAのEA含量(E)と融
点(T)との関係すなわち、式T≧−0.8×E+
109を満足することによつて、従来のEEAと本質
的に区別され、かつ上記の特定範囲のEA含量に
限定することにより初めて昨今の難燃性に対する
厳しい要求に対応しうる組成物となるものであ
る。 正、<融点>は、示差走査熱量測定法(DSC)
による最大ピーク温度(Tm)で表わし、次のよ
うに測定される。 すなわち、約5mgの試料を精秤し、それを
DSCにセツトし、170℃に昇温して、その温度で
15分間保持した後、10℃/分の速度で常温まで冷
却する。次に、この状態から10℃/分の速度で
170℃まで昇温して測定を終了する。最大ピーク
温度(Tm)は0℃から170℃に昇温する間に現
われた最大ピークの頂点の位置の温度をもつて表
わす。 <EA含量>は、赤外吸収スペクトル(IR)に
よるEAに帰属する860cm-1の吸収度から求める。 ただし、検量線は核磁気共鳴スペクトル
(NMR)によりEA濃度を求め、IRの860cm-1
吸光度との相関によつて求める。 上記のEA含量(E)と融点との関係式を満足する
本発明のEEAは、本発明者らが上記の厳しい要
求を満足させるために鋭意検討した結果、高圧ラ
ジカル重合法による特定の重合条件下で製造され
るもので、従来提案されているEEAと構造的に
も異なるものである。 すなわち、本発明のEEAは、第1図に示され
る様に、EA含量と融点との関係において、式T
≧−0.8×E+109線以上の範囲に存在し、かつ高
度の難燃的性質を保持するためにEA含量を10〜
20重量%の範囲に限定したものである。一方、従
来提案されているEEAは上記T≧−0.8×E+109
線以下に存在する。この理由はまだ明確ではない
が、エチレン重合体鎖中に導入されるEA基の分
布状態に帰因する構造が異なるためと推測してい
る。 本発明の無機難燃剤としては、水酸化アルミニ
ウム、水酸化マグネシウム、水酸化ジルコニウ
ム、塩基性炭酸マグネシウム、ドロマイト、ハイ
ドタルサイト、水酸化カルシウム、水酸化バリウ
ム、酸化スズの水和物、硼砂等の無機金属化合物
の水和物、ホウ酸亜鉛、メタホウ酸亜鉛、メタホ
ウ酸バリウム、炭酸亜鉛、炭酸マグネシウム−カ
ルシウム、炭酸カルシウム、炭酸バリウム、酸化
マグネシウム、酸化モリブデン、酸化ジルコニウ
ム、酸化スズ、酸化アンチモン、赤リン等が挙げ
られる。これらは1種でも2種以上を併用しても
良い。この中でも特に、水酸化マグネシウム、水
酸化アルミニウム、塩基性炭酸マグネシウム、ハ
イドロタルサイトからなる群から選ばれた少なく
とも1種が難燃効果が良く、経済的にも有利であ
る。またこれら難燃剤の粒径は種類によつて異な
るが、水酸化マグネシウム、水酸化アルミニウム
等においては平均粒径20μ以下が好ましい。 上記無機難燃剤の量はEEA100重量部に対して
40〜150重量部、好ましくは70〜120重量部の範囲
である。該難燃剤の量が40重量%未満においては
難燃効果が小さく、150重量部を超えると伸びが
低下し、脆くなり、かつ低温特性も悪化する。 また上記無機難燃剤の他に、クレー、シリカ、
タルク等の一般的な無機充填剤を併用しても何ら
さしつかえない。 更に、該無機難燃剤の表面をステアリン酸、オ
レイン酸、パルミチン酸等の脂肪酸またはそれら
の金属塩、ワツクス、有機シラン、有機ボラン、
有機チタネート等で被覆するなどの表面処理を施
すことが好ましい。 本発明の難燃性組成物に、本発明の特徴を損な
わない範囲において、他のオレフイン系重合体、
例えば、エチレン−酢酸ビニル共重合体、エチレ
ン−アクリル酸共重合体、エチレン−メタクリル
酸共重合体、本発明の範囲を除くエチレン−不飽
和カルボン酸エステル共重合体、高、中、低密度
のエチレン単独重合体またはエチレンとプロピレ
ン、ブテン−1、ペンテン−1、ヘキセン−1、
4−メチルペンテン−1、オクテン−1、デセン
−1等の炭素数3〜12のα−オレフインとの共重
合体、プロピレン単独重合体またはプロピレンと
他のα−オレフインとの共重合体、あるいはエチ
レンもしくはプロピレン単独重合体またはエチレ
ンもしくはプロピレンを主成分とする他のα−オ
レフインとの共重合体をアクリル酸、マレイン酸
等の不飽和カルボン酸またはその誘導体で変性し
た重合体およびそれらの混合物等を添加しても差
支えない。 更に、本発明においては、難燃効果を向上せし
めるために前記無機難燃剤と、少量のハロゲン系
難燃剤またはリン系難燃剤等の有機難燃剤あるい
は難燃助剤と併用しても良い。 また、酸化防止剤、紫外線吸収剤、銅害防止剤
等の各種安定剤、顔料、架橋剤、架橋助剤、発泡
剤、核剤等の通常の添加剤を添加しても良い。 (発明の作用効果) 上述の様に、本発明の難燃性組成物は、難燃時
に有害ガスの発生がなく、低煙性で、無公害型で
あり、従来の難燃性EEAより、耐熱性や機械的
強度に優れるもので、腐食性ガス量を規定してい
る原子力研究所を初めとした各種発電プラント用
ケーブル、化学、鉄鋼、石油等のプラント用ケー
ブル、耐火電線や一般屋内配線等の高度の難燃性
を要求される場所で好適に使用される。また、フ
イルム、シート、パイプあるいは射出成形品等の
成形用途向けや、マスターバツチ等としても利用
することができる。 実施例1〜7および比較例1〜7 <EEA樹脂の製造> チユーブラーリアクターを使用し、開始剤およ
び連鎖移動剤の存在下で、圧力2500〜3000Kg/
cm2、温度250℃前後の条件でエチレンとアクリル
酸エチルをラジカル共重合させ、第1表に示され
る様な各種のEEAを製造した。 上記、各種EEA100重量部に水酸化マグネシウ
ム(商品名:キスマ5B、協和化学(株)社製)を所
定量と酸化防止剤(商品名:サントノツクスR、
吉富製薬(株)製)0.2重量部を200℃にセツトしたプ
ラストグラフで均一に混練した。この組成物につ
いて引張強度、加熱変形率、脆化温度、酸素指数
を測定し、その結果を第1表に示した(実施例1
〜6、比較例1〜5)。また、実施例1の難燃剤
である水酸化マグネシウムの代わりに水酸化アル
ミニウムを用いて、実施例1と同様に評価した結
果を第1表に示した(実施例7)。またEEAとし
て市販品を用いて実施例1と同様に評価した結果
も第1表に示した(比較例6は日本ユニカーの商
品名DPDJ6182、比較例7は三井ポリケミカルの
商品名A702を用いた例を示す)。 <試験法> 1 引張強度および伸度 厚さ1m/mのシートから3号ダンベルを打ち
抜いた試験片で、テンシロンを用い、引張速度
200mm/分の速度で測定した。 2 加熱変形率 厚さ6m/m、直径10m/mの円柱を90℃のオ
イルバスに浸漬し、荷重1.02Kgで加圧し、30分後
の変形率を求めた。 3 脆化温度 ASTMD746に準拠 4 酸素指数 JISK7201に準拠
(Industrial Application Field) The present invention has high heat resistance, that is, a high heat distortion temperature,
The present invention also relates to a flame-retardant ethylene-ethyl acrylate copolymer composition having excellent mechanical strength. (Prior Art) It is well known that polyolefins are suitable for wire insulation, cable sheathing, and other applications due to their mechanical strength, water resistance, chemical resistance, and their outstanding electrical properties. be. However, polyolefins are easily flammable, and flame retardation is required in the above-mentioned applications. Conventionally, halogen-based flame retardants or a mixture of the halogen-based flame retardants and antimony oxide have been most commonly used to make polyolefin flame retardant, but when heated and burned, a large amount of highly toxic halogen gas and smoke are released. The problem is that it is not only harmful to the human body, but also corrodes surrounding equipment due to its corrosive nature. On the other hand, it is well known that inorganic flame retardants such as magnesium hydroxide and aluminum hydroxide are effective as low-smoke flame retardants that do not generate harmful gases during flame retardation. In addition, when using the above inorganic flame retardants, oxygen-containing resins such as ethylene-vinyl acetate copolymer (hereinafter referred to as EVA) and ethylene-ethyl acrylate copolymer (hereinafter referred to as EEA) are used as the polyolefin. It is also known that a additive flame retardant effect can be obtained when used in combination with a flame retardant effect. Among them
EEA is superior to EVA in terms of heat resistance, low-temperature properties, electrical properties, etc., and in recent years demand for advanced flame retardancy has been met, and demand is rapidly increasing. (These techniques include, for example, JP-A No. 51-132254, JP-A No. 56-136832, JP-A No. 60-
There are issues such as No. 13832. ) However, conventionally, commercially available
In EEA, when the content of ethyl acrylate (hereinafter referred to as EA) is increased in order to improve flame retardant performance and improve receptivity to inorganic metal compounds that are flame retardants, the degree of crystallinity decreases significantly, resulting in a decrease in mechanical strength and heat resistance. It has the disadvantage that the deformation temperature decreases, making it impractical. On the other hand, when the EA content is reduced, the acceptability of inorganic metal compounds deteriorates, and the amount of inorganic metal compounds added is naturally limited, resulting in deterioration of low-temperature properties and flame retardancy. As mentioned above, although EEA is preferable as a non-polluting flame retardant resin with the addition of inorganic flame retardants, conventional EEA has been used to improve mechanical strength and heat resistance in recent years, where a high degree of flame retardancy is required. It is difficult to say that I am fully satisfied with these points. (Problems to be Solved by the Invention) In view of the above points, the present invention provides a flame-retardant composition that has particularly excellent heat resistance, mechanical strength, and low-temperature properties, is low in smoke, and is non-polluting. This flame-retardant composition is used for molding purposes such as electric wires, cables, packing, sealing materials, holes, films, and injection molded products, and as master batches. (Means for Solving the Problems) The present invention is characterized in that an inorganic flame retardant is added to 100 parts by weight of a resin component whose main component is an ethylene-ethyl acrylate copolymer.
In a composition comprising 40 to 150 parts by weight of the ethylene-ethyl acrylate copolymer, (a) a melt index of 0.2 to 5 g/10 min, and (b) a content of ethyl acrylate of 10 to 20 (c) a flame-retardant ethylene-ethyl acrylate copolymer in which the relationship between the content (E) of ethyl acrylate and the melting point (T) satisfies the following formula: T≧-0.8×E+109; A combined composition is provided. The ethylene-ethyl acrylate copolymer of the present invention has an ethyl acrylate content of 10 to 20% by weight and a melt index (hereinafter referred to as MI).
is in the range of 0.2 to 5 g/10 min, and the relationship between the ethyl acrylate content (E) and the melting point (T) of the resin satisfies the following formula T≧-0.8×E+109, which is a specific range. is necessary. If the above-mentioned MI is less than 0.2 g/10 minutes, workability deteriorates, and if it exceeds 5 g/10 minutes, strength decreases. A particularly preferred MI ranges from 0.5 to 2 g/10 minutes. Furthermore, if the EA content is less than 10% by weight, when an amount sufficient to make the inorganic metal compound described below flame retardant is added, the mechanical strength will be significantly reduced and the low-temperature properties will be deteriorated. On the other hand, if it exceeds 20% by weight, the melting point will drop significantly, the heat distortion temperature will become low, and there will be no heat resistance. In view of the above, a particularly preferred EA content is in the range of 14 to 17% by weight. Furthermore, in the present invention, the relationship between the EA content (E) and the melting point (T) of EEA, that is, the formula T≧−0.8×E+
By satisfying 109, it is essentially distinguished from conventional EEA, and by limiting the EA content to the above-mentioned specific range, it becomes a composition that can meet the recent strict demands for flame retardancy. It is. Positive, <melting point> is differential scanning calorimetry (DSC)
The maximum peak temperature (Tm) is measured as follows: In other words, accurately weigh approximately 5 mg of sample, and
Set it on DSC, raise the temperature to 170℃, and at that temperature
After holding for 15 minutes, cool to room temperature at a rate of 10°C/min. Next, from this state, at a speed of 10℃/min.
The measurement is completed by increasing the temperature to 170℃. The maximum peak temperature (Tm) is expressed by the temperature at the top of the maximum peak that appears during the temperature increase from 0°C to 170°C. <EA content> is determined from the absorbance at 860 cm -1 attributed to EA by infrared absorption spectrum (IR). However, the calibration curve is determined by determining the EA concentration using nuclear magnetic resonance spectroscopy (NMR) and by correlating it with the absorbance at 860 cm -1 of IR. The EEA of the present invention, which satisfies the above relational expression between EA content (E) and melting point, was developed by the present inventors as a result of intensive studies to satisfy the above strict requirements. It is manufactured under the EEA system and is structurally different from the previously proposed EEA. That is, as shown in FIG. 1, the EEA of the present invention has the formula T in the relationship between the EA content and the melting point.
≧−0.8×E+109 line or higher, and the EA content is 10 to 10 to maintain high flame retardant properties.
The amount is limited to 20% by weight. On the other hand, the previously proposed EEA is the above T≧−0.8×E+109
Exists below the line. The reason for this is not yet clear, but it is speculated that the structure is different due to the distribution state of the EA group introduced into the ethylene polymer chain. Inorganic flame retardants of the present invention include aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, basic magnesium carbonate, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, tin oxide hydrate, borax, etc. Hydrates of inorganic metal compounds, zinc borate, zinc metaborate, barium metaborate, zinc carbonate, magnesium-calcium carbonate, calcium carbonate, barium carbonate, magnesium oxide, molybdenum oxide, zirconium oxide, tin oxide, antimony oxide, red Examples include phosphorus. These may be used alone or in combination of two or more. Among these, at least one selected from the group consisting of magnesium hydroxide, aluminum hydroxide, basic magnesium carbonate, and hydrotalcite has a good flame retardant effect and is economically advantageous. The particle size of these flame retardants varies depending on the type, but for magnesium hydroxide, aluminum hydroxide, etc., the average particle size is preferably 20 μm or less. The above amount of inorganic flame retardant is based on 100 parts by weight of EEA.
It ranges from 40 to 150 parts by weight, preferably from 70 to 120 parts by weight. If the amount of the flame retardant is less than 40% by weight, the flame retardant effect will be small, and if it exceeds 150 parts by weight, the elongation will decrease, the material will become brittle, and the low-temperature properties will also deteriorate. In addition to the above inorganic flame retardants, clay, silica,
There is no problem in using common inorganic fillers such as talc. Furthermore, the surface of the inorganic flame retardant is coated with fatty acids such as stearic acid, oleic acid, and palmitic acid, or metal salts thereof, wax, organic silane, organic borane,
It is preferable to perform a surface treatment such as coating with an organic titanate or the like. In the flame retardant composition of the present invention, other olefinic polymers may be added to the extent that they do not impair the characteristics of the present invention.
For example, ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers, ethylene-methacrylic acid copolymers, ethylene-unsaturated carboxylic acid ester copolymers other than the scope of the present invention, high-, medium-, and low-density Ethylene homopolymer or ethylene and propylene, butene-1, pentene-1, hexene-1,
Copolymers with α-olefins having 3 to 12 carbon atoms such as 4-methylpentene-1, octene-1, and decene-1, propylene homopolymers, or copolymers of propylene and other α-olefins, or Polymers obtained by modifying ethylene or propylene homopolymers or copolymers containing ethylene or propylene as a main component with other α-olefins with unsaturated carboxylic acids such as acrylic acid or maleic acid or derivatives thereof, and mixtures thereof, etc. There is no problem in adding. Furthermore, in the present invention, in order to improve the flame retardant effect, the inorganic flame retardant may be used in combination with a small amount of an organic flame retardant such as a halogen flame retardant or a phosphorus flame retardant, or a flame retardant aid. Further, conventional additives such as various stabilizers such as antioxidants, ultraviolet absorbers, and copper damage inhibitors, pigments, crosslinking agents, crosslinking aids, blowing agents, and nucleating agents may be added. (Operations and Effects of the Invention) As described above, the flame retardant composition of the present invention does not generate harmful gases during flame retardation, has low smoke properties, is non-polluting, and is superior to conventional flame retardant EEA. Cables with excellent heat resistance and mechanical strength are used for various power generation plants including nuclear power research institutes, which have regulated amounts of corrosive gases, cables for chemical, steel, and petroleum plants, fire-resistant electric wires, and general indoor wiring. It is suitable for use in places where a high degree of flame retardancy is required. It can also be used for molding purposes such as films, sheets, pipes, and injection molded products, and as a master batch. Examples 1 to 7 and Comparative Examples 1 to 7 <Manufacture of EEA resin> Using a tubular reactor, in the presence of an initiator and a chain transfer agent, a pressure of 2500 to 3000 Kg/
Ethylene and ethyl acrylate were radically copolymerized under conditions of cm 2 and temperature of around 250°C to produce various EEAs as shown in Table 1. Add a specified amount of magnesium hydroxide (product name: Kisuma 5B, manufactured by Kyowa Kagaku Co., Ltd.) to 100 parts by weight of each of the above EEAs and an antioxidant (product name: Santonox R,
(manufactured by Yoshitomi Pharmaceutical Co., Ltd.) was uniformly kneaded in a Plastograph set at 200°C. The tensile strength, heat deformation rate, embrittlement temperature, and oxygen index of this composition were measured, and the results are shown in Table 1 (Example 1
-6, Comparative Examples 1-5). Table 1 shows the results of evaluation in the same manner as in Example 1, using aluminum hydroxide instead of magnesium hydroxide, which is the flame retardant in Example 1 (Example 7). Table 1 also shows the results of evaluation using a commercially available EEA in the same manner as in Example 1 (Comparative Example 6 used Nippon Unicar's product name DPDJ6182, and Comparative Example 7 used Mitsui Polychemical's product name A702. example). <Test method> 1 Tensile strength and elongation A test piece was punched out from a sheet with a thickness of 1 m/m using a No. 3 dumbbell, and the tensile speed was adjusted using a Tensilon.
Measurements were made at a speed of 200 mm/min. 2 Heating deformation rate A cylinder with a thickness of 6 m/m and a diameter of 10 m/m was immersed in an oil bath at 90°C, pressurized with a load of 1.02 kg, and the deformation rate was determined after 30 minutes. 3 Brittleness temperature Compliant with ASTMD746 4 Oxygen index Compliant with JISK7201

【表】 注:アンダーラインは本発明の範囲外であることを示
す。
[Table] Note: Underlining indicates that it is outside the scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエチレン−アクリル酸エチル共重合体
におけるアクリル酸エチル(EA)含量と融点と
の関係を示す線図である。
FIG. 1 is a diagram showing the relationship between ethyl acrylate (EA) content and melting point in an ethylene-ethyl acrylate copolymer.

Claims (1)

【特許請求の範囲】 1 エチレン−アクリル酸エチル共重合体を主成
分とする樹脂成分100重量部に無機難燃剤40〜150
重量部を含有してなる組成物において、 該エチレン−アクリル酸エチル共重合体が (a) メルトインデツクスが0.2〜5g/10分、 (b) アクリル酸エチル含量が10〜20重量%の範囲
で、かつ (c) アクリル酸エチルの含量(E)と融点(T)の関
係が下記式 T≧−0.8×E+109 を満足するものである難燃性エチレン−アクリル
酸エチル共重合体組成物。 2 前記無機難燃剤が無機金属化合物の水和物で
ある特許請求の範囲第1項に記載の難燃性エチレ
ン−アクリル酸エチル共重合体組成物。 3 前記無機金属化合物の水和物が、水酸化アル
ミニウムまたは水酸化マグネシウムである特許請
求の範囲第2項に記載の難燃性エチレン−アクリ
ル酸エチル共重合体組成物。
[Claims] 1. 40 to 150 parts by weight of an inorganic flame retardant to 100 parts by weight of a resin component whose main component is an ethylene-ethyl acrylate copolymer.
parts by weight, the ethylene-ethyl acrylate copolymer has (a) a melt index of 0.2 to 5 g/10 min, and (b) an ethyl acrylate content in the range of 10 to 20% by weight. and (c) a flame-retardant ethylene-ethyl acrylate copolymer composition in which the relationship between the content (E) of ethyl acrylate and the melting point (T) satisfies the following formula: T≧−0.8×E+109. 2. The flame-retardant ethylene-ethyl acrylate copolymer composition according to claim 1, wherein the inorganic flame retardant is a hydrate of an inorganic metal compound. 3. The flame-retardant ethylene-ethyl acrylate copolymer composition according to claim 2, wherein the hydrate of the inorganic metal compound is aluminum hydroxide or magnesium hydroxide.
JP7111685A 1985-04-05 1985-04-05 Flame-retardance ethylene/ethyl acrylate copolymer composition Granted JPS61231040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7111685A JPS61231040A (en) 1985-04-05 1985-04-05 Flame-retardance ethylene/ethyl acrylate copolymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7111685A JPS61231040A (en) 1985-04-05 1985-04-05 Flame-retardance ethylene/ethyl acrylate copolymer composition

Publications (2)

Publication Number Publication Date
JPS61231040A JPS61231040A (en) 1986-10-15
JPH0574615B2 true JPH0574615B2 (en) 1993-10-18

Family

ID=13451268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7111685A Granted JPS61231040A (en) 1985-04-05 1985-04-05 Flame-retardance ethylene/ethyl acrylate copolymer composition

Country Status (1)

Country Link
JP (1) JPS61231040A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761449A (en) * 1987-10-22 1988-08-02 Shell Oil Company Flame retardant compositions
CA2119575C (en) * 1991-09-24 2004-11-16 Jerry G. Latiolais Copolymers of ethylene and alkyl acrylate, processes for preparing same and high clarity films
JP4711673B2 (en) * 2004-12-27 2011-06-29 日本ポリエチレン株式会社 Flame retardant resin composition and electric wire / cable using the same
JP5163597B2 (en) * 2009-06-19 2013-03-13 日立電線株式会社 Non-halogen flame retardant resin composition, method for producing the same, and electric wire / cable using the same

Also Published As

Publication number Publication date
JPS61231040A (en) 1986-10-15

Similar Documents

Publication Publication Date Title
CN106397947B (en) Halogen-free flame-retardant resin composition, insulated wire and cable
CN105593340B (en) Flexible flameproof thermoplastic composition with high thermomechanical strength, in particular for electric cables
KR101012908B1 (en) Halogen-free flame-retardant resin composition with nanoclay and zinc borate secondary flame-retardants
EP2532707B1 (en) Flame retardant polymer composition
US4407992A (en) Flame retardant compositions based on alkylene-alkyl acrylate copolymers
JPH0574615B2 (en)
JP2004075993A (en) Flame-retardant resin composition and insulated electric wire coated therewith
CN116438249A (en) Halogen-free flame retardant polymer composition
CN117616080A (en) Flame retardant polymer composition
JPS6140255B2 (en)
JPS6210149A (en) Composition for flame-retardant electrical material having excellent wear resistance
JPH064730B2 (en) Flame-retardant ethylene-ethyl acrylate copolymer composition with excellent heat resistance
JPS6326906A (en) Flame resisting electrically insulating composition
JP2811970B2 (en) Flame retardant electrical cable
JPS60100302A (en) Flame resistant electrically insulating composition
JP2525982B2 (en) Thin high-strength non-halogen insulated wire and method of manufacturing the same
JPH01603A (en) Flame retardant electrical insulation composition
JPH04253747A (en) Flame-retarding electrical-insulating composition
JP2887965B2 (en) Flame retardant wires and cables
JPS6211746A (en) Flame-retardant electrical material composition having excellent high-speed moldability
JPH04255739A (en) Flame-retardant composition
JPH03226910A (en) Fire resistant electric insulating composite
JPS6343205A (en) Flame resisting electrically insulating composition
JPS61255949A (en) Electrically semiconductive composition
JPH01302610A (en) Flame-resistant electrically insulating composition material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term