JPH0574521B2 - - Google Patents

Info

Publication number
JPH0574521B2
JPH0574521B2 JP18700389A JP18700389A JPH0574521B2 JP H0574521 B2 JPH0574521 B2 JP H0574521B2 JP 18700389 A JP18700389 A JP 18700389A JP 18700389 A JP18700389 A JP 18700389A JP H0574521 B2 JPH0574521 B2 JP H0574521B2
Authority
JP
Japan
Prior art keywords
sodium hypochlorite
agent
sodium
gelling agent
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18700389A
Other languages
Japanese (ja)
Other versions
JPH0350101A (en
Inventor
Satonobu Eto
Junpei Chokai
Hiroyuki Takahashi
Shigeo Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MYATA KOGYO KK
Original Assignee
MYATA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MYATA KOGYO KK filed Critical MYATA KOGYO KK
Priority to JP18700389A priority Critical patent/JPH0350101A/en
Publication of JPH0350101A publication Critical patent/JPH0350101A/en
Publication of JPH0574521B2 publication Critical patent/JPH0574521B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、漏洩した次亜塩素酸ナトリウムの処
理剤に関する。 〔従来の技術〕 次亜塩素酸ナトリウムは、上下水道の水処理や
紙・パルプ・繊維関係の漂白剤として広く利用さ
れている。特に、法令により塩素剤の使用が義務
づけられている水道水の消毒については、近年、
毒性の強い塩素剤に代えてより安全性の高い次亜
塩素酸ナトリウムへの転換が進みつつある。 しかして、使用の増大とともに漏洩等の事故も
また増加する傾向にある。次亜塩素酸ナトリウム
は塩素ガスに比べれば安全で取扱い易いが、強ア
ルカリ性であり、酸化作用もあつて、付着すると
皮膚や衣服を損傷する危険がある。それゆえ、万
一漏洩した場合は、速やかに処理しなければなら
ない。ところで、漏出した次亜塩素酸ナトリウム
を処理する場合、そのまま酸を加えて中和すると
塩素ガスが発生して危険である。そこで、例えば
日本水道協会の「次亜塩素酸ナトリウム取扱指
針」では、あらかじめ亜硫酸ナトリウムを加えて
次亜塩素酸ナトリウムを分解し、多量の水で薄め
て、残留塩素が検出されないことを確認するまで
に処理する方法がとられている。 この方法は、次の反応式で示される亜硫酸ナト
リウムNa2SO3の還元作用により、次亜塩素酸ナ
トリウムNaClOを安全な食塩に変えるものであ
る。 NaClO+Na2SO3→NaCl+ Na2SO4 〔発明が解決しようとする課題〕 しかしながら、漏洩した次亜塩素酸ナトリウム
水溶液に亜硫酸ナトリウムを加える場合、ただ単
に液面に散布しただけでは、次亜塩素酸ナトリウ
ムの分解が満足に行われない。これは、亜硫酸ナ
トリウムの比重(7水塩で1.561、無水塩で
2.633)が大きいため次亜塩素酸ナトリウムの水
溶液中に急速に沈んでしまい、また溶解性が悪い
ため上式の反応が生じないからである。本発明者
らは、反応性を高めるべく超微粉の亜硫酸ナトリ
ウムを用いたり、又超微粉の亜硫酸ナトリウムを
ポーラス状に造粒したものを用いてみた。しか
し、単に散布するのみではいぜんとして反応せ
ず、良好な反応を生じさせるためには、散布後に
次亜塩素酸ナトリウム水溶液をよく攪拌すること
が是非とも必要なことが判明した。 漏洩した次亜塩素酸ナトリウムの量が少なけれ
ば、攪拌して両者をよく混合させることも容易で
ある。けれども、多量の漏洩の場合は攪拌による
混合は困難であり、特に広い面積にわたり漏洩し
た場合などは、攪拌により両者を均一に混合さ
せ、漏洩した全ての次亜塩素酸ナトリウムを完全
に無害化することは殆ど不可能に近いという問題
点があつた。 更に、傾斜地に漏洩した場合などには、両者の
反応が終了しないうちに未反応の次亜塩素酸ナト
リウムが流れていき、漏洩範囲が拡大されてしま
うという問題点もあつた。 そこで本発明は、このような従来の問題点に着
目してなされたものであり、次亜塩素酸ナトリウ
ムの水溶液に対して散布するだけで速やかに反応
して無害化せしめ、且つ液の流動をも阻止する次
亜塩素酸ナトリウムの処理剤を提供して、上記従
来の問題点を解決することを目的としている。 〔課題を解決するための手段〕 上記目的を達成するため、本発明の第1の発明
は、次亜塩素酸ナトリウムの還元剤と、次亜塩素
酸ナトリウム水溶液のゲル化剤とより主としてな
る。 また本発明の第2の発明は、次亜塩素酸ナトリ
ウムの還元剤と、次亜塩素酸ナトリウム水溶液の
ゲル化剤と、多価金属塩からなるゲル安定剤とよ
り主としてなる。 ゲル化剤は、ポリビニルアルコール/ポリアク
リル酸塩系、デンプン/ポリアクリル酸塩系、橋
かけポリアクリル酸塩系、橋かけポリビニルアル
コール系、橋かけカルボキシメチルセルロース系
またはポリエチレンオキサイド変性物などの高吸
水性高分子を用いることができる。 以下、本発明を更に詳細に説明する。 本発明に用いられる還元剤は、次亜塩素酸ナト
リウムを還元して無害な塩に変える還元剤であつ
て、無機薬品又は有機薬品のいずれでもよい。 無機薬品として常に好ましいものは、例えば亜
硫酸ナトリウム、亜硝酸ナトリウム、チオ硫酸ナ
トリウム、亜硫酸水素ナトリウム等の亜硫酸塩や
チオ硫酸塩や亜硝酸塩である。又、塩化第一す
ず、硫酸ニツケル、硫酸銅等の重金属塩も利用す
ることができる。 有機薬品としては、例えば尿素や、その誘導体
であるジフエニル尿素、カルバミン酸アンモン、
チオ尿素、ジメチルチオ尿素などを利用すること
ができる。 また、ゲル化剤とは自重の100倍以上の吸水力
を有する高吸水性高分子で、水を注ぐと直ちに吸
水、膨潤して水全体をゲル化させる性質を有する
ものであり、例えばアクリル酸ビニルアルコール
共重合体などのPVA/ポリアクリル酸塩系やデ
ンプン/ポリアクリル酸塩系のもの、又はアクリ
ル酸ソーダ重合体など橋かけポリアクリル酸塩系
や橋かけPVA系や橋かけカルボキシメチルセル
ロース系のもの、又はポリエチレンオキサイド変
性物等が好ましく用いられる。これらのゲル化剤
は、1種単独で、又は2種を混合して用いられ
る。 また、ゲル安定剤とは、上記高吸水性高分子が
吸水して形成されたゲル化状態を安定させる機能
を有する多価金属塩であり、例えば水酸化カルシ
ウム、水酸化マグネシウム、炭酸マグネシウム、
炭酸カルシウム、塩化カルシウム、塩化マグネシ
ウム、水酸化アルミニウム等が特に有効に使用で
きる。これらのゲル安定剤も、1種のみでなく、
2種混合して用いることができる。 本発明の次亜塩素酸ナトリウムの処理剤は、こ
れら還元剤と高吸水性高分子からなるゲル化剤と
を主とする混合物である。又は、これら還元剤と
高吸水性高分子からなるゲル化剤と多価金属塩か
らなるゲル安定剤とを主とする混合物である。 該混合物の還元剤に対するゲル化剤の割合は10
〜80重量%の範囲にある。10%未満ではゲル化せ
ず、一方80%を越えた分は無駄になる。 還元剤に対するゲル安定剤の割合は10〜40重量
%の範囲にあることが必要である。10%未満では
ゲル安定化作用が得られない。一方40%を越える
と過剰となり、ゲルの凝集が急激に進み過ぎて還
元剤による次亜塩素酸ナトリウムの還元作用が妨
げられる。 本発明の次亜塩素酸ナトリウムの処理剤は、上
記還元剤とゲル化剤、又は還元剤とゲル化剤とゲ
ル安定剤よりなるものに対して、更にその他の助
剤を還元作用やゲル化作用を阻害しない限度にお
いて加えたものも含まれる。すなわち、ホワイト
カーボン、活性アルミナ、ゼオライト、ケイソウ
土、酸性白土等の粉粒状無機化合物を助剤として
添加すれば、高吸水性高分子の吸湿による劣化や
固結化を防止し、長期保存性を向上させるのに有
効である。これらの助剤は自由流動性付与剤とし
ても機能するから、例えば炭酸ガスによる加圧ガ
ス放射装置の容器内にこれらの助剤を添加した上
記次亜塩素酸ナトリウムの処理剤を充填しておけ
ば、漏洩事故に際して略全量を有効に放射して迅
速に対応することも可能である。 本発明の次亜塩素酸ナトリウムの処理剤を次亜
塩素酸ナトリウムの水溶液に散布すると、ゲル化
剤が急速に水を吸収して膨潤する。そして漏洩し
た次亜塩素酸ナトリウム水溶液の自由な流動を阻
止する。そのため危険な次亜塩素酸ナトリウム水
溶液の広い範囲への拡散を防止することができ
る。同時に又、このゲル化剤は、混合されている
還元剤粒子が次亜塩素酸ナトリウム水溶液の底に
沈澱するのを阻止し、ゲルの表面に浮かせて次亜
塩素酸ナトリウムとの反応を触媒的に促進させ
る。その結果、特に次亜塩素酸ナトリウム水溶液
を攪拌しなくても還元反応は急速に進行すること
ができる。 もつとも、ゲル安定剤がない場合には、次亜塩
素酸ナトリウムと還元剤が反応するとともに、ゲ
ル化剤の高分子のチエーンが切れて分解され、一
旦は高吸水性高分子の3次元構造内に抱き込んだ
水を放出してしまう。そのためゲル化の安定時間
は、例えば数分程度以内と極めて短時間に過ぎ
ず、再び流動化する。したがつて、ゲル安定剤を
混合しないものにあつては、漏洩した次亜塩素酸
ナトリウムを分解処理後に迅速に多量の水で薄め
て処置することが必要となる。 ゲル安定剤が混合されている場合は、該安定剤
中の多価イオンが高吸水性高分子と橋かけ構造と
なり、ゲルの安定性を増強させる。その結果、数
時間から数十時間以上ゲル化状態が維持されるこ
とになり、還元処理が終わつたものはスコツプで
の処理が可能で、その後の取り扱いがきわめて容
易である。 〔実施例〕 以下、本発明の実施例により説明する。 実施例 1〜4 還元剤とゲル化剤とを表−1に示す組成に混合
し、助剤として固結防止用のSiO2を添加したも
のを散布器に充填し、次亜塩素酸ナトリウムの水
溶液に噴射した。散布器のノズルは、放射距離1
〜2m程度の低速噴流で、処理剤が次亜塩素酸ナ
トリウムの液面に軟着陸できるように改造したも
のを使用した。 次亜塩素酸ナトリウムは工業用を使用し、有効
塩素12%以上のもの10を500×500×200Hの容
器に入れた。結果を表−1に示した。表中、A−
Naはアクリル酸ナトリウム重合体を、A/VA
はアクリル酸ビニルアルコール共重合体を表す。 なお、残留塩素はオルトトリジン法により定量
した。 比較例 1〜2 還元剤のみを用いて、実施例と同じく散布器に
より有効塩素12%の次亜塩素酸ナトリウム水溶液
に噴射した。 比較例1は単に散布しただけである。 比較例2は散布後、液を攪拌したものである。 上記の結果から、還元剤のみを単に散布しただ
けでは還元反応が進行せず、液の攪拌が必須条件
であつた。 これに対して、還元剤にゲル化剤とゲル安定剤
を混合した実施例のものは、単に散布しただけで
次亜塩素酸ナトリウムの還元反応が迅速に進行
し、処理後の液中に残留塩素は検出されなかつ
た。またゲル化は極めて迅速に行われ、処理後の
処置も非常に容易であつた。
[Industrial Application Field] The present invention relates to a treatment agent for leaked sodium hypochlorite. [Prior Art] Sodium hypochlorite is widely used in water treatment for water and sewage systems and as a bleaching agent for paper, pulp, and textiles. In particular, in recent years, disinfection of tap water, for which the use of chlorine agents is required by law, has
The switch from highly toxic chlorine agents to the safer sodium hypochlorite is progressing. However, as usage increases, accidents such as leakage also tend to increase. Sodium hypochlorite is safer and easier to handle than chlorine gas, but it is strongly alkaline and has an oxidizing effect, so there is a risk of damaging skin and clothing if it comes into contact with it. Therefore, in the event of a leak, it must be dealt with promptly. By the way, when dealing with leaked sodium hypochlorite, if you neutralize it by adding acid as it is, chlorine gas will be generated, which is dangerous. Therefore, for example, the Japan Water Works Association's ``Sodium Hypochlorite Handling Guidelines'' requires adding sodium sulfite in advance to decompose sodium hypochlorite, diluting it with a large amount of water, and confirming that no residual chlorine is detected. A method has been adopted to deal with this. This method converts sodium hypochlorite, NaClO, into safe salt through the reducing action of sodium sulfite, Na 2 SO 3 , as shown by the following reaction formula. NaClO+Na 2 SO 3 →NaCl+ Na 2 SO 4 [Problem to be solved by the invention] However, when adding sodium sulfite to a leaked sodium hypochlorite aqueous solution, simply spraying it on the liquid surface will not cause hypochlorous acid Sodium is not decomposed satisfactorily. This is the specific gravity of sodium sulfite (1.561 for heptahydrate salt, 1.561 for anhydrous salt)
2.633) is large, it quickly sinks into the aqueous solution of sodium hypochlorite, and its poor solubility prevents the above reaction from occurring. The present inventors have tried using ultrafine powdered sodium sulfite or porous granules of ultrafine powdered sodium sulfite in order to increase the reactivity. However, it has been found that simply spraying does not cause any reaction, and that it is absolutely necessary to thoroughly stir the aqueous sodium hypochlorite solution after spraying in order to cause a good reaction. If the amount of leaked sodium hypochlorite is small, it is easy to mix the two well by stirring. However, in the case of a large amount of leakage, it is difficult to mix by stirring, and especially in cases where the leakage covers a large area, it is necessary to mix the two evenly by stirring and completely render all the leaked sodium hypochlorite harmless. The problem was that it was almost impossible. Furthermore, in the case of a leak on a slope, unreacted sodium hypochlorite flows away before the reaction between the two is completed, resulting in a problem in that the area of the leak is expanded. Therefore, the present invention was developed by focusing on these conventional problems, and it quickly reacts and renders the solution harmless just by spraying it on an aqueous solution of sodium hypochlorite, and also slows down the flow of the solution. The object of the present invention is to provide a treatment agent for sodium hypochlorite that also inhibits the above-mentioned conventional problems. [Means for Solving the Problems] In order to achieve the above object, the first invention of the present invention mainly consists of a reducing agent for sodium hypochlorite and a gelling agent for an aqueous solution of sodium hypochlorite. The second invention of the present invention mainly consists of a reducing agent for sodium hypochlorite, a gelling agent for an aqueous solution of sodium hypochlorite, and a gel stabilizer comprising a polyvalent metal salt. The gelling agent is a highly water-absorbent gelling agent such as polyvinyl alcohol/polyacrylate-based, starch/polyacrylate-based, cross-linked polyacrylate-based, cross-linked polyvinyl alcohol-based, cross-linked carboxymethyl cellulose-based, or modified polyethylene oxide. Polymers can be used. The present invention will be explained in more detail below. The reducing agent used in the present invention is a reducing agent that reduces sodium hypochlorite to a harmless salt, and may be either an inorganic chemical or an organic chemical. Preferred inorganic chemicals are always sulfites, thiosulfates and nitrites, such as, for example, sodium sulfite, sodium nitrite, sodium thiosulfate, sodium bisulfite. Further, heavy metal salts such as stannous chloride, nickel sulfate, copper sulfate, etc. can also be used. Examples of organic chemicals include urea, its derivatives diphenyl urea, ammonium carbamate,
Thiourea, dimethylthiourea, etc. can be used. In addition, a gelling agent is a highly water-absorbing polymer that has a water-absorbing power of more than 100 times its own weight, and has the property of immediately absorbing water when poured with water, swelling, and gelling the entire water.For example, acrylic acid PVA/polyacrylate-based or starch/polyacrylate-based, such as vinyl alcohol copolymer, or cross-linked polyacrylate-based, cross-linked PVA, or cross-linked carboxymethyl cellulose, such as sodium acrylate polymer. or polyethylene oxide modified products are preferably used. These gelling agents may be used alone or in combination. In addition, the gel stabilizer is a polyvalent metal salt that has the function of stabilizing the gelled state formed by the superabsorbent polymer absorbing water, such as calcium hydroxide, magnesium hydroxide, magnesium carbonate, etc.
Calcium carbonate, calcium chloride, magnesium chloride, aluminum hydroxide, etc. can be used particularly effectively. These gel stabilizers are not only one type, but also
Two types can be mixed and used. The treatment agent for sodium hypochlorite of the present invention is a mixture mainly consisting of these reducing agents and a gelling agent made of a superabsorbent polymer. Alternatively, it is a mixture mainly consisting of these reducing agents, a gelling agent made of a super absorbent polymer, and a gel stabilizer made of a polyvalent metal salt. The ratio of gelling agent to reducing agent in the mixture is 10
~80% by weight. If it is less than 10%, it will not gel, while if it is more than 80%, it will be wasted. The ratio of gel stabilizer to reducing agent should be in the range 10-40% by weight. If it is less than 10%, no gel stabilizing effect can be obtained. On the other hand, if it exceeds 40%, it becomes excessive and gel aggregation progresses too rapidly, preventing the reducing action of the reducing agent from reducing sodium hypochlorite. The treatment agent for sodium hypochlorite of the present invention is composed of the above-mentioned reducing agent and gelling agent, or reducing agent, gelling agent, and gel stabilizer, and further includes other auxiliary agents for reducing action and gelling. This also includes substances added to the extent that they do not inhibit the action. In other words, if powdered inorganic compounds such as white carbon, activated alumina, zeolite, diatomaceous earth, and acid clay are added as auxiliaries, the deterioration and caking of superabsorbent polymers due to moisture absorption can be prevented, and long-term shelf life can be improved. It is effective for improving These auxiliary agents also function as free-flowing agents, so for example, the above-mentioned sodium hypochlorite treatment agent to which these auxiliary agents have been added can be filled in the container of a pressurized gas emission device using carbon dioxide gas. For example, in the event of a leakage accident, it is possible to effectively radiate almost the entire amount and respond quickly. When the sodium hypochlorite treatment agent of the present invention is sprayed on an aqueous solution of sodium hypochlorite, the gelling agent rapidly absorbs water and swells. And prevent the free flow of the leaked sodium hypochlorite aqueous solution. Therefore, it is possible to prevent the dangerous aqueous sodium hypochlorite solution from spreading over a wide area. At the same time, this gelling agent also prevents the mixed reducing agent particles from settling to the bottom of the aqueous sodium hypochlorite solution and floats them to the surface of the gel to catalyze the reaction with sodium hypochlorite. be promoted. As a result, the reduction reaction can proceed rapidly even without stirring the sodium hypochlorite aqueous solution. However, in the absence of a gel stabilizer, sodium hypochlorite and the reducing agent react with each other, and the polymer chain of the gelling agent is broken and decomposed, and once inside the three-dimensional structure of the superabsorbent polymer, It releases the water trapped in it. Therefore, the stabilization time for gelation is extremely short, for example within several minutes, and fluidization occurs again. Therefore, if a gel stabilizer is not mixed, it is necessary to quickly dilute leaked sodium hypochlorite with a large amount of water after decomposition treatment. When a gel stabilizer is mixed, multivalent ions in the stabilizer form a cross-linked structure with the superabsorbent polymer, thereby enhancing the stability of the gel. As a result, the gelled state is maintained for several hours to several tens of hours or more, and after the reduction treatment, it can be processed with a scoop, making subsequent handling extremely easy. [Examples] The present invention will be explained below using Examples. Examples 1 to 4 A reducing agent and a gelling agent were mixed in the composition shown in Table 1, SiO 2 was added as an auxiliary agent to prevent caking, and the mixture was filled into a sprayer, and the mixture was filled with sodium hypochlorite. Injected into aqueous solution. The sprayer nozzle has a radiation distance of 1
A modified jet with a low speed of about 2 meters was used so that the treatment agent could make a soft landing on the sodium hypochlorite liquid surface. Industrial grade sodium hypochlorite with 12% or more of available chlorine was used and placed in a 500 x 500 x 200H container. The results are shown in Table-1. In the table, A-
Na is sodium acrylate polymer, A/VA
represents an acrylic acid vinyl alcohol copolymer. Note that residual chlorine was determined by the orthotolidine method. Comparative Examples 1-2 Using only a reducing agent, it was sprayed into a sodium hypochlorite aqueous solution containing 12% available chlorine using a sprayer as in the example. Comparative Example 1 was simply sprayed. In Comparative Example 2, the liquid was stirred after spraying. From the above results, the reduction reaction did not proceed by simply spraying only the reducing agent, and stirring of the liquid was an essential condition. On the other hand, in the case of the example in which the reducing agent was mixed with a gelling agent and a gel stabilizer, the reduction reaction of sodium hypochlorite proceeded rapidly just by spraying it, and it remained in the solution after treatment. No chlorine was detected. In addition, gelation occurred extremely quickly, and post-treatment procedures were also extremely easy.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、次亜塩
素酸ナトリウムと還元剤との接触がゲル化剤で著
しく促進されるため、還元剤とゲル化剤を混合し
た本発明の処理剤を単に漏洩した次亜塩素酸ナト
リウムの水溶液に散布しさえすればよく、全く攪
拌する必要がない。更に、ゲル安定剤を混合した
ものは、被処理液が長時間にわたりゲル状態を維
持するから、漏洩した液の拡散が防止でき、且つ
処理後の運搬などの取扱いも極めて容易にでき
る。
As explained above, according to the present invention, the contact between sodium hypochlorite and the reducing agent is significantly promoted by the gelling agent. All you have to do is spray the leaked aqueous solution of sodium hypochlorite, and there is no need to stir it at all. Furthermore, when a gel stabilizer is mixed, the liquid to be treated maintains a gel state for a long period of time, so that leaked liquid can be prevented from spreading, and handling such as transportation after treatment can be made extremely easy.

Claims (1)

【特許請求の範囲】 1 次亜塩素酸ナトリウムの還元剤と、次亜塩素
酸ナトリウム水溶液のゲル化剤とより主としてな
ることを特徴とする次亜塩素酸ナトリウムの処理
剤。 2 次亜塩素酸ナトリウムの還元剤と、次亜塩素
酸ナトリウム水溶液のゲル化剤と、多価金属塩か
らなるゲル安定剤とより主としてなることを特徴
とする次亜塩素酸ナトリウムの処理剤。 3 ゲル化剤は、ポリビニルアルコール/ポリア
クリル酸塩系、デンプン/ポリアクリル酸塩系、
橋かけポリアクリル酸塩系、橋かけポリビニルア
ルコール系、橋かけカルボキシメチルセルロース
系またはポリエチレンオキサイド変性物などの高
吸水性高分子である請求項1又は2記載の次亜塩
素酸ナトリウムの処理剤。
[Scope of Claims] 1. A treatment agent for sodium hypochlorite, which comprises mainly a reducing agent for sodium hypochlorite and a gelling agent for an aqueous solution of sodium hypochlorite. 2. A treatment agent for sodium hypochlorite, which comprises mainly a reducing agent for sodium hypochlorite, a gelling agent for an aqueous solution of sodium hypochlorite, and a gel stabilizer consisting of a polyvalent metal salt. 3 The gelling agent is polyvinyl alcohol/polyacrylate type, starch/polyacrylate type,
The treatment agent for sodium hypochlorite according to claim 1 or 2, which is a highly water-absorbing polymer such as a cross-linked polyacrylate-based, cross-linked polyvinyl alcohol-based, cross-linked carboxymethyl cellulose-based, or modified polyethylene oxide.
JP18700389A 1989-07-19 1989-07-19 Processing agent for sodium hypochlorite Granted JPH0350101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18700389A JPH0350101A (en) 1989-07-19 1989-07-19 Processing agent for sodium hypochlorite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18700389A JPH0350101A (en) 1989-07-19 1989-07-19 Processing agent for sodium hypochlorite

Publications (2)

Publication Number Publication Date
JPH0350101A JPH0350101A (en) 1991-03-04
JPH0574521B2 true JPH0574521B2 (en) 1993-10-18

Family

ID=16198505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18700389A Granted JPH0350101A (en) 1989-07-19 1989-07-19 Processing agent for sodium hypochlorite

Country Status (1)

Country Link
JP (1) JPH0350101A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2127936C (en) * 1993-07-27 2006-09-12 Aram Garabedian Jr. Gelled hypochlorite-based cleaner

Also Published As

Publication number Publication date
JPH0350101A (en) 1991-03-04

Similar Documents

Publication Publication Date Title
US7514019B2 (en) Solvent-activated reactor including a gel layer
US6727219B2 (en) Single dosage oxidizing treatment
US20060128584A1 (en) Calcium hypochlorite compositions
JP6304239B2 (en) Tablets for preparing a solution of chlorine dioxide
US20110159115A1 (en) Massive Bodies Containing Free Halogen Source For Producing Highly Converted Solutions of Chlorine Dioxide
WO2007089473A2 (en) Thickened fluid composition comprising chlorine dioxide
US4383868A (en) Treatment of spillages of hazardous chemicals
CA2322111C (en) Stable, high available halogen 1,3,5-triazine-2,4,6-trione compositions having rapid dissolution rates
JP2756563B2 (en) Water additives for fire fighting activities
JPS60161307A (en) Composition for generating gaseous chlorine dioxide
JPH0574521B2 (en)
US6022480A (en) Methods and devices for treating water
JP2017043550A (en) Tablet for preparing solution of chlorine dioxide
CN113784787A (en) Neutralizing adsorbent for purifying leaked chemical substances, method for producing the same, and neutralizer filled with the same
ES2426365T3 (en) Wastewater treatment method with a multifunctional oxidizing composition
US6207074B1 (en) Quick release of chlorine from trichloroisocyanuric acid
US20060197056A1 (en) Solvent-activated reactor using colloidal gel
US20100163794A1 (en) Oxidizing composition including a gel layer
JPH0574522B2 (en)
US4902441A (en) Self moistening composition for deactivating toxic substances and method of use
JP2003321574A (en) Decomposer for water absorptive polymer and method for decomposing water absorptive polymer by using the decomposer
JP4356970B2 (en) Fast-soluble chlorinated isocyanuric acid moldings
GB2050388A (en) Compositions for treating chemical spillages
JPS60237001A (en) Formed composition for water treatment
US20090208547A1 (en) Oxidizing composition including a gel layer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 16

EXPY Cancellation because of completion of term