JPH057428B2 - - Google Patents

Info

Publication number
JPH057428B2
JPH057428B2 JP60148653A JP14865385A JPH057428B2 JP H057428 B2 JPH057428 B2 JP H057428B2 JP 60148653 A JP60148653 A JP 60148653A JP 14865385 A JP14865385 A JP 14865385A JP H057428 B2 JPH057428 B2 JP H057428B2
Authority
JP
Japan
Prior art keywords
resin
formula
carbon atoms
alkyl group
bhmax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60148653A
Other languages
Japanese (ja)
Other versions
JPS6210144A (en
Inventor
Satoru Nakatsuka
Naohisa Tomota
Fumihito Mori
Tadafumi Sakauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP14865385A priority Critical patent/JPS6210144A/en
Publication of JPS6210144A publication Critical patent/JPS6210144A/en
Publication of JPH057428B2 publication Critical patent/JPH057428B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は合成樹脂磁石用組成物に関し、更に詳
しくは従前の合成樹脂磁石に比し、著しく大なる
最大エネルギー積(以下、BHmaxと記す。)を
有する合成樹脂磁石用組成物に関する。 「従来技術と問題点」 磁石の磁気性能を表す尺度としてBHmaxがあ
るが、これまでに提案された合成樹脂磁石として
は実質的に高々BHmax≦1.7メガガウスエルステ
ツド(以下、MGOeと記す。)でしか得られてい
ない。 一般に、BHmaxは合成樹脂磁石中の磁性体粉
末含量に支配される。即ち、磁性体粉末含量が多
い程、高くなることが知られている。然し乍ら、
一般には磁性体粉末含量を増すと加熱成型時の流
動性が悪くなり、成型出来なくなるか或いは成型
出来たとしても磁場印加による配向度(残留磁束
密度を飽和磁束密度で除した値)は極端に低下し
てしまい、その結果としてBHmaxは逆に低下し
てしまう。そのため、これまでに得られている
BHmaxは精々1.7MGOe程度にとどまつているの
が実情である。従つて、実用上その用途は極めて
制限された狭い範囲となつている。 「問題点を解決するための手段」 本発明者らはかかる実情に鑑み鋭意研究の結
果、特定化合物の添加によりBHmaxは従来の
1.7MGOeをはるかに越え、2.1MGOeと驚異的に
大きなBHmaxが得られることを見出し、本発明
を完成させたものである。 即ち、本発明はマグネトプラムバイト型フエラ
イト粉末と、式 (式中、R1は炭素数4〜20のアルキル基又は
アルコキシ基、R2,R3,R4は炭素数1〜3のア
ルコキシ基を1〜3個含むアルコキシ基とアルキ
ル基の混合体) で表される物質と合成樹脂とを基本成分としてな
る合成樹脂磁石用組成物を、加熱溶融条件下で磁
場をかけつつ冷却固化させてなる合成樹脂磁石を
内容とするものである。 本発明で用いられるマグネトプラムバイト型フ
エライト粉末としては、MO・nFe2O3(MはBa,
Srで、nは4.5〜6.5)なる組成の粉末が好適に選
ばれる。本発明の組成物中の配合割合は、
BHmaxを1.8MGOe以上とする為には60体積パー
セント以上必要である。但し、94体積パーセント
を越えると溶融流動性が極端に低下し、成型し難
くなるか或いは成型できても配向度が低下する傾
向を示す。従つて、フエライト粉末の配合量は60
〜94体積パーセントが好適である。ちなみに本発
明の特定物質を添加しない場合には、フエライト
粉末の量が60体積パーセントを越えると流動性が
不良となり、成型出来ないか或いは成型出来たと
しても配向度の著しい低下が観察され、目標とす
るBHmax値は得られない。 本発明に用いられる特定物質は、式 で表されるものであり、ここでR1は炭素数8〜
20のアルキル基又はアルコキシ基、R2,R3,R4
は炭素数1〜3のアルコキシ基を1〜3個含むア
ルコキシ基とアルキル基の混合体であることを特
徴とし、これらは単独又は混合して用いられ、そ
の配合量は0.1〜2体積パーセントが適当である。
0.1体積パーセント未満では、混合体の溶融時の
流動性が極端に悪くなり十分な効果を発揮し得な
い。又、2体積パーセントを越えても効果の増大
は極めて僅かであり、コスト的に無意味である。 上記特定物質の添加方法は特に制限されない
が、どちらかといえば予めフエライト粉末に塗布
した方が、より少ない添加量で効果が期待出来
る。塗布方法は該物質をそのまま添加、或いは希
釈剤に希釈した後添加し、回転刃ミキサー、リボ
ンブレンダー等既に知られた混合方法が採用出来
る。希釈剤を使用した場合は、処理後減圧、加熱
等の適当な方法で希釈剤を除去しておく方が良
い。 本発明で用いられる合成樹脂としては、該に知
られた熱可塑性樹脂或いは熱硬化性樹脂が使用出
来る。熱可塑性樹脂としては、例えば塩化ビニル
樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ビ
ニルアルコール樹脂、ビニルアセタール樹脂、メ
チルメタアクリレート樹脂、ポリスチレン樹脂、
ポリアミド樹脂、ポリエチレン樹脂、ポリプロピ
レン樹脂、フツ素樹脂等が使用出来る。熱硬化性
樹脂としては、例えばフエノール樹脂、ポリエス
テル樹脂、エポキシ樹脂、シリコーン系樹脂、メ
ラミン樹脂、アルキツド樹脂、多官能ビニル共重
合体等の既に知られたものが使用出来る。これら
はそれぞれ単独で、又は組合わせて用いることが
できる。合成樹脂の配合量は、他の構成成分との
関連で40〜6体積パーセントが好適である。尚、
安定剤、抗酸化剤、滑剤等の添加助剤は適宜目的
に応じて添加出来る。 本発明組成物のは、上記組成物を加熱溶融下で
磁場をかけ、フエライト粒子を配向させ、然る後
冷却固化させることにより成型され、その成型形
態は射出成型、押出成型、プレス成型等既に知ら
れた公知の方法のいずれでも使用出来る。印加磁
場の強さは5000エルステツド以上必要であり、望
ましくは1万エルステツド、更に望ましくは2万
エルステツドである。配向度はBHmax≧1.8とす
る為には0.85以上必要である。 この様にして得られた高いBHmaxをもつ合成
樹脂磁石は、リング状、歯車状、円盤状各種異型
等目的に応じて任意の形状に作ることができる、
従来の1.7MGOe以下の合成樹磁石に比べた場合
の用途としてはモーター、発電機、マグネツトロ
ール、電子ブザー、スピーカー、ヘツドホン、有
極リレー、センサーマグネツト等があげられ、特
にこれらの分野での小型化、性能向上(例え
ばモーターではトルクの向上)への貢献が期待さ
れる。 本発明の特徴は、前記した特定物質を添加する
ことであり、これにより磁性体粉末含量を増大さ
せても加熱成型時の流動性を良好に保つことが出
来、従来以上のフエライト含率にしても良好に成
型出来る。又、加熱成型時の流動性が良好という
ことは、またフエライト粒子の回転を容易にさせ
ることであり、磁場を印加した時のフエライト粒
子の配向度を著しく向上させることが出来るとい
うことになり、フエライト含率を増加出来ること
と相乗して、BHmaxを驚異的に向上させること
が可能である。 実施例 1〜5 SrO・5.8Fe2O3を主体とするマグネトプラムバ
イト型フエライト粉末(平均粒径1.2μ)を第1表
の通りの配合割合で特定物質、合成樹脂、及び添
加剤とを混合し、32ミリ混練機で混練した後、冷
却固化したものを紛砕しペレツト化した、然る
後、得られたペレツトを第1表に記した配向度に
なる様に加熱溶融させた状態で第1表に記した磁
場を印加した後、冷却した。 その結果、第1表に記した通り、その最大エネ
ルギー積が1.8〜2.1MGOeと著しく高いものが得
られた。 比較例 1 本発明の特定物質を使用せず、第1表に示した
配合割合で、実施例と同じ操作を実施した。 その結果、得られた樹脂磁石の最大エネルギー
積は1.03MGOeと極めて低いものであつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a composition for a synthetic resin magnet, and more specifically, a maximum energy product (hereinafter referred to as BHmax) that is significantly larger than that of conventional synthetic resin magnets. ). "Prior Art and Problems" BHmax is a measure that expresses the magnetic performance of a magnet, but the synthetic resin magnets proposed so far have a BHmax of at most 1.7 megagauss Oersteds (hereinafter referred to as MGOe). ) can only be obtained. Generally, BHmax is controlled by the content of magnetic powder in the synthetic resin magnet. That is, it is known that the higher the magnetic powder content, the higher the magnetic powder content. However,
In general, when the magnetic powder content is increased, the fluidity during heat molding deteriorates, and molding becomes impossible, or even if molding is possible, the degree of orientation (the value obtained by dividing the residual magnetic flux density by the saturation magnetic flux density) due to the application of a magnetic field becomes extremely As a result, BHmax conversely decreases. Therefore, so far we have obtained
The reality is that BHmax remains at most around 1.7MGOe. Therefore, its practical use is extremely limited and narrow. ``Means for solving the problem'' In view of the above circumstances, the present inventors conducted intensive research and found that by adding a specific compound, BHmax was
The present invention was completed by discovering that an amazingly large BHmax of 2.1 MGOe, which far exceeds 1.7 MGOe, can be obtained. That is, the present invention provides a magnetoplumbite type ferrite powder and a formula (In the formula, R 1 is an alkyl group or an alkoxy group having 4 to 20 carbon atoms, and R 2 , R 3 , and R 4 are a mixture of an alkoxy group and an alkyl group containing 1 to 3 alkoxy groups having 1 to 3 carbon atoms. ) A synthetic resin magnet composition comprising the substance represented by the following formula and a synthetic resin as basic components is cooled and solidified under heating and melting conditions while applying a magnetic field. The magnetoplumbite type ferrite powder used in the present invention is MO・nFe 2 O 3 (M is Ba,
A powder having a composition of Sr (where n is 4.5 to 6.5) is preferably selected. The blending ratio in the composition of the present invention is
In order to make BHmax 1.8MGOe or more, 60 volume percent or more is required. However, if it exceeds 94 volume percent, the melt fluidity is extremely reduced, making it difficult to mold, or even if molding is possible, the degree of orientation tends to decrease. Therefore, the blending amount of ferrite powder is 60
~94 volume percent is preferred. By the way, if the specific substance of the present invention is not added, if the amount of ferrite powder exceeds 60 volume percent, the fluidity will be poor and it will not be possible to mold it, or even if it can be molded, a significant decrease in the degree of orientation will be observed, and the target will not be met. It is not possible to obtain the BHmax value. The specific substance used in the present invention has the formula where R 1 is a carbon number of 8 to
20 alkyl or alkoxy groups, R 2 , R 3 , R 4
is characterized by being a mixture of an alkoxy group and an alkyl group containing 1 to 3 alkoxy groups having 1 to 3 carbon atoms, and these are used alone or in a mixture, and the blending amount is 0.1 to 2% by volume. Appropriate.
If it is less than 0.1 volume percent, the fluidity of the mixture during melting will be extremely poor and sufficient effects will not be exhibited. Moreover, even if it exceeds 2 volume percent, the increase in effectiveness is extremely small and is meaningless in terms of cost. The method of adding the above-mentioned specific substance is not particularly limited, but if anything, the effect can be expected with a smaller amount of addition if it is applied to the ferrite powder in advance. As for the coating method, the substance may be added as it is, or it may be added after being diluted with a diluent, and known mixing methods such as a rotary blade mixer or a ribbon blender can be used. When a diluent is used, it is better to remove the diluent by an appropriate method such as reduced pressure or heating after treatment. As the synthetic resin used in the present invention, thermoplastic resins or thermosetting resins known in the art can be used. Examples of thermoplastic resins include vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, vinyl alcohol resin, vinyl acetal resin, methyl methacrylate resin, polystyrene resin,
Polyamide resin, polyethylene resin, polypropylene resin, fluororesin, etc. can be used. As the thermosetting resin, known ones such as phenol resin, polyester resin, epoxy resin, silicone resin, melamine resin, alkyd resin, polyfunctional vinyl copolymer, etc. can be used. These can be used alone or in combination. The amount of synthetic resin blended is preferably 40 to 6% by volume in relation to other constituent components. still,
Additives such as stabilizers, antioxidants, and lubricants can be added depending on the purpose. The composition of the present invention is molded by applying a magnetic field to the above composition under heating and melting to orient the ferrite particles, and then cooling and solidifying the composition. Any known method can be used. The strength of the applied magnetic field must be 5,000 Oersted or more, preferably 10,000 Oersted, and more preferably 20,000 Oersted. The orientation degree needs to be 0.85 or more in order to make BHmax≧1.8. The synthetic resin magnet with high BHmax obtained in this way can be made into any shape depending on the purpose, such as a ring shape, a gear shape, a disc shape, etc.
Compared to conventional synthetic tree magnets of 1.7 MGOe or less, applications include motors, generators, magnet rolls, electronic buzzers, speakers, headphones, polarized relays, sensor magnets, etc. It is expected that this will contribute to the miniaturization of motors and improved performance (for example, improved torque in motors). A feature of the present invention is the addition of the above-mentioned specific substance, which makes it possible to maintain good fluidity during hot molding even when the magnetic powder content is increased, and even with a higher ferrite content than before. It can also be molded well. In addition, good fluidity during hot molding also makes it easier to rotate the ferrite particles, which means that the degree of orientation of the ferrite particles when a magnetic field is applied can be significantly improved. Combined with the ability to increase the ferrite content, it is possible to dramatically improve BHmax. Examples 1 to 5 Magnetoplumbite-type ferrite powder (average particle size 1.2μ) mainly composed of SrO・5.8Fe 2 O 3 was mixed with specific substances, synthetic resins, and additives in the proportions shown in Table 1. After mixing and kneading with a 32 mm kneader, the mixture was cooled and solidified, then crushed and made into pellets.Then, the resulting pellets were heated and melted to have the degree of orientation shown in Table 1. After applying the magnetic field shown in Table 1, the sample was cooled. As a result, as shown in Table 1, a material with a significantly high maximum energy product of 1.8 to 2.1 MGOe was obtained. Comparative Example 1 The same operation as in Example was carried out without using the specific substance of the present invention, but with the blending ratio shown in Table 1. As a result, the maximum energy product of the obtained resin magnet was extremely low at 1.03 MGOe. 【table】

Claims (1)

【特許請求の範囲】 1 マグネトプラムバイト型フエライト粉末と、
(式中、R1は炭素数8〜20のアルキル基又は
アルコキシ基、R2,R3,R4は炭素数1〜3のア
ルコキシ基を1〜3個含むアルコキシ基とアルキ
ル基の混合体) で表される物質と合成樹脂とを基本成分としてな
る合成樹脂磁石用組成物。 2 基本成分がマグネトプラムバイト型フエライ
ト粉末60〜94体積パーセントと、式 (式中、R1は炭素数8〜20のアルキル基又は
アルコキシ基、R2,R3,R4は炭素数1〜3のア
ルコキシ基を1〜3個含むアルコキシ基とアルキ
ル基の混合体) 表される物質0.1〜2体積パーセントと合成樹脂
40〜6体積パーセントからなる特許請求の範囲第
1項記載の組成物。
[Claims] 1. Magnetoplumbite type ferrite powder;
formula (In the formula, R 1 is an alkyl group or an alkoxy group having 8 to 20 carbon atoms, and R 2 , R 3 , and R 4 are a mixture of an alkoxy group and an alkyl group containing 1 to 3 alkoxy groups having 1 to 3 carbon atoms. ) A composition for a synthetic resin magnet, the basic components of which are a substance represented by the following formula and a synthetic resin. 2 The basic component is magnetoplumbite type ferrite powder of 60 to 94 volume percent, and the formula (In the formula, R 1 is an alkyl group or an alkoxy group having 8 to 20 carbon atoms, and R 2 , R 3 , and R 4 are a mixture of an alkoxy group and an alkyl group containing 1 to 3 alkoxy groups having 1 to 3 carbon atoms. ) Represented substances 0.1-2% by volume and synthetic resins
A composition according to claim 1 comprising 40 to 6 volume percent.
JP14865385A 1985-07-06 1985-07-06 Composition for synthetic resin magnet and synthetic resin magnet composed of the same Granted JPS6210144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14865385A JPS6210144A (en) 1985-07-06 1985-07-06 Composition for synthetic resin magnet and synthetic resin magnet composed of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14865385A JPS6210144A (en) 1985-07-06 1985-07-06 Composition for synthetic resin magnet and synthetic resin magnet composed of the same

Publications (2)

Publication Number Publication Date
JPS6210144A JPS6210144A (en) 1987-01-19
JPH057428B2 true JPH057428B2 (en) 1993-01-28

Family

ID=15457615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14865385A Granted JPS6210144A (en) 1985-07-06 1985-07-06 Composition for synthetic resin magnet and synthetic resin magnet composed of the same

Country Status (1)

Country Link
JP (1) JPS6210144A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110204A (en) * 1980-02-06 1981-09-01 Joto Kagaku Kogyo Kk Manufacture of anisotropic plastic magnet
JPS59174636A (en) * 1983-03-23 1984-10-03 Shin Kobe Electric Mach Co Ltd Production of material for forming resin magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110204A (en) * 1980-02-06 1981-09-01 Joto Kagaku Kogyo Kk Manufacture of anisotropic plastic magnet
JPS59174636A (en) * 1983-03-23 1984-10-03 Shin Kobe Electric Mach Co Ltd Production of material for forming resin magnet

Also Published As

Publication number Publication date
JPS6210144A (en) 1987-01-19

Similar Documents

Publication Publication Date Title
EP1981044B1 (en) Ferrite particles for bonded magnet resin composition for bonded magnet and molded products using the same
JP4540076B2 (en) Bond magnet, compound, magnet roll, ferrite powder used therefor, and method for producing the same
EP3202717B1 (en) Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and molded article using same
EP2833377A1 (en) Ferrite particulate powder for bonded magnet, resin composition for bonded magnet, and moldings using same
US4702852A (en) Multipolarly magnetized magnet
JPH057428B2 (en)
JPH06295805A (en) Bond magnet forming material
JPS5923445B2 (en) permanent magnet
JPS59178707A (en) Composition substance for synthetic resin magnet and synthetic resin magnet composed thereof
JPH0158220B2 (en)
JPS59135705A (en) Resin magnet material
JPH03218606A (en) Composition for synthetic resin magnet
JP7453512B2 (en) Manufacturing method of bonded magnets and compounds
JPS6037604B2 (en) Permanent magnet manufacturing method
JP3107943B2 (en) Bonded magnet forming material
JP3208739B2 (en) Manufacturing method of ferrite particle powder material for bonded magnet
JPH0411702A (en) Manufacture of resin magnet
JPS60216524A (en) Manufacture of permanent magnet
JP2906079B2 (en) Ferrite particle powder material for bonded magnet and method for producing the same
JPS61208813A (en) Resin magnet
RU2170970C2 (en) Composite material for permanent magnets (alternatives)
JPH02180004A (en) Manufacture of anisotropic oxide magnetic powder an of plastic magnet
JPS61279106A (en) Resin-bonded type permanent magnet
JPS6012708A (en) High energy product ionomer magnet
JPH0822744B2 (en) Ferrite particle powder for bonded magnets