JPH057326B2 - - Google Patents

Info

Publication number
JPH057326B2
JPH057326B2 JP1007414A JP741489A JPH057326B2 JP H057326 B2 JPH057326 B2 JP H057326B2 JP 1007414 A JP1007414 A JP 1007414A JP 741489 A JP741489 A JP 741489A JP H057326 B2 JPH057326 B2 JP H057326B2
Authority
JP
Japan
Prior art keywords
silica
fine particles
gas
specific surface
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1007414A
Other languages
Japanese (ja)
Other versions
JPH02188421A (en
Inventor
Takaaki Shimizu
Toshihiro Ochika
Katsuya Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP741489A priority Critical patent/JPH02188421A/en
Publication of JPH02188421A publication Critical patent/JPH02188421A/en
Publication of JPH057326B2 publication Critical patent/JPH057326B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はシリカ球状微粒子、特には実質的に塩
素を含まず、けい素以外の金属不純物が1.0ppm
以下であり、比表面積が10〜30m2/gで粒度分布
が10〜500nmであることから、IC用エポキシ樹
脂封止剤の充填剤として有用とされるシリカ球状
微粒子およびその製造方法に関するものである。 [従来の技術と解決されるべき課題] シリカ微粒子の製造についてはシラン化合物を
火炎加水分解させる方法が知られており、これは
最も一般的には四塩化けい素(SiCl4)を加熱蒸
発させてこれを酸水素火炎中で加水分解してシリ
カ微粒子を得るという方法で行なわれているが、
この方法で得られるシリカには原料としての
SiCl4に起因してクロル分が抜け切れないという
問題点があり、このものはまたその粒径が非常に
微細で嵩密度が小さいために例えば半導体のプラ
スチツクパツケージ用エポキシ樹脂の充填剤とし
て用いた場合の充填特性がわるいという不利があ
る。 そのため、クロル分を含まないシラン化合物、
例えばアルコキシシランなどの有機シラン化合物
を用いる方法も公知とされており(特開昭61−
295209号公報参照)、これには金属または半金属
の有機化合物の液滴を燃焼分解すれば高純度の金
属または半金属の酸化物微粒子が得られるとされ
ているが、この方法で得られる微粒子は比表面積
が30〜40m2/g以上と大きく、粒径が細かくて充
填特性の改良されたものは得られていない。 [課題を解決すべき手段] 本発明はこのような不利を解決したシリカ球状
微粒子およびその製造方法に関するもので、これ
は実質的に塩素を含まず、けい素以外の金属不純
物含有量が1.0℃ppm以下であり、比表面積が10
〜30m2/gで粒度分布が10〜500nmである非晶
質シリカ球状微粒子、およびアルコキシシランを
火炎中で燃焼分解してシリカ球状微粒子を得るに
あたり、全発熱量から計算される単位当りの受容
熱量を1.1〜1.7Kcal/gとすることを特徴とする
該非晶質シリカ球状微粒子の製造方法に関するも
のである。 すなわち、本発明者らは実質的に塩素を含まな
い高純度で適切な比表面積、粒度分布をもつシリ
カ球状微粒子およびその製造方法について種々検
討した結果、事前に蒸留などで精製したアルコキ
シシランを火炎中で燃焼させてシリカを作れば塩
素を含まず、けい素以外の金属不純物含有量が
1.0ppm以下で粒度分布が10〜500nmであるシリ
カ球状微粒子を得ることができるし、この際全発
熱量から計算されるシリカの単位粒子当りの受容
熱量を1.1〜1.7Kcal/gの範囲内となるようにす
れば、このシリカ粒子の比表面積を10〜30m2/g
に制御することができることを見出して本発明を
完成させた。 以下にこれをさらに詳述する。 [作用] 本発明のシリカ球状微粒子はアルコキシシラン
の火炎中での燃焼分解により作られるものである
が、ここに使用されるアルコキシシランは蒸留な
どの操作で容易に高純化することができるものと
され、これは一般式R1 aSi(OR24-aで示され、こ
こにR1、R2はメチル基、エチル基、プロピル基、
ブチル基などのような炭素数1〜4の1価炭化水
素基、aは0〜4の整数である、メチルトリメト
キシシラン、テトラメトキシシラン、エチルトリ
メトキシシラン、n−プロピルトリエトキシシラ
ン、メチルトリブトキシシラン、ジエチルジプロ
ポキシシラン、トリメチルブトキシシランなどで
例示されるアルコキシシランあるいはこれらのオ
リゴマー、ポリマーとすればよい。 このアルコキシシランの火炎中での燃焼分解は
このアルコキシシランを蒸留などで精製したの
ち、加熱蒸発させてこれを窒素ガスなどの不活性
ガスに伴流させる気流伴送法、アルコキシシラン
を霧化させて火炎中に供給する方法で酸水素火炎
などの火炎中に導入し、この火炎中で燃焼分解さ
せればよいが、この燃焼のときには水素ガス、メ
タンガスなどのような可燃性ガスを助燃ガスとし
て添加することがよく、この助燃ガスとしては残
渣の残らないものであればいずれも使用すること
ができ、特に制限はない。 また、この燃焼時に添加する酸素の量は燃焼に
必要な理論量の0.7以下とすると、原料であるア
ルコキシシラン、助燃ガスの不完全燃焼が起きて
製品中にカーボン分が残留するようになるし、
1.5以上とすると燃焼に不要な酸素を送ることに
なり、経済的に不利となるので、これは0.7〜1.5
の範囲とすればよいが、これは0.7〜1.0とすれば
よく、この場合不足の酸素は回りの雰囲気中から
取り込まれるので原料、助燃ガスは完全燃焼す
る。なお、この場合、必要に応じて系内に窒素ガ
ス、アルゴンガスなどの不活性ガスを混合、導入
することは任意とされる。 この蒸留精製したアルコキシシランを上記した
火炎中で燃焼分解させ、発生したシリカをバツク
フイルター、サイクロンなど公知の方法で捕集す
れば、塩素を含まず、けい素以外の金属不純物含
有量が1.0ppm以下であり、粒度分布が10〜500n
mであるシリカ球状微粒子を容易に得ることがで
きる。 しかし、このようにして得られたシリカ球状微
粒子の比表面積は通常50m2/g以上となり、プラ
スチツクパツケージ用エポキシ樹脂の充填剤とし
ては充填特性がわるくなるので、このものは比表
面積が10〜30m2/gのものとする必要があるが、
この比表面積の制御は原料ガスとしてのアルコキ
シシラン、酸素ガス、助燃ガス、不活性ガスの量
比を以下のように制御すればよい。 これらのガス量の制御はアルコキシシランの燃
焼により発生する熱量をQ1、助燃ガスの燃焼に
より発生する熱量をQ2とすると全発熱量はQ3
Q1+Q2として表わされるし、燃焼終了後に系内
に残留するシリカ微粒子、H2O、CO2、残留O2
不活性ガスの量をそれぞれN1、N2、N3、N4
N5(モル/時)とし、これらの比熱をそれぞれ
C1、C2、C3、C4、C5(Kcal/モル・℃)とする
と、全発熱量Q3でこれらの物質が加熱されたと
きには次式 Q3=(N1C1+N2C2+N3C3+N4C4+N5C5
)(T−25)……(1) が成立する。そして、このときの単位時間当りの
シリカ微粒子生成量をP(g/時)とすると、こ
の単位粒子当りがT℃まで加熱されるときに受け
る熱量q(Kcal/g)は次式 q=N1C1(T−25)/P ……(2) で示されることになるが、生成するシリカ球状微
粒子の比表面積がこのq値の増加に伴なつて減少
することが発明者らの実験により見出され、この
シリカ球状微粒子の比表面積を10〜30m2/gとす
るためにはこのq値を1.1〜1.7Kcal/gとする必
要のあることが確認されたので、ここに使用され
るアルコキシシラン、酸素ガス、助燃ガス、不活
性ガスの量比はこのq値が1.1〜1.7の範囲内にな
るように制御する必要があり、したがつてこれは
アルコキシシラン100g/時としたとき酸素量を
0.1〜0.3Nm3/時、水素ガス量を0.01〜0.3Nm3
時、窒素ガス量を0.01〜0.4Nm3/時とすればよ
く、これによれば比表面積が10〜30m2/gのシリ
カ球状微粒子を所望の比表面積で得ることができ
る。 本発明のシリカ球状微粒子は上記したことから
塩素を含まず、けい素以外の金属不純物含有量が
1.0ppm以下であり、比表面積が10〜30m2/gで
粒度分布が10〜500nmであるものとされるが、
このものは例えばIC用プラスチツクパツケージ
用エポキシ樹脂の充填剤として添加したときに流
動特性、バリ特性のすぐれたものを与えるという
有用性をもつものとされる。 [実施例] つぎに本発明の実施例、比較例をあげるが、例
中におけるシリカの比表面積は島津製作所製のマ
イクロメテリツクス2200で測定したBET比表面
積値を示したものである。 実施例 1〜3 蒸留精製したメチルトリメトキシシランを加熱
し、ここに窒素ガスをバブリングし、メチルトリ
メトキシシランを窒素ガスで気流伴流して酸水素
火炎バーナーに導入し、この酸水素火炎中で燃焼
分解させ、このときのメチルトリメトキシシラ
ン、酸素ガス、水素ガス、窒素ガスの量を後記す
る第1表に示した量とし、生成したシリカ球状微
粒子をバツグフイルタで捕集した。 このときのシリカ球状微粒子の粒子受容熱量は
第1表に示したとおりの値であり、ここに生成し
たシリカ球状微粒子の比表面積は第1表に併記し
たものであつた。また、ここに得られたシリカ球
状微粒子の塩素分をイオンクロマトグラフイーで
測定すると共にここに含有されているけい素以外
の金属不純物量を偏光ゼーマンフレームレス原子
吸光により測定し、さらにここに含有されている
TiをICP発光分光光度計で、またUを蛍光分光光
度計で測定したところ、次表に示したとおりの結
果が得られた。
[Industrial Application Field] The present invention provides silica spherical fine particles, particularly those containing substantially no chlorine and containing 1.0 ppm of metal impurities other than silicon.
This article relates to silica spherical fine particles that are useful as fillers for epoxy resin encapsulants for ICs and their manufacturing method because they have a specific surface area of 10 to 30 m 2 /g and a particle size distribution of 10 to 500 nm. be. [Prior art and problems to be solved] Regarding the production of silica fine particles, a method of flame hydrolysis of a silane compound is known, and most commonly, this method involves heating and vaporizing silicon tetrachloride (SiCl 4 ). This is done by hydrolyzing this in an oxyhydrogen flame to obtain silica particles.
The silica obtained by this method can be used as a raw material.
There is a problem that the chlorine content cannot be removed due to SiCl 4 , and because the particle size of SiCl 4 is very fine and the bulk density is low, it is used as a filler in epoxy resin for semiconductor plastic packages, for example. The disadvantage is that the filling properties of the case are poor. Therefore, silane compounds that do not contain chlorine,
For example, a method using an organic silane compound such as alkoxysilane is also known (Japanese Patent Application Laid-Open No. 1983-1989-1).
(Refer to Publication No. 295209), which states that high purity metal or metalloid oxide fine particles can be obtained by burning and decomposing droplets of metal or metalloid organic compounds; The specific surface area is as large as 30 to 40 m 2 /g or more, and the particle size is small, so that no product with improved filling properties has been obtained. [Means for Solving the Problems] The present invention relates to silica spherical fine particles that solve these disadvantages and a method for producing the same, which substantially do not contain chlorine and have a metal impurity content other than silicon of 1.0°C. ppm or less, and the specific surface area is 10
When obtaining silica spherical particles by burning and decomposing amorphous silica spherical particles with a particle size distribution of 10 to 500 nm in ~30 m 2 /g and alkoxysilane in a flame, the acceptance per unit calculated from the total calorific value The present invention relates to a method for producing amorphous silica spherical fine particles, characterized in that the amount of heat is 1.1 to 1.7 Kcal/g. That is, the present inventors have conducted various studies on silica spherical fine particles of high purity, substantially free of chlorine, and having an appropriate specific surface area and particle size distribution, as well as methods for producing the same. If silica is made by burning it inside, it does not contain chlorine and contains no metal impurities other than silicon.
Silica spherical fine particles with a particle size distribution of 10 to 500 nm can be obtained at 1.0 ppm or less, and in this case, the amount of heat received per unit particle of silica calculated from the total calorific value is within the range of 1.1 to 1.7 Kcal/g. If this is done, the specific surface area of the silica particles will be 10 to 30 m 2 /g.
The present invention was completed by discovering that it is possible to control the This will be explained in further detail below. [Function] The silica spherical fine particles of the present invention are produced by combustion decomposition of alkoxysilane in a flame, but the alkoxysilane used here can be easily purified to a high degree by operations such as distillation. This is represented by the general formula R 1 a Si(OR 2 ) 4-a , where R 1 and R 2 are methyl, ethyl, propyl,
A monovalent hydrocarbon group having 1 to 4 carbon atoms such as butyl group, a being an integer of 0 to 4, methyltrimethoxysilane, tetramethoxysilane, ethyltrimethoxysilane, n-propyltriethoxysilane, methyl Alkoxysilanes such as tributoxysilane, diethyldipropoxysilane, and trimethylbutoxysilane, or oligomers and polymers thereof may be used. The combustion decomposition of this alkoxysilane in a flame is carried out by purifying the alkoxysilane by distillation, etc., and then heating and vaporizing it, followed by an inert gas such as nitrogen gas. It is best to introduce it into a flame such as an oxyhydrogen flame by supplying it into the flame and combust and decompose it in this flame, but during this combustion, combustible gases such as hydrogen gas and methane gas are used as auxiliary gases. Any gas that leaves no residue can be used as this auxiliary combustion gas, and there are no particular restrictions. Additionally, if the amount of oxygen added during this combustion is less than 0.7 of the theoretical amount required for combustion, incomplete combustion of the raw material alkoxysilane and combustion assisting gas will occur, resulting in carbon content remaining in the product. ,
If it is more than 1.5, unnecessary oxygen will be sent for combustion, which is economically disadvantageous, so this value should be 0.7 to 1.5.
This may be in the range of 0.7 to 1.0, and in this case, the insufficient oxygen is taken in from the surrounding atmosphere, so the raw material and auxiliary gas are completely combusted. In this case, it is optional to mix and introduce an inert gas such as nitrogen gas or argon gas into the system as necessary. If this distilled and purified alkoxysilane is burned and decomposed in the above-mentioned flame and the generated silica is collected by a known method such as a back filter or cyclone, it will contain no chlorine and the content of metal impurities other than silicon will be 1.0 ppm. and the particle size distribution is 10~500n
It is possible to easily obtain silica spherical fine particles of m. However, the specific surface area of the silica spherical fine particles obtained in this way is usually 50 m 2 /g or more, and the filling properties are poor as a filler for epoxy resin for plastic packaging. 2 /g, but
This specific surface area may be controlled by controlling the ratio of the alkoxysilane, oxygen gas, combustion assisting gas, and inert gas as raw material gases as follows. To control the amount of these gases, let Q 1 be the amount of heat generated by combustion of alkoxysilane and Q 2 be the amount of heat generated by combustion of auxiliary gas, then the total calorific value is Q 3 =
It is expressed as Q 1 + Q 2 , and the silica particles remaining in the system after combustion, H 2 O, CO 2 , residual O 2 ,
The amount of inert gas is N 1 , N 2 , N 3 , N 4 ,
N 5 (mol/hour), and each of these specific heats is
Assuming C 1 , C 2 , C 3 , C 4 , C 5 (Kcal/mol・℃), when these substances are heated with a total calorific value Q 3 , the following formula Q 3 = (N 1 C 1 + N 2 C 2 +N 3 C 3 +N 4 C 4 +N 5 C 5
)(T-25)...(1) holds true. If the amount of silica fine particles produced per unit time at this time is P (g/hour), the amount of heat q (Kcal/g) received when each unit particle is heated to T°C is calculated by the following formula: q=N 1 C 1 (T-25)/P ... (2) The inventors' experiments showed that the specific surface area of the silica spherical particles that are produced decreases as the q value increases. It was confirmed that in order to make the specific surface area of the silica spherical fine particles 10 to 30 m 2 /g, the q value should be 1.1 to 1.7 Kcal/g, so it was used here. The quantity ratio of alkoxysilane, oxygen gas, combustion assisting gas, and inert gas must be controlled so that the q value is within the range of 1.1 to 1.7. oxygen amount
0.1~ 0.3Nm3 /hour, hydrogen gas amount 0.01~ 0.3Nm3 /hour
At this time, the amount of nitrogen gas may be set to 0.01 to 0.4 Nm 3 /hour, whereby silica spherical fine particles having a specific surface area of 10 to 30 m 2 /g can be obtained with a desired specific surface area. As described above, the silica spherical fine particles of the present invention do not contain chlorine and have a low content of metal impurities other than silicon.
1.0ppm or less, the specific surface area is 10-30m 2 /g, and the particle size distribution is 10-500nm,
This material is said to be useful in providing excellent fluidity and flash characteristics when added as a filler to epoxy resins for IC plastic packages, for example. [Example] Next, Examples and Comparative Examples of the present invention will be given, and the specific surface area of silica in the examples shows the BET specific surface area value measured with Micrometryx 2200 manufactured by Shimadzu Corporation. Examples 1 to 3 Methyltrimethoxysilane purified by distillation is heated, nitrogen gas is bubbled therein, methyltrimethoxysilane is entrained with nitrogen gas, introduced into an oxyhydrogen flame burner, and heated in the oxyhydrogen flame. The mixture was decomposed by combustion, and the amounts of methyltrimethoxysilane, oxygen gas, hydrogen gas, and nitrogen gas at this time were set as shown in Table 1 below, and the generated spherical silica particles were collected with a bag filter. The amount of heat received by the silica spherical fine particles at this time was as shown in Table 1, and the specific surface area of the silica spherical fine particles produced here was also listed in Table 1. In addition, the chlorine content of the obtained silica spherical fine particles was measured by ion chromatography, and the amount of metal impurities other than silicon contained therein was measured by polarized Zeeman flameless atomic absorption. has been
When Ti was measured using an ICP emission spectrophotometer and U was measured using a fluorescence spectrophotometer, the results shown in the following table were obtained.

【表】 また、ここに得られたシリカ球状微粒子を透過
型電子顕微鏡を用いて30万倍に拡大して撮影した
ところ、第1図に示したとおりの結果が得られ、
このものは20〜250nmの粒度分布をもつ球状体
であることが確認された。 実施例 4 原料ガスとしてのメチルトリメトキシシランを
テトラメトキシシランとし、このテトラメトキシ
シラン、酸素ガス、水素ガス、窒素ガスの量を後
記する第1表に示した量としたほかは実施例1と
同様に処理してシリカ球状微粒子を作り、このと
きの粒子受容熱量、得られたシリカの比表面積を
測定したところ、第1表に併記したとおりの結果
が得られた。 実施例 5 蒸留精製したメチルトリメトキシシランを窒素
ガスを用いて霧化し、これを酸水素火炎バーナー
に導入し、このときのメチルトリメトキシシラ
ン、酸素ガス、水素ガス、窒素ガスの量を後記す
る第1表に示した量としたほかは実施例1と同様
に処理してシリカ球状微粒子を作り、このときの
粒子受容熱量および得られたシリカの比表面積を
測定したところ、第1表に併記したとおりの結果
が得られた。 比較例 原料ガスとしてのメチルトリメトキシシラン、
酸素ガス、水素ガス、窒素ガスの量を後記する第
1表に示した量としたほかは実施例1と同様に処
理してシリカ球状微粒子を作り、このときの粒子
受容熱量および得られたシリカの比表面積を測定
したところ、つぎの第1表に示したとおりの結果
が得られた。
[Table] In addition, when the obtained silica spherical fine particles were photographed using a transmission electron microscope at a magnification of 300,000 times, the results shown in Figure 1 were obtained.
This material was confirmed to be a spherical body with a particle size distribution of 20 to 250 nm. Example 4 Same as Example 1 except that methyltrimethoxysilane as the raw material gas was replaced with tetramethoxysilane, and the amounts of this tetramethoxysilane, oxygen gas, hydrogen gas, and nitrogen gas were set as shown in Table 1 below. Spherical fine particles of silica were prepared in the same manner, and the amount of heat received by the particles and the specific surface area of the obtained silica were measured, and the results shown in Table 1 were obtained. Example 5 Methyltrimethoxysilane purified by distillation is atomized using nitrogen gas and introduced into an oxyhydrogen flame burner, and the amounts of methyltrimethoxysilane, oxygen gas, hydrogen gas, and nitrogen gas at this time are described later. Silica spherical fine particles were prepared in the same manner as in Example 1 except for the amounts shown in Table 1, and the amount of heat received by the particles and the specific surface area of the obtained silica were measured, and the results are also listed in Table 1. The results were as expected. Comparative example Methyltrimethoxysilane as raw material gas,
Silica spherical fine particles were prepared in the same manner as in Example 1, except that the amounts of oxygen gas, hydrogen gas, and nitrogen gas were changed to the amounts shown in Table 1 below. When the specific surface area was measured, the results shown in Table 1 below were obtained.

【表】 [発明の効果] 本発明によるシリカ球状微粒子の製造はアルコ
キシシランを火炎中で燃焼分解させる際に全発熱
量から計算される単位当りの受容熱量を1.1〜
1.7Kcal/gとして得られるシリカの比表面積を
10〜30m2/gに制御するものであり、これによれ
ば塩素を含まず、けい素以外の金属不純物含有量
が1.0ppm以下であり、比表面積が10〜30m2/g
で粒度分布が10〜500nmであるシリカ球状微粒
子が得られるので、プラスチツクパツケージ用エ
ポキシ樹脂の充填剤などとして有用とされる充填
特性のすぐれたシリカを容易に、かつ安価に得る
ことができるという有利性が与えられる。
[Table] [Effects of the Invention] The production of silica spherical fine particles according to the present invention reduces the amount of heat received per unit calculated from the total calorific value when burning and decomposing alkoxysilane in a flame from 1.1 to
The specific surface area of silica obtained as 1.7Kcal/g is
According to this, it does not contain chlorine, the content of metal impurities other than silicon is 1.0 ppm or less, and the specific surface area is 10 to 30 m 2 / g.
Since spherical fine particles of silica with a particle size distribution of 10 to 500 nm can be obtained, silica with excellent filling properties, which is useful as a filler for epoxy resins for plastic packaging, can be easily and inexpensively obtained. gender is given.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で得られたシリカ球状微粒子
の結晶構造を示した電子顕微鏡写真である。
FIG. 1 is an electron micrograph showing the crystal structure of the silica spherical fine particles obtained in Example 1.

Claims (1)

【特許請求の範囲】 1 実質的に塩素を含まず、けい素以外の金属不
純物含有量が1.0ppm以下であり、比表面積が10
〜30m2/gで粒度分布が10〜500nmである非晶
質シリカ球状微粒子。 2 アルコキシシランを火炎中で燃焼分解してシ
リカ球状微粒子を得るにあたり、全発熱量から計
算される単位当りの受容熱量を1.1〜1.7Kcal/g
とすることを特徴とする請求項1に記載の非晶質
シリカ球状微粒子の製造方法。
[Claims] 1. Substantially chlorine-free, the content of metal impurities other than silicon is 1.0 ppm or less, and the specific surface area is 10
Amorphous silica spherical fine particles having an area of ~30 m 2 /g and a particle size distribution of 10 to 500 nm. 2 When burning and decomposing alkoxysilane in a flame to obtain silica spherical particles, the received heat per unit calculated from the total calorific value is 1.1 to 1.7 Kcal/g.
The method for producing spherical amorphous silica particles according to claim 1.
JP741489A 1989-01-13 1989-01-13 Spherical fine particle of silica and production thereof Granted JPH02188421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP741489A JPH02188421A (en) 1989-01-13 1989-01-13 Spherical fine particle of silica and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP741489A JPH02188421A (en) 1989-01-13 1989-01-13 Spherical fine particle of silica and production thereof

Publications (2)

Publication Number Publication Date
JPH02188421A JPH02188421A (en) 1990-07-24
JPH057326B2 true JPH057326B2 (en) 1993-01-28

Family

ID=11665208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP741489A Granted JPH02188421A (en) 1989-01-13 1989-01-13 Spherical fine particle of silica and production thereof

Country Status (1)

Country Link
JP (1) JPH02188421A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013014B2 (en) * 1999-03-05 2007-11-28 信越化学工業株式会社 Electrostatic image developer
JP3930236B2 (en) * 1999-10-27 2007-06-13 信越化学工業株式会社 Toner external additive for electrostatic image development
DE60133416T2 (en) * 2000-06-20 2009-04-02 Nippon Aerosil Co., Ltd. AMORPHIC FINE PARTICLES FROM SILICON DIOXIDE, PROCESS FOR THEIR PREPARATION AND USE.
US7083770B2 (en) 2000-06-20 2006-08-01 Nippon Aerosil Co., Ltd. Amorphous, fine silica particles, and method for their production and their use
JP2002275356A (en) * 2001-03-22 2002-09-25 Denki Kagaku Kogyo Kk Filler for epoxy resin, and epoxy resin composition
JP4163919B2 (en) * 2001-09-25 2008-10-08 三菱化学株式会社 Silica and method for producing silica
JP5230051B2 (en) * 2002-09-11 2013-07-10 株式会社トクヤマ Fine fused silica particles
JP4723252B2 (en) * 2002-11-26 2011-07-13 キャボット コーポレイション Fumed metal oxide particles and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272514A (en) * 1985-09-25 1987-04-03 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Spherical sio2 particle
JPS6385012A (en) * 1986-09-29 1988-04-15 Chisso Corp Production of siliceous spherical particle
JPS63206309A (en) * 1987-02-19 1988-08-25 Hitachi Metals Ltd Production of high-purity spherical fine silicon oxide powder
JPS63291807A (en) * 1987-05-22 1988-11-29 Tonen Sekiyukagaku Kk Production of high-purity spherical silica

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272514A (en) * 1985-09-25 1987-04-03 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Spherical sio2 particle
JPS6385012A (en) * 1986-09-29 1988-04-15 Chisso Corp Production of siliceous spherical particle
JPS63206309A (en) * 1987-02-19 1988-08-25 Hitachi Metals Ltd Production of high-purity spherical fine silicon oxide powder
JPS63291807A (en) * 1987-05-22 1988-11-29 Tonen Sekiyukagaku Kk Production of high-purity spherical silica

Also Published As

Publication number Publication date
JPH02188421A (en) 1990-07-24

Similar Documents

Publication Publication Date Title
US6551567B2 (en) Spherical silica particles and method of production
KR101146863B1 (en) Silicon-titanium mixed oxide powder produced by flame hydrolysis
JP3233298B2 (en) Method for making non-porous objects of high purity fused silica glass
CN101193820B (en) Method for production of silicon from silyl halides
KR100232438B1 (en) Pyrogenic silica, process for the production thereof and use
US6387302B1 (en) Method of producing spherical silica powder
KR101222303B1 (en) Process for recycling high-boiling compounds within an integrated chlorosilane system
EP0529190A1 (en) Method of making titania-doped fused silica
CN1153795A (en) Method for purifying polyalkylsiloxanes and resulting products
EP0657383B1 (en) Process for preparing silicon carbide powder from vaporized polysiloxanes
JPH057326B2 (en)
JP2002114510A (en) Method for producing fused silica particle
CN102123944A (en) Production of silicon by reacting silicon oxide and silicon carbide, optionally in the presence of a second carbon source
JPH06340423A (en) Production of titanium oxide
JPH02153816A (en) Silica-titania spherical fine particle and production thereof
JP4511941B2 (en) Silica produced by pyrolysis
US6322765B1 (en) Process for preparing silicon dioxide
JP2009504367A (en) photocatalyst
JPH0420853B2 (en)
JPH0989224A (en) Burner for manufacturing fine spherical silica particle
CN109715557A (en) Method for producing high dispersive silica
AU697313B2 (en) Conductive, powdered fluorine-doped titanium dioxide and method of preparation
CN1115301A (en) Organic silane laser gas phase synthesis of silica-base micro powder
Xu et al. Synthesis of Ultrafine β-SiC Particles from SiOx (x= 0, 1, 2) Powders and C2H2
JPH0696446B2 (en) Method for producing ultrafine silica

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 16

EXPY Cancellation because of completion of term