JPH0572988B2 - - Google Patents

Info

Publication number
JPH0572988B2
JPH0572988B2 JP60157008A JP15700885A JPH0572988B2 JP H0572988 B2 JPH0572988 B2 JP H0572988B2 JP 60157008 A JP60157008 A JP 60157008A JP 15700885 A JP15700885 A JP 15700885A JP H0572988 B2 JPH0572988 B2 JP H0572988B2
Authority
JP
Japan
Prior art keywords
signal
voltage
partial discharge
high frequency
metal casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60157008A
Other languages
Japanese (ja)
Other versions
JPS6219774A (en
Inventor
Tetsuya Okano
Shigeru Kitani
Masakichi Koya
Noboru Kurosawa
Takashi Nonoichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
SWCC Corp
Original Assignee
Toshiba Corp
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Showa Electric Wire and Cable Co filed Critical Toshiba Corp
Priority to JP60157008A priority Critical patent/JPS6219774A/en
Publication of JPS6219774A publication Critical patent/JPS6219774A/en
Publication of JPH0572988B2 publication Critical patent/JPH0572988B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、密閉型ガス開閉器や変圧器等の高電
圧機器にて発生した部分放電を検出する装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a device for detecting partial discharge generated in high voltage equipment such as a closed gas switch or a transformer.

(発明の技術的背景) 第5図には密閉型ガス開閉器が示され、この開
閉器は、高圧部分しや閉用の金属ケーシング1で
覆われており、該ケーシング1は、絶縁スペーサ
2を介して長手方向に電気的に分割されている。
その中心には、図示しない送電線路に電気的に接
続されている中心導体3が、スペーサ2によつて
支持されている。ケーシング1は図示しない接地
線によつて接地されている。
(Technical Background of the Invention) FIG. 5 shows a closed type gas switch, which is covered with a metal casing 1 for closing the high-pressure part, and the casing 1 is covered with an insulating spacer 2. electrically divided longitudinally through the
At its center, a center conductor 3 electrically connected to a power transmission line (not shown) is supported by a spacer 2 . The casing 1 is grounded by a grounding wire (not shown).

スペーサ2には検電用の電極4が設けられ、こ
の電極4とケーシング1との間には浮遊容量C2
が存在し、この浮遊容量C2はコンデンサ5とし
て示されている。コンデンサ5の両端子には信号
引込線6を介して高周波検出器7が接続されてい
る。
The spacer 2 is provided with an electrode 4 for voltage detection, and a stray capacitance C 2 exists between the electrode 4 and the casing 1.
exists, and this stray capacitance C 2 is shown as capacitor 5. A high frequency detector 7 is connected to both terminals of the capacitor 5 via a signal lead-in line 6.

中心導体3に高電圧が印加されると、この中心
導体3と電極4との間に存在する浮遊容量C1
コンデンサ5とが分圧器を構成し、コンデンサ5
の両端に分担電圧を発生する。そして、この分担
電圧には、開閉器内で部分放電が発生すると該放
電に起因して生じる高周波成分(信号)が重畳さ
れるので、この高周波信号は高周波検出器7にて
分担電圧から分離、検出され、かつ増幅器8にて
増幅された後電気信号の形態で伝送路を介して監
視部(図示せず)に伝送される。従つて、この高
周波信号により開閉器内で部分放電が発生したこ
とを検出することができる。
When a high voltage is applied to the center conductor 3, the stray capacitance C1 existing between the center conductor 3 and the electrode 4 and the capacitor 5 constitute a voltage divider, and the capacitor 5
Generates a shared voltage across both ends. Then, when a partial discharge occurs in the switch, a high frequency component (signal) caused by the discharge is superimposed on this shared voltage, so this high frequency signal is separated from the shared voltage by the high frequency detector 7. After being detected and amplified by the amplifier 8, it is transmitted in the form of an electrical signal to a monitoring unit (not shown) via a transmission path. Therefore, the occurrence of partial discharge within the switch can be detected using this high frequency signal.

(背景技術の問題点) しかし、このように高周波信号を電気信号とし
てアナログ的に、即ち、そのままの波形で伝送す
ると、外来ノイズの影響で波形が歪み又は信号線
にノイズが侵入してしまうことから、部分放電の
発生及び絶縁スペーサの劣化状態を正確に判定す
ることができない。
(Problems with the Background Art) However, when high-frequency signals are transmitted as electrical signals in an analog manner, that is, in the same waveform, the waveform may be distorted due to the influence of external noise or noise may enter the signal line. Therefore, it is not possible to accurately determine the occurrence of partial discharge and the state of deterioration of the insulating spacer.

ところで、開閉器には、その設置作業や点検作
業等によりボルト、釘等の異物、中心導体3の接
触不良、金属ケーシング1内面の突起、絶縁スペ
ーサ2の劣化等の障害が存在してしまうことがあ
る。そして、開閉器内に障害が存在すると、部分
放電が発生し易い。そこで、従来は、部分放電の
発生態様から開閉器内の障害の有無及び種類を判
定するようにしていた。即ち、例えば、金属ケー
シング1内面に突起が存在する場合には、課電電
圧のピーク時に部分放電が生じるため、第6図A
に示すように、高周波信号は課電電圧Viにピー
ク電圧位置で重畳される。これに対して、中心導
体3の接触不良の場合には課電電圧の立上り時及
び立下り時に部分放電が生じるため、第6図Bに
示すように、高周波信号は課電電圧Viに立上り
時及び立下り時に重畳される。そこで、従来は高
周波信号を課電電圧の位相に対応させて検出し、
これにより障害の有無を判定していた。
By the way, the switch may have obstacles such as foreign objects such as bolts and nails, poor contact of the center conductor 3, protrusions on the inner surface of the metal casing 1, and deterioration of the insulating spacer 2 due to its installation and inspection work. There is. If a fault exists within the switch, partial discharge is likely to occur. Therefore, conventionally, the existence and type of a fault in the switch has been determined from the manner in which partial discharge occurs. That is, for example, if a protrusion exists on the inner surface of the metal casing 1, partial discharge will occur at the peak of the applied voltage.
As shown in , the high-frequency signal is superimposed on the applied voltage Vi at the peak voltage position. On the other hand, in the case of poor contact in the center conductor 3, partial discharge occurs at the rise and fall of the applied voltage, so as shown in Figure 6B, the high frequency signal is generated at the rise of the applied voltage Vi. and is superimposed at the falling edge. Therefore, in the past, high frequency signals were detected in correspondence with the phase of the applied voltage.
This was used to determine the presence or absence of a failure.

しかし、上述したように、高周波信号をアナロ
グ的に伝送すると、信号線にノイズが侵入した場
合監視部側でノイズと高周波信号との識別が困難
になるため、障害の有無及び種類を正確に判断す
ることができないこともある。また、伝送部側に
設けられた増幅器8などを駆動するために、予め
充電されたバツテリー等のような単独の電源を必
要とし、このバツテリーの寿命を点検するため、
定期的なメンテナンスが必要となるといつた問題
点があつた。
However, as mentioned above, when high-frequency signals are transmitted analogously, if noise enters the signal line, it becomes difficult for the monitoring unit to distinguish between the noise and the high-frequency signal, so it is difficult to accurately determine the presence and type of failure. Sometimes you can't. In addition, in order to drive the amplifier 8 etc. provided on the transmission section side, a separate power source such as a pre-charged battery is required, and in order to check the lifespan of this battery,
There was a problem with the need for regular maintenance.

(発明の目的) 本発明の目的は、部分放電に起因して発生する
高周波信号をデジタル信号に変換して伝送するこ
とにより、監視部側での高周波信号とノイズとの
識別を容易にするとともに、伝送部側のバツテリ
ー寿命による定期的なメンテナンスを不要とする
ことができる高電圧機器の部分放電検出装置を提
供することにある。
(Objective of the Invention) An object of the present invention is to convert a high frequency signal generated due to partial discharge into a digital signal and transmit it, thereby making it easy for the monitoring section to distinguish between the high frequency signal and noise. Another object of the present invention is to provide a partial discharge detection device for high-voltage equipment that can eliminate the need for periodic maintenance due to battery life on the transmission section side.

(発明の概要) 前記目的を達成するため本発明は、金属ケーシ
ング内に高電圧部を備え、前記金属ケーシング内
で発生する部分放電を検出するための部分放電検
出装置であつて、前記金属ケーシングと前記高電
圧部との間の電圧をコンデンサ分担するための電
極と、この電極と前記金属ケーシングに接続され
た基準電位線との間に接続された整流手段と、こ
の整流手段の出力で充電される充電手段と、前記
電極と前記整流手段との間に接続され、部分放電
に起因して発生する高周波信号を検出するための
信号検出手段と、この信号検出手段の出力を増幅
する信号増幅手段と、増幅後の信号をデジタル信
号に変換する信号変換手段とを備えて伝送部を構
成し、前記充電手段を前記伝送部の駆動電源とし
て用いたことを特徴とする。
(Summary of the Invention) In order to achieve the above object, the present invention provides a partial discharge detection device that includes a high voltage section in a metal casing and detects a partial discharge that occurs in the metal casing. an electrode for sharing the voltage between the capacitor and the high voltage section; a rectifying means connected between the electrode and a reference potential line connected to the metal casing; and charging with the output of the rectifying means. a signal detecting means connected between the electrode and the rectifying means for detecting a high frequency signal generated due to partial discharge, and a signal amplifying means for amplifying the output of the signal detecting means. and a signal conversion means for converting the amplified signal into a digital signal, forming a transmission section, and the charging means is used as a driving power source for the transmission section.

(発明の実施例) 以下、本発明の実施例を図面を参照して詳細に
説明する。
(Embodiments of the Invention) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第3図には部分放電を検出すべき密閉型ガス開
閉器の一部が示され、この開閉器は、図示しない
送電線からの高電圧が印加され、送電線路のしや
断に用いられる中心導体3を備え、そのケーシン
グ1は絶縁体から成るスペーサ2を介して長手方
向に電気的に分割されている。スペーサ2には検
電用の電極4が設けられ、この電極4とケーシン
グ1との間に存在する浮遊容量C2はコンデンサ
5として示されている。コンデンサ5の両端には
信号引込線6を介して整流器9が接続され、この
整流器9には整流電圧により充電される充電用コ
ンデンサ10が接続されている。信号引込線6に
は高周波信号検出用の高周波トランス11が直列
に接続されている。
Figure 3 shows a part of a sealed gas switch that is used to detect partial discharges. A conductor 3 is provided, the casing 1 of which is electrically divided in the longitudinal direction via a spacer 2 made of an insulator. The spacer 2 is provided with an electrode 4 for voltage detection, and a stray capacitance C 2 existing between the electrode 4 and the casing 1 is shown as a capacitor 5. A rectifier 9 is connected to both ends of the capacitor 5 via a signal lead-in line 6, and a charging capacitor 10 that is charged by a rectified voltage is connected to the rectifier 9. A high frequency transformer 11 for detecting high frequency signals is connected in series to the signal lead-in line 6.

高周波トランス11には増幅器12を介してア
ナログスイツチ13が接続され、このアナログス
イツチ13には高周波信号を積分するための積分
器14,14′がそれぞれ並列に接続され、これ
ら積分器14,14′には更に他のアナログスイ
ツチ13′が接続されている。このアナログスイ
ツチ13′にはA−D変換器15が接続され、こ
のA−D変換器15には電気−光変換器(以下、
E/O変換器という)16を介して光フアイバ1
7が光結合されている。そして、この光フアイバ
17は、第2図に示すように、監視部側におい
て、光−電気変換器(以下、O/E変換器とい
う)18を介してD−A変換器19に接続されて
いる。D−A変換器19にはアナログスイツチ2
0が接続されている。
An analog switch 13 is connected to the high frequency transformer 11 via an amplifier 12, and integrators 14 and 14' for integrating high frequency signals are connected in parallel to the analog switch 13. Further, another analog switch 13' is connected to. An A-D converter 15 is connected to this analog switch 13', and this A-D converter 15 is connected to an electrical-to-optical converter (hereinafter referred to as
The optical fiber 1 is connected to the optical fiber 1 through the E/O converter 16.
7 is optically coupled. As shown in FIG. 2, this optical fiber 17 is connected to a D-A converter 19 via an optical-to-electrical converter (hereinafter referred to as an O/E converter) 18 on the monitoring unit side. There is. Analog switch 2 is connected to the D-A converter 19.
0 is connected.

中心導体3に送電線路から商用周波数の、即
ち、50若しくは60〔Hz〕の高電圧が印加されると、
この中心導体3と電極4との間に発生する浮遊容
量C1とコンデンサ5で示す浮遊容量C2とが分圧
器を構成し、コンデンサ5に50若しくは60〔Hz〕
の分担電圧が発生する。この分担電圧は引込線6
を介して整流器9に導かれるので、整流器9はこ
の分担電圧を整流し、充電用コンデンサ10を充
電する。そして、この充電用コンデンサ10の出
力電圧は電源として利用され、図示しない電源レ
ギユレータを介して積分器14,14′、A−D
変換器15及びE/O変換器16等に印加され
る。
When a high voltage of commercial frequency, that is, 50 or 60 [Hz] is applied to the center conductor 3 from the power transmission line,
The stray capacitance C 1 generated between the center conductor 3 and the electrode 4 and the stray capacitance C 2 shown by the capacitor 5 constitute a voltage divider, and the capacitor 5 has a voltage of 50 or 60 [Hz].
A shared voltage is generated. This shared voltage is
Since the voltage is guided to the rectifier 9 via the rectifier 9, the rectifier 9 rectifies this shared voltage and charges the charging capacitor 10. The output voltage of this charging capacitor 10 is used as a power source and is passed through a power regulator (not shown) to integrators 14, 14', A-D.
It is applied to the converter 15, the E/O converter 16, etc.

次に、本発明の部分放電検出装置の動作につい
て説明する。開閉器内で部分放電が生じると、こ
の部分放電に起因して発生する高周波信号がコン
デンサ5の両端から得られる分担電圧に重畳され
るが、本発明方法では、先ず、分担電圧に重畳さ
れた高周波信号を高周波トランス11により検出
し、増幅器にて増幅して出力する。
Next, the operation of the partial discharge detection device of the present invention will be explained. When a partial discharge occurs in the switch, a high frequency signal generated due to this partial discharge is superimposed on the shared voltage obtained from both ends of the capacitor 5. In the method of the present invention, first, the high frequency signal generated due to this partial discharge is superimposed on the shared voltage obtained from both ends of the capacitor 5. A high frequency signal is detected by a high frequency transformer 11, amplified by an amplifier, and output.

一方、コンデンサ5に接続された位相検出器2
1により、50若しくは60〔Hz〕の分担電圧の位相
を検出する。位相検出器21は、分担電圧の位相
よりも45゜進んでいる点を基点として、分担電圧
の位相が90゜変化する{第4図A,B参照}毎に、
アナログスイツチ13に切換制御信号を出力する
ように予め設定されている。従つて、アナログス
イツチ13は、分担電圧の位相、即ち、中心導体
3の課電電圧の位相が90゜変化する毎に切換動作
し、増幅器12にて増幅された高周波信号を積分
器14又は14′に送出する。
On the other hand, phase detector 2 connected to capacitor 5
1, the phase of the shared voltage of 50 or 60 [Hz] is detected. The phase detector 21 detects each time the phase of the shared voltage changes by 90° {see FIGS. 4A and B}, starting from a point that is 45° ahead of the phase of the shared voltage.
It is set in advance to output a switching control signal to the analog switch 13. Therefore, the analog switch 13 switches every time the phase of the shared voltage, that is, the phase of the voltage applied to the center conductor 3 changes by 90 degrees, and converts the high frequency signal amplified by the amplifier 12 into the integrator 14 or 14. ’.

次に、各積分器14,14′により高周波信号
を課電電圧の位相に同期させて積分し、後段側の
アナログスイツチ13′をA−D変換器15から
の符号化パルスに基づく制御信号により切換動作
させ、A−D変換器15に、各積分器14,1
4′にて積分して得た高周波信号に対応するアナ
ログ的な検出信号を入力する。
Next, each integrator 14, 14' integrates the high frequency signal in synchronization with the phase of the applied voltage, and the analog switch 13' on the latter stage is controlled by a control signal based on the encoded pulse from the A-D converter 15. The switching operation is performed to connect the A-D converter 15 to each integrator 14,1.
An analog detection signal corresponding to the high frequency signal obtained by integration at 4' is input.

次に、A−D変換器15により各積分器14,
14′からの検出信号をデジタル信号に変換する。
このA−D変換器15内では、デジタル信号にパ
ルス挿入回路により同期パルス及び位相を区別す
るための符号化パルスが挿入される。
Next, each integrator 14,
14' is converted into a digital signal.
In this A/D converter 15, a synchronization pulse and a coded pulse for distinguishing the phase are inserted into the digital signal by a pulse insertion circuit.

次いで、デジタル信号、同期パルス及び符号化
パルスをE/O変換器16により光信号に変換
し、光フアイバ17により監視部側に伝送する。
Next, the digital signal, synchronization pulse, and encoded pulse are converted into optical signals by the E/O converter 16, and transmitted to the monitoring unit side by the optical fiber 17.

監視部側では、光信号をO/E変換器18によ
りデジタル信号、同期パルス及び符号化パルスに
再度変換し、D−A変換器19によりデジタル信
号を高周波信号に対応する検出信号に戻すと共に
該変換器19からの符号化パルスに基づく制御信
号によりアナログスイツチ20を切換動作させ、
この検出信号を課電電圧の位相に対応させて振り
分ける。そして、この振り分けた検出信号を、例
えば、表示装置により課電電圧と共にその位相に
対応させて表示する。
On the monitoring unit side, the optical signal is converted again into a digital signal, a synchronization pulse, and an encoded pulse by the O/E converter 18, and the digital signal is returned to a detection signal corresponding to a high frequency signal by the D-A converter 19, and the corresponding The analog switch 20 is operated by a control signal based on the encoded pulse from the converter 19,
This detection signal is distributed in correspondence with the phase of the applied voltage. Then, the distributed detection signals are displayed, for example, on a display device along with the applied voltage in correspondence with its phase.

このように、高周波信号を積分して得た検出信
号をデジタル信号に変換した後このデジタル信号
を更に光信号に変換して光フアイバ17にて伝送
すると、信号が伝送中にノイズの影響を受けて歪
み又は信号線にノイズが侵入する等の問題が生じ
ることがない。従つて、監視部側では検出信号の
みを、しかも正確な電圧レベルで再生することが
できる。また、高周波信号を課電電圧の位相に対
応させて検出した後該検出信号を課電電圧の位相
に同期させてデジタル変換するので、監視部側で
は検出信号を課電電圧の位相に正確に対応させて
再生することができる。
In this way, when a detection signal obtained by integrating a high-frequency signal is converted into a digital signal, and then this digital signal is further converted into an optical signal and transmitted through the optical fiber 17, the signal is not affected by noise during transmission. Therefore, problems such as distortion or noise entering the signal line do not occur. Therefore, on the monitoring section side, only the detection signal can be reproduced at an accurate voltage level. In addition, after detecting the high frequency signal in correspondence with the phase of the applied voltage, the detection signal is synchronized with the phase of the applied voltage and converted into digital data, so the monitoring unit can accurately match the detection signal to the phase of the applied voltage. It can be played back accordingly.

よつて、例えば、中心導体3の接触不良により
開閉器内に部分放電が生じた場合には、第4図A
に示すように、課電電圧Viの立上り及び立下り
位置にのみ検出信号Sが現れる。従つて、部分放
電の発生を確実、かつ正確に判定することができ
る。
Therefore, for example, if a partial discharge occurs in the switch due to poor contact of the center conductor 3, the
As shown in the figure, the detection signal S appears only at the rising and falling positions of the applied voltage Vi. Therefore, the occurrence of partial discharge can be determined reliably and accurately.

また、金属ケーシング1内面の突起の存在で開
閉器内に部分放電が生じた場合には、第4図Bに
示すように、課電電圧Viのピーク電圧位置にの
み検出信号S′が現れる。従つて、この検出信号S
及びS′の位置と大きさから、開閉器内にどのよう
な障害が存在するかを正確に知ることができる。
Furthermore, if a partial discharge occurs in the switch due to the presence of a protrusion on the inner surface of the metal casing 1, the detection signal S' appears only at the peak voltage position of the applied voltage Vi, as shown in FIG. 4B. Therefore, this detection signal S
From the position and size of

(発明の効果) 本発明によれば、部分放電に起因して発生する
高周波信号をデジタル信号に変換して伝送するた
め、監視部側での高周波信号とノイズとの識別を
容易にすることができる。また、金属ケーシング
と高電圧部との間の電圧をコンデンサ分担するた
めの電極と金属ケーシングに接続された基準電位
線との間に整流手段を接続し、この整流手段の出
力で充電される充電手段を設け、この充電手段を
伝送部の駆動電源として用いるため、伝送部側の
バツテリー寿命による定期的なメンテナンスが不
要となる。
(Effects of the Invention) According to the present invention, since the high frequency signal generated due to partial discharge is converted into a digital signal and transmitted, it is possible to easily distinguish between the high frequency signal and noise on the monitoring unit side. can. In addition, a rectifying means is connected between the electrode for sharing the voltage between the metal casing and the high voltage part with the capacitor and the reference potential line connected to the metal casing, and the charge is charged by the output of the rectifying means. Since the charging means is provided as a power source for driving the transmission section, regular maintenance due to battery life on the transmission section side is not required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明に係る部分放電検出
装置に用いられる伝送側と監視部側の機器のブロ
ツク図、第3図は本発明に係る部分放電検出部の
密閉型ガス開閉器への接続態様を示す図、第4図
A,Bはそれぞれ検出信号を課電電圧の位相に対
応させて示す波形図、第5図は従来の部分放電検
出装置を概略的に示す図、第6図A,Bは高周波
信号を含む課電電圧の波形図である。 4……電極、5……コンデンサ、9……整流
器、11……高周波トランス、13,13′,2
0……アナログスイツチ、15……A−D変換
器、16……電気−光変換器、17……光フアイ
バ。
Figures 1 and 2 are block diagrams of equipment on the transmission side and monitoring unit side used in the partial discharge detection device according to the present invention, and Figure 3 is a block diagram of the equipment on the closed type gas switch of the partial discharge detection unit according to the present invention. Figures 4A and 4B are waveform diagrams showing detection signals corresponding to the phases of applied voltages, Figure 5 is a diagram schematically showing a conventional partial discharge detection device, and Figure 6 Figures A and B are waveform diagrams of applied voltages including high frequency signals. 4... Electrode, 5... Capacitor, 9... Rectifier, 11... High frequency transformer, 13, 13', 2
0...Analog switch, 15...A-D converter, 16...Electro-optical converter, 17...Optical fiber.

Claims (1)

【特許請求の範囲】 1 金属ケーシング内に高電圧部を備え、前記金
属ケーシング内で発生する部分放電を検出するた
めの部分放電検出装置であつて、 前記金属ケーシングと前記高電圧部との間の電
圧をコンデンサ分担するための電極と、 この電極と前記金属ケーシングに接続された基
準電位線との間に接続された整流手段と、 この整流手段の出力で充電される充電手段と、 前記電極と前記整流手段との間に接続され、部
分放電に起因して発生する高周波信号を検出する
ための信号検出手段と、 この信号検出手段の出力を増幅する信号増幅手
段と、 増幅後の信号をデジタル信号に変換する信号変
換手段とを備えて伝送部を構成し、 前記充電手段を前記伝送部の駆動電源として用
いたことを特徴とする高電圧機器の部分放電検出
装置。
[Scope of Claims] 1. A partial discharge detection device comprising a high voltage section within a metal casing and for detecting partial discharge occurring within the metal casing, the device comprising: a high voltage section between the metal casing and the high voltage section; an electrode for sharing the voltage of the capacitor; a rectifier connected between this electrode and a reference potential line connected to the metal casing; a charging means that is charged with the output of the rectifier; and the electrode. and the rectifying means, for detecting a high frequency signal generated due to partial discharge, a signal amplifying means for amplifying the output of the signal detecting means, and a signal amplifying means for amplifying the amplified signal. 1. A partial discharge detection device for high-voltage equipment, characterized in that a transmission section includes a signal conversion means for converting into a digital signal, and the charging means is used as a driving power source for the transmission section.
JP60157008A 1985-07-18 1985-07-18 Measuring method for partial electric discharge of high voltage equipment Granted JPS6219774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60157008A JPS6219774A (en) 1985-07-18 1985-07-18 Measuring method for partial electric discharge of high voltage equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60157008A JPS6219774A (en) 1985-07-18 1985-07-18 Measuring method for partial electric discharge of high voltage equipment

Publications (2)

Publication Number Publication Date
JPS6219774A JPS6219774A (en) 1987-01-28
JPH0572988B2 true JPH0572988B2 (en) 1993-10-13

Family

ID=15640162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60157008A Granted JPS6219774A (en) 1985-07-18 1985-07-18 Measuring method for partial electric discharge of high voltage equipment

Country Status (1)

Country Link
JP (1) JPS6219774A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415670A (en) * 1987-07-09 1989-01-19 Toshiba Corp Internal partial discharge detection system of gas insulated switch apparatus
JPH026700A (en) * 1988-06-23 1990-01-10 Lonseal Corp Production of novel vinyl wallpaper
GB9021484D0 (en) * 1990-10-03 1990-11-14 Univ Strathclyde Gas insulated substations
JP4879072B2 (en) * 2007-04-05 2012-02-15 三菱電機株式会社 Partial discharge detector for gas insulated switchgear
JP5253687B1 (en) * 2012-12-03 2013-07-31 三菱電機株式会社 Voltage detector
JP6331521B2 (en) * 2014-03-14 2018-05-30 日新電機株式会社 Partial discharge monitoring device and partial discharge monitoring system
CN109459674B (en) * 2018-12-28 2020-12-22 国家电网有限公司 Multi-node monitoring system synchronization device for local discharge of switch cabinet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534968B2 (en) * 1974-01-19 1978-02-22
JPS54115176A (en) * 1978-02-27 1979-09-07 Shii Emu Shii Shii Kk Electric insulator diagnoser
JPS60120268A (en) * 1983-12-05 1985-06-27 Toshiba Corp Corona discharge detecting apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534968U (en) * 1976-06-29 1978-01-17
JPS5564778U (en) * 1978-10-26 1980-05-02

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534968B2 (en) * 1974-01-19 1978-02-22
JPS54115176A (en) * 1978-02-27 1979-09-07 Shii Emu Shii Shii Kk Electric insulator diagnoser
JPS60120268A (en) * 1983-12-05 1985-06-27 Toshiba Corp Corona discharge detecting apparatus

Also Published As

Publication number Publication date
JPS6219774A (en) 1987-01-28

Similar Documents

Publication Publication Date Title
US5200737A (en) System and method for detecting partial discharge of gas-insulated switchgear
JPH0572988B2 (en)
KR900010354A (en) Capacitive dimensional measurement chain with linear output
JP2774645B2 (en) Partial discharge detector
JPH0980111A (en) Partial discharge detection apparatus
FR2746504B1 (en) METHOD AND APPARATUS FOR DETECTING A FAULT IN ELECTRICAL CONNECTION BETWEEN A CONNECTOR AND AN ARMORED CABLE
JPH07181218A (en) Method and apparatus for detecting partial discharge
JP3126392B2 (en) Partial discharge detector for gas insulated switchgear
JP3126391B2 (en) Partial discharge detector
JP2774649B2 (en) Partial discharge detector
EP0414236A2 (en) Optical transformer
JPH0516748B2 (en)
JPS576367A (en) Method for detecting partial discharge of power cable
JPH03110487A (en) Detector for partial discharge
JPS62214372A (en) Detection system for partial discharge
JPH11287838A (en) Partial discharge detection device of gas insulation equipment
JPH0479211B2 (en)
JPS63186512A (en) Grounding device for compact switchgear
JPH03246473A (en) Partial discharge measuring method
JPS61227610A (en) Fault detection for gas insulated apparatus
SU1679422A1 (en) Method of diagnostics of high-voltage solid insulation
JPH04113274A (en) Voltage detector
JPH03138575A (en) Detector of partial discharge
JPH02222844A (en) Abnormality detection system for gas insulated switchgear
JPH0894701A (en) Signal measuring instrument of power cable