JPH0572541B2 - - Google Patents

Info

Publication number
JPH0572541B2
JPH0572541B2 JP60021701A JP2170185A JPH0572541B2 JP H0572541 B2 JPH0572541 B2 JP H0572541B2 JP 60021701 A JP60021701 A JP 60021701A JP 2170185 A JP2170185 A JP 2170185A JP H0572541 B2 JPH0572541 B2 JP H0572541B2
Authority
JP
Japan
Prior art keywords
metal material
frequency spectrum
frequency
spectrum
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60021701A
Other languages
Japanese (ja)
Other versions
JPS61181957A (en
Inventor
Makoto Senoo
Sakae Sugyama
Atsushi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd filed Critical Hitachi Ltd
Priority to JP60021701A priority Critical patent/JPS61181957A/en
Publication of JPS61181957A publication Critical patent/JPS61181957A/en
Publication of JPH0572541B2 publication Critical patent/JPH0572541B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Description

【発明の詳細な説明】 〔発明利用分野〕 本発明は、超音波を用いて金属材料内部の結晶
粒の大きさの分布を測定するのに好適な金属材料
検査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a metal material inspection device suitable for measuring the size distribution of crystal grains inside a metal material using ultrasonic waves.

〔発明の背景〕[Background of the invention]

金属材料内部の結晶粒の大きさの分布を非破壊
的に測定できれば、金属材料で作られた製品の品
質管理が飛躍的に改善されるだけでなく、製法の
改良が容易になる。非破壊的に測定する方法とし
て、鋼板の材料特性のオンライン判定方法の一例
として特開昭57−57255号公報(特願昭55−
132280号)があげられる。この代表的従来例は、
鋼板の底面からの超音波エコー(底面エコーと略
称)の音速変化によつて結晶粒の大きさを測定す
るものである。この方法では、底面エコーを受信
しているので、超音波ビーム路程つまり鋼板の全
板厚における結晶粒の平均値でしか測定すること
ができない。
If it is possible to non-destructively measure the size distribution of crystal grains inside metal materials, it will not only dramatically improve the quality control of products made from metal materials, but also make it easier to improve manufacturing methods. As an example of a non-destructive measurement method, an example of an online judgment method for the material properties of steel sheets is disclosed in Japanese Patent Application Laid-open No. 57-57255 (Japanese Patent Application No. 57-57-
132280). This typical conventional example is
The size of crystal grains is measured by changing the sound speed of ultrasonic echoes (abbreviated as bottom echoes) from the bottom surface of a steel plate. Since this method receives bottom echoes, it is possible to measure only the ultrasonic beam path, that is, the average value of crystal grains over the entire thickness of the steel sheet.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、金属の結晶粒の大きさの分布
を非破壊で精度良く測定する装置を提供すること
にある。
An object of the present invention is to provide an apparatus that non-destructively and accurately measures the size distribution of metal crystal grains.

〔発明の概要〕[Summary of the invention]

金属材料中に存在する欠陥を非破壊で検出する
ためには、従来から超音波の欠陥部に対する音響
インピーダンスの違いから生じる超音波の反射波
をとらえる方法が使われている。しかし、金属材
料中の結晶粒の大きさを非破壊で知る方法は、結
晶粒の大きさの変化に伴なう音響インピーダンス
の変化が小さいために、実現されていない。
In order to non-destructively detect defects in metal materials, conventional methods have been used to capture reflected waves of ultrasonic waves caused by differences in the acoustic impedance of ultrasonic waves to defective parts. However, a method for non-destructively determining the size of crystal grains in a metal material has not been realized because the change in acoustic impedance that accompanies changes in the size of crystal grains is small.

金属材料中の結晶粒の大きさと超音波の減衰お
よび反射率の関係は、下式(1)及び式(2)で表わされ
ることが理論的に知られている(非破壊検査便
覧)。
It is theoretically known that the relationship between the size of crystal grains in a metal material and the attenuation and reflectance of ultrasonic waves is expressed by the following equations (1) and (2) (Nondestructive Testing Handbook).

α∝e-A α∝e -A

Claims (1)

【特許請求の範囲】 1 超音波ビームを金属材料に対して発信し、該
金属材料から反射または散乱された超音波信号を
受信する手段と、受信された超音波信号の周波数
スペクトルを演算する手段と、該周波数スペクト
ルの特徴パラメータを抽出する手段と、該特徴パ
ラメータと上記金属材料の結晶粒の大きさとの関
係が予め記憶されている記憶手段と、新たに抽出
された周波数スペクトルの特徴パラメータと上記
記憶手段に記憶されている内容とを比較すること
により上記金属材料の結晶粒の大きさに関する情
報を表わす信号を出力する手段とから構成され、 上記周波数スペクトルを演算する手段は、超音
波ビームの伝播距離を時間的に分割し、分割した
を間毎に周波数スペクトルを演算することを特徴
とする金属材料検査装置。 2 特許請求の範囲第1項記載の装置において、 上記周波数スペクトルの特徴パラメータとし
て、スペクトル強度の最大点を表わす中心周波
数、スペクトルの平均値を表わす平均周波数、又
は、周波数スペクトルの図形の重心位置を表わす
重心周波数を用いることを特徴とする金属材料検
査装置。
[Claims] 1. Means for transmitting an ultrasonic beam to a metal material and receiving an ultrasonic signal reflected or scattered from the metal material, and means for calculating a frequency spectrum of the received ultrasonic signal. a means for extracting a characteristic parameter of the frequency spectrum; a storage means in which a relationship between the characteristic parameter and the crystal grain size of the metal material is stored in advance; and a characteristic parameter of the newly extracted frequency spectrum. and means for outputting a signal representing information regarding the size of crystal grains of the metal material by comparing the content stored in the storage means, and the means for calculating the frequency spectrum comprises an ultrasonic beam A metal material inspection device characterized in that the propagation distance of is divided in time and a frequency spectrum is calculated for each divided interval. 2. In the device according to claim 1, the characteristic parameters of the frequency spectrum include a center frequency representing the maximum point of the spectrum intensity, an average frequency representing the average value of the spectrum, or a position of the center of gravity of the figure of the frequency spectrum. A metal material inspection device characterized in that it uses a center of gravity frequency.
JP60021701A 1985-02-08 1985-02-08 Metal material inspecting device Granted JPS61181957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60021701A JPS61181957A (en) 1985-02-08 1985-02-08 Metal material inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60021701A JPS61181957A (en) 1985-02-08 1985-02-08 Metal material inspecting device

Publications (2)

Publication Number Publication Date
JPS61181957A JPS61181957A (en) 1986-08-14
JPH0572541B2 true JPH0572541B2 (en) 1993-10-12

Family

ID=12062362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60021701A Granted JPS61181957A (en) 1985-02-08 1985-02-08 Metal material inspecting device

Country Status (1)

Country Link
JP (1) JPS61181957A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177168A (en) * 2002-11-25 2004-06-24 Sanyo Special Steel Co Ltd In-steel inclusion detection/evaluating method by submerged ultrasonic flaw detection

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216291A (en) * 1988-02-25 1989-08-30 Nippon Telegr & Teleph Corp <Ntt> Method and device for detecting object
CA1299727C (en) * 1989-03-06 1992-04-28 David Donald Caulfield Acoustic detection apparatus
JP5974650B2 (en) * 2012-06-09 2016-08-23 大同特殊鋼株式会社 Grain anisotropy judgment method
JP7196581B2 (en) * 2018-12-10 2022-12-27 大同特殊鋼株式会社 Structure inspection method of material to be inspected
JP6775233B2 (en) * 2019-06-04 2020-10-28 原子燃料工業株式会社 Material diagnostic method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739346A (en) * 1980-08-20 1982-03-04 Hitachi Ltd Identifying device for reflection body by frequency spectra

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739346A (en) * 1980-08-20 1982-03-04 Hitachi Ltd Identifying device for reflection body by frequency spectra

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177168A (en) * 2002-11-25 2004-06-24 Sanyo Special Steel Co Ltd In-steel inclusion detection/evaluating method by submerged ultrasonic flaw detection

Also Published As

Publication number Publication date
JPS61181957A (en) 1986-08-14

Similar Documents

Publication Publication Date Title
CA2258439C (en) Ultrasonic lamb wave technique for measurement of pipe wall thickness at pipe supports
US2995925A (en) Ultrasonic flaw detection method and means
Bar-Cohen et al. Ultrasonic inspection
JPH0572541B2 (en)
Panetta et al. Ultrasonic attenuation measurements in jet-engine titanium alloys
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
JP2000180422A (en) Method and apparatus for inspecting thin plate lap seam welded part
CN107966493A (en) A kind of ultrasonic examination decision method of rolled steel defect
JP2001343365A (en) Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet
JPH0454447A (en) Fatigue damage measuring method
JPH09171005A (en) Method for discriminating kind of defect by ultrasonic flaw detection
JP2006313115A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JPS63221211A (en) Ultrasonic thickness measuring method for laminar body
RU2791670C1 (en) Method for checking quality of acoustic contact between ultrasonic transducer and ceramic product during ultrasonic flaw detection
JP3236865B2 (en) Excitation mode identification method
JPH09138222A (en) Ultrasonic inspection method for cast piece or rolled steel material
JPH068728B2 (en) Measuring method of ultrasonic wave propagation distance
RU2141652C1 (en) Method for ultrasonic check-up of mean grain size of materials
JPH06109578A (en) Method and apparatus for detecting defect and different hard part
SU1730573A1 (en) Method of determination of coordinates of acoustic emission sources
JP2001074703A (en) Ultrasonic flaw detecting apparatus
JPH0212609Y2 (en)
RU2251101C2 (en) Method of determining mechanical properties of metals during plastic deformation
RU1797043C (en) Method of ultrasonic defectoscopy of products with simultaneous acoustic contact quality control
JPH11166917A (en) Method and device for inspecting state of welding in lap resistance weld

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees